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Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become
a standard method of imaging patients with various disease conditions, especially cancer. Body-wide
accurate quantification of disease burden in PET/CT images is important for characterizing lesions,
staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response
to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical
first step for accurately and automatically quantifying disease body-wide, body-region-wise, and
organwise. This latter process, however, has remained a challenge due to the lower quality of the
anatomic information portrayed in the CT component of this imaging modality and the paucity of
anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a
recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide
hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med.
Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object
localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT
images.
Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-
wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity
in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture
properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality
approach. The whole-body approach allows consideration of relationships among objects in different
body regions, which was previously not possible. Consideration of object texture allows generalizing
the previous optimal threshold-based fuzzy model recognition method from intensity images to any
derived fuzzy membership image, and in the process, to bring performance to the level achieved on
diagnostic CT and MR images in body-region-wise approaches. The intermodality approach fosters
the use of already existing fuzzy models, previously created from diagnostic CT images, on PET/CT
and other derived images, thus truly separating the modality-independent object assembly anatomy
from modality-specific tissue property portrayal in the image.
Results: Key ways of combining the above three basic ideas lead them to 15 different strategies
for recognizing objects in PET/CT images. Utilizing 50 diagnostic CT image data sets from the
thoracic and abdominal body regions and 16 whole-body PET/CT image data sets, the authors
compare the recognition performance among these 15 strategies on 18 objects from the thorax,
abdomen, and pelvis in object localization error and size estimation error. Particularly on texture
membership images, object localization is within three voxels on whole-body low-dose CT images
and 2 voxels on body-region-wise low-dose images of known true locations. Surprisingly, even on
direct body-region-wise PET images, localization error within 3 voxels seems possible.
Conclusions: The previous body-region-wise approach can be extended to whole-body torso with
similar object localization performance. Combined use of image texture and intensity property
yields the best object localization accuracy. In both body-region-wise and whole-body approaches,
recognition performance on low-dose CT images reaches levels previously achieved on diagnostic
CT images. The best object recognition strategy varies among objects; the proposed framework
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however allows employing a strategy that is optimal for each object. C 2016 American Association
of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4939127]
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1. INTRODUCTION

Whole-body positron emission tomography (PET)/computed
tomography (CT) imaging provides coregistered molecular
and anatomic images of patients in one single procedure. This
modality has recently become the standard method for clinical
molecular imaging assessment of patients with various disease
conditions, including cancer.2–4 In clinical research, whole-
body PET/CT is also frequently utilized as a robust means
of noninvasively providing quantitative information about dis-
eases of interest and the effects of experimental therapeutic
interventions upon lesions and other tissues in the body. With
the rapid growth of PET/CT-based medical applications, anat-
omy recognition in whole-body PET/CT images is critical
for quantifying body-wide disease burden. This, however, is
challenging due to the low spatial resolution of PET image
with its unclear anatomy reference and due to the low contrast
resolution of the associated unenhanced low-dose CT image.
To illustrate this point, in Fig. 1, we display a radiologically
normal sample slice of a contrast-enhanced diagnostic CT
image, an approximately matching unenhanced low-dose CT
image from a different subject, and the PET image matching
the low-dose CT image following intravenous administration
of 18F-fluorodeoxyglucose (FDG).

Many image segmentation methods have been investigated
and applied to PET/CT images, but mostly for segmenting
pathological regions. These include thresholding,5–9 gradient-
directed,10 region growing,11 clustering,12 deformable model
driven techniques,13 and graph-based approaches.14 Thresh-
olding based on PET standardized uptake values (SUVs)
is the most common method employed in PET segmenta-
tion which is comparable in popularity to manual delinea-
tion in clinical practice. There are also thresholding methods
based on a percentage of the maximum SUV,6,7 the signal
to background ratio or SBR,5 and other variants.8 Besides
fixed thresholding, many adaptive thresholding methods have
also been proposed9 in which an optimal threshold level is
determined automatically. Despite their simplicity and ease

F. 1. L to R: One slice of contrast-enhanced diagnostic CT image, a corresponding unenhanced low-dose CT image from a different patient at approximately
the same anatomic level, and the associated FDG-PET image.

of use, the threshold methods are sensitive to noise and al-
ways require prior knowledge of the tumor volume of inter-
est before segmentation.7 Gradient-based methods10 are not
well suited for noisy and low resolution PET images and
need denoising and deblurring operations in advance. Region
growing methods require seed points selected from manual
segmentation drawn or maximum intensity pixels and may
fail to segment heterogeneous regions due to nonuniform up-
take distributions.11 Clustering methods consider the fuzzy
nature of lesion boundary, but their performance is suspect for
small or complex lesions.12 Deformable models are topologi-
cally adaptive which permits smooth segmentation, but they
require sufficient homogenous and clear regions of interest
for effectiveness. Graph-based methods such as graph cuts
and fuzzy connectedness are feasible for complex and fuzzy
images. However, they require adequate seed sets and may
have a leakage issue.15 Recently, several studies advanced
cosegmentation ideas which incorporate both molecular infor-
mation from PET and associated anatomical information from
CT simultaneously to achieve good lesion delineation perfor-
mance on clinical data sets.14,16,17

In many body-wide applications, anatomy recognition of
objects in low-dose CT is a precursor and essential first step
to further delineation and quantification of disease and tissue
composition body-wide, by body region, by organ system, or
by organ. This is a fundamental and challenging problem in
all body-wide applications. As seen from the above literature
review, most published papers on PET/CT image analysis have
focused only on pathological region recognition and not or-
gan anatomy recognition. References 18–24 studied anatomy
recognition on PET and low-dose CT images, but mostly one
specific object without considering multiple objects in the
whole-body. Recently, there have been studies toward mul-
tiorgan segmentation. References 25–28 studied multiorgan
segmentation on diagnostic CT images, but mostly their appli-
cations are constrained to a body region and not extended to
low-dose CT or PET images and body-wide which is more
challenging. Reference 29 proposed a regression approach to
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ocalize multiple organs on diagnostic CT images in a rectan-
gular box form and demonstrated on 26 organs. Reference 30
used information theory to multiorgan localization on PET/CT
images and demonstrated on six organs. Such efforts will
become increasingly important for quantification and charac-
terization of disease body-wide. Therefore, the development
of a robust object localization/recognition method that works
on low-dose CT or PET images body-wide would constitute
an advancement of the state-of-the-art in PET/CT quantitative
image analysis.

Motivated by body-wide applications and generalizability
of methods, we have recently developed an automatic anatomy
recognition (AAR) methodology1 and demonstrated its oper-
ability in three different body regions on over 35 objects in
contrast-enhanced diagnostic CT and MR images. The AAR
methodology consists of two related processes: recognition
and delineation. Recognition is a high-level process of deter-
mining the whereabouts of the object in the image. Delineation
is a low-level process of determining the precise spatial extent
of the object in the image. It has been demonstrated in Ref. 1
that with acceptable recognition, good delineation results can
be obtained. In the AAR approach, a fuzzy anatomy model
of the body region with all its major objects arranged in a
hierarchy is first built by utilizing existing clinical image data
sets. Subsequently, the objects are recognized in any given
image following the hierarchical order and exploiting object
relationships. Subsequent to recognition, fuzzy connectedness
algorithms tightly integrated with the fuzzy models are used
to delineate the objects in the image, also following the hierar-
chical order. The generalizability and performance of the AAR
methodology led us to study its applicability to whole-body
PET/CT images.

The aim of the present work was thus to investigate strat-
egies for adapting the previous AAR system to PET/CT im-
ages and also advance its approach in several key ways. First,
instead of the body-region-wise treatment of Ref. 1, the whole
body (hereafter, by whole body, we mean the body torso) is
considered. In the process, exploitation and consideration of
the relationships among objects in different body regions have
become possible for performing AAR. This also obviates the
need for breaking up the whole-body image into images cor-
responding to individual body regions (either manually or in
a reliable automatic manner) and truly facilitates dealing with
whole-body PET/CT images. Second, instead of the use of just
image intensity for object recognition in the previous process,
we demonstrate the utility of object textural properties together
with intensity in improving recognition. In the process, the
previous optimal threshold recognition strategy is generalized
to any input image, original or derived. Third, we study the
process of recognition on PET images alone, CT images alone,
and the two together, and demonstrate that good recognition
accuracy can be obtained even on just PET images. Fourth, we
include a new body region, namely, the pelvis, which we did
not previously consider in AAR. These advances are described
in Sec. 2. In Sec. 3, we explain the experiments and evaluate
results for various key strategies involving combinations of
approaches for model building (from diagnostic CT or low-
dose CT), images tested for recognition (low-dose CT, PET,

PET, and CT combined, or texture-derived images), and body
region consideration (body-region-wise or whole body). In
Sec. 4, we summarize our findings and point out the key
new outcomes, hurdles and limitations encountered, and future
work. A very preliminary version of this work was presented at
the SPIE Medical Imaging Conference held in February 2015
in Orlando.31

2. WHOLE-BODY AAR

In this paper, we focus only on the recognition process of
AAR and investigate it closely in order to achieve good perfor-
mance on PET/CT images. We note that several papers have
been published in the literature on the process of just object
recognition or localization in the form of locating a rectan-
gular box enclosing the object,20,23,29,32–38 albeit on diagnostic
CT images. Thus, advancing just object recognition strategies
without focusing on subsequent delineation is important in
its own right. We also note that AAR recognition is different
from these approaches in that it actually finds the optimal pose
of a fuzzy model of the object. Also, as we demonstrated in
Ref. 1, good recognition strategies can lead to good model-
based delineation of objects subsequently.

We will follow the terminology of Ref. 1 but introduce
new notations as well. G is the population group for which
the models are built. B is the body region of focus, with
B ∈ {Thx,Abd,Plv,BT} where the elements represent, res-
pectively, body regions thorax, abdomen, pelvis, and the body
torso, the latter being considered to be the union of the other
three body regions. O1, . . . , OL is L objects or organs of B. Im

= {Im1 ,. . .,ImN } is the set of images in modality m of a body
region B for G from N subjects. Ib = {In,l: 1 ≤ n ≤ N and 1 ≤ l
≤ L} is the set of all binary images used for model building, In,l
being the binary image representing Ol in image Imn . Note that
Ib may be derived from modality m1 for building the models
but the models may be deployed on images from another
modality m2 for AAR. FM(Ol): Fuzzy model of object Ol

derived from the set of all binary images Ib
l
= {In,l: 1 ≤ n ≤ N}

of Ol. FAM(B, G): Fuzzy anatomy model of the whole-object
assembly in B. FM t(Ol) is transformed (adjusted) FM(Ol) cor-
responding to the state when Ol is recognized in a given patient
image I of B. lCT is low-dose unenhanced CT of whole-body
PET/CT acquisition. dCT is diagnostic CT which is usually
performed for a body region and not whole body. In this paper,
dCT images are used only for model building. PET&CT are
a fused image derived from CT and PET images of the same
subject. tcCT, trCT, teCT, and tbCT are texture images derived
from lCT corresponding to contrast, correlation, energy, and
ball-scale properties, respectively. tcPET, trPET, tePET, and
tbPET are texture images derived from PET corresponding to
contrast, correlation, energy, and ball-scale properties, respec-
tively. tmCT is a texture-based membership image derived
from lCT and teCT images. tmPET is a texture membership
image derived from PET and tcPET images. Details of how the
fused image, the texture images and the texture membership
images are created are described later in this section.

We will present different AAR strategies involving three
main variables: the body region B ∈ {Thx,Abd,Plv,BT},
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T I. Recognition strategies presented in the paper and their denotation.

Recognition approach Body region Source images for model building Image modality for recognition

B-x-s-dCT-m-lCT x = Thx or Abd dCT Low-dose CT
B-x-s-dCT-m-PET x = Thx or Abd dCT PET
B-x-s-dCT-m-PET&CT x = Thx or Abd dCT Combined PET and CT
B-x-s-dCT-m-tcCT x = Thx or Abd dCT Texture (contrast) image of low-dose CT
B-x-s-dCT-m-trCT x = Thx or Abd dCT Texture (correlation) image of low-dose CT
B-x-s-dCT-m-teCT x = Thx or Abd dCT Texture (energy) image of low-dose CT
B-x-s-dCT-m-tbCT x = Thx or Abd dCT Texture (b-scale) image of low-dose CT
B-x-s-dCT-m-tcPET x = Thx or Abd dCT Texture (contrast) image of PET
B-x-s-dCT-m-trPET x = Thx or Abd dCT Texture (correlation) image of PET
B-x-s-dCT-m-tePET x = Thx or Abd dCT Texture (energy) image of PET
B-x-s-dCT-m-tbPET x = Thx or Abd dCT Texture (b-scale) image of PET
B-x-s-dCT-m-tmCT x = Thx or Abd dCT Texture membership image for low-dose CT
B-x-s-dCT-m-tmPET x = Thx or Abd dCT Texture membership image for PET
B-BT-s-lCT-m-lCT Whole-body torso lCT Low-dose CT
B-BT-s-lCT-m-tmCT Whole-body torso lCT Texture membership image for low-dose CT

source image modality used for model building,
s ∈ {dCT, lCT}, and the image modality of the test images
on which recognition is performed, m ∈ {lCT,PET,PET&CT,
tcCT, trCT, teCT, tbCT, tcPET, trPET, tePET, tbPET, tmCT,
tmPET}. The different AAR strategies proposed in this paper
will be compactly denoted by B-x-s-y-m-z by using the
values assumed by the three variables as mnemonics. As an
example, B-Thx-s-dCT-m-lCT denotes a recognition strat-
egy for the thoracic body region involving models created
from dCT and recognition performed on lCT images. Note
that not all possible combinations of the values assumed
by the variables denote plausible strategies. For example,
B-BT-s-dCT-m-lCT is not feasible since dCT images are
typically not available for whole-body torso. Several among
the feasible combinations have not been tested in this work,
such as B-BT-s-lCT-m-PET, based on our initial experience
with the approaches. Table I lists the 15 processes which we
thought were promising and implemented and tested in this
paper.

Our proposed advances on the original AAR approach are
illustrated in Fig. 2. These will be discussed step-by-step in
Secs. 2.A and 2.B.

2.A. Model building

2.A.1. Setting up image database

This retrospective study was conducted following approval
from the Institutional Review Board at the Hospital of the Uni-
versity of Pennsylvania along with a Health Insurance Porta-
bility and Accountability Act waiver. As in Ref. 1, we make
use of existing patient images which are near normal for the
body region under consideration. For B ∈ {Thx,Abd}, a board
certified radiologist (co-author DAT) selected all dCT image
data sets from our health system patient image database in such
a manner that the images appeared radiologically normal for
the body region considered, with exception of minimal inci-
dental focal abnormalities such as cysts and small pulmonary

F. 2. A schematic depiction of the proposed recognition strategies of the AAR approach.
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nodules. For these two body regions, the population groups
considered have an age range of approximately 50–60 yr. For
B ∈ {Plv,BT}, the same radiologist selected whole-body FDG
PET/CT images of patients in the age range of 31–71 yr. The
separate CT and PET images of these data sets formed the lCT
and PET modalities.

2.A.2. Delineating objects

Following the AAR methodology, we define precisely each
body region B ∈ {Thx,Abd,Plv,BT} and each object consid-
ered in each body region, see Table II. For Thx and Abd,
we use the definitions from Ref. 1: Thx extends axially from
5 mm below the base of the lungs to 15 mm above their
apex. Abd extends inferiorly from the bifurcation point of the
abdominal aorta into common iliac arteries to superiorly the
superior aspect of the liver. The Plv region is defined to extend
inferiorly from the inferior aspect of the ischial tuberosities of
the pelvis to the inferior boundary of the Abd region. Since
BT is defined to be the union of Thx, Abd, and Plv regions, it
extends from the inferior aspect of Plv to the superior aspect
of Thx. All source and test image sets are trimmed as per these
definitions for each B ∈ {Thx,Abd,Plv,BT}. In this first effort
on adapting AAR to PET/CT images, we focused on the 18
objects listed in Table II. We call objects that constitute unions
of basic objects composite objects. The latter are useful for
improving accuracy of object recognition by localizing them
first more globally and then honing in on their component
objects relative to them taken as parent reference objects.

All objects are delineated by strictly following their defi-
nition and using a combination of automatic and interactive
tools to minimize human labor and maximize accuracy. All

tracings were examined for accuracy by several checks—3D
surface renditions of objects from each subject in each body
region in various object combinations as well as a subsequent
slice-by-slice verification of the delineations overlaid on the
gray images. As per our notation, the set of binary images
generated in this step for all objects for a fixed B and G is
Ib = {In,l: 1 ≤ n ≤ N and 1 ≤ l ≤ L}, and the set just for object
Ol is Ib

l
= {In,l: 1 ≤ n ≤ N}.

2.A.3. Constructing fuzzy models

For a body region B of subject group G, the fuzzy anatomy
model,1 FAM(B,G), is denoted by FAM(B,G)= (H,M,ρ,λ,η).
H is a hierarchy of objects in B, represented as a tree. This
tree structure permits imposing an order among objects, rather
than treating them as an amorphous collection and allows
encoding nonlinear and very detailed anatomic information
about group G into the model. M is a set of fuzzy models,
one model for each of the L objects in B, M = {FM(Ok):
k = 1,. . .,L}. ρ describes the parent-to-offspring relationship
in H over G. λ is a family of scale factor ranges. η denotes
a set of measurements pertaining to the object assembly in B
including intensity properties and all learned parameters that
are used in recognition and delineation.

To build FAM(B, G) for body torso BT, we chose the
anatomical hierarchy depicted in Fig. 3. For thoracic and
abdominal body regions, we chose a hierarchy similar to that
described in Ref. 1 in its order but simplified to the fewer
objects considered in this paper, also depicted in Fig. 3. We
also added a new body region, namely, the pelvis.

The fuzzy model FM(Ol) of each object Ol encodes the
variations in the object’s form over G and is independent of

T II. Definition of body regions and objects.

Abbreviation Description

Thx Thoracic region extending from 5 mm below the base of the lungs to 15 mm above their apex
Abd Abdominal region extending from the point of bifurcation of the abdominal aorta into common iliac arteries to the superior aspect of the liver
Plv Pelvic region extending from the inferior aspect of the ischial tuberosities of the pelvis to the inferior boundary of the Abd region
BT Body torso defined to extend from the inferior aspect of the Plv region to the superior aspect of the Thx region
BTSkn The outer boundary of the body torso skin. The interior region constitutes the entire BT body region
TSkn The outer boundary of the thoracic skin. The interior region constitutes Thx
TO A composite object called thoracic objects made up of PS and PC
PS A composite object called pleural space made up of LPS and RPS
LPS Left pleural space—the outer boundary of the left lung along the left pleura
RPS Right pleural space—the outer boundary of the right lung along the right pleura
PC Region within the boundary of pericardial sac. The superior aspect is defined by the branching of the main pulmonary artery
ASkn The outer boundary of the abdominal skin. The interior region constitutes Abd
AO A composite object called abdominal objects made up of Lvr, Kd, and Spl
Lvr The outer boundary of the liver. The intrahepatic portal veins and hepatic arteries are included in this region
Kd A composite object made up of LKd and RKd
LKd The outer boundary of the left kidney. All external blood vessels are excluded
RKd The outer boundary of the right kidney. All external blood vessels are excluded
Spl The outer boundary of the spleen. All external blood vessels are excluded
PO A composite object called pelvic objects made up of Bld, PSAT, and PVAT
Bld The outer boundary of the bladder. Ureters and urethra are excluded
PSAT Adipose tissue in the subcutaneous region in the pelvis
PVAT Adipose tissue internal to the pelvic body wall musculature, pelvic floor musculature, and pelvic bones
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F. 3. Top: Hierarchy chosen for whole-body torso. Object abbreviations are described in Table II. Bottom: Hierarchy for Thx and Abd.

image intensity and modality. As a result, the fuzzy model set
M can be used in different modalities and on other derived
images as depicted by the modality indicator m ∈ {lCT,
PET,PET&CT, tcCT, trCT, teCT, tbCT, tcPET, trPET, tePET,
tbPET, tmCT, tmPET}. FM(Ol) is built from training binary
images in the set Ib

l
as described in Ref. 1. Briefly, this process

consists of estimating the mean shape length and geometric
center of Ol over G, repositioning all samples of Ol to this
mean position and rescaling them to mean shape length.
Subsequently a distance transform is applied to each resulting
sample to propagate the shape form inward and outward from
its boundary; the distance values are then averaged, and the
average distance is transformed to a fuzzy object membership
value. From the repositioned and resized samples, the parent-
to-offspring relationship ρl of Ol with respect to its unique
parent in the hierarchy is estimated over G. Similarly, the size
variation bounds λ = {λl = [λb

l,λ
h
l]: 1 ≤ l ≤ L} over G are

estimated from the same samples using the shape length of
each Ol.

The only component that needs change when using FAM(B,
G) in different image modalities for a given B and G is the
fifth element η of FAM(B, G). This entity is a place holder
for a variety of measurements pertaining to the body region B
which include normative descriptions of anatomic, physiolog-
ical, and functional properties of the object assembly in B as
well as image intensity statistics. From the perspective of ob-
ject recognition, there is a parameter called optimal threshold
interval stored in η which is associated with each object and
which is image type/modality-dependent. This parameter is
estimated for any given image type/modality as described
below.

2.A.4. Training for optimal threshold

The basic object recognition engine used in this paper is
the thresholded optimal search method described in Ref. 1
for dCT images of Thx and Abd. It requires determining an

optimal threshold interval Thl (in dCT) for each object Ol in
B. To understand the process of estimating Thl, it is necessary
to understand overall the recognition process. Therefore, we
will first briefly outline the earlier recognition process and then
describe how Thl is estimated. In Sec. 2.B, we will delineate
how this method is generalized to the scenarios depicted in
Table I. So assume for now that Thl has already been estimated.
To recognize Ol in any given test dCT image I, the initial pose
of FM(Ol) in I is first determined with respect to the parent of
Ol (assuming that the parent has already been recognized in
the hierarchical order) from knowledge of parent-to-offspring
relationship ρl. Then, a search for optimal pose for FM(Ol) is
made within a region of the pose space defined by the variation
observed in ρl. The optimal pose, determined by exhaustive
sampled search within this region, is defined by the pose that
yields minimal mismatch between the binary image resulting
from thresholding I at Thl and the pose-adjusted FM(Ol).

In the previous AAR approach,1 the same training image
sets were used for model building (meaning constructing M ,
ρ, λ, and η) as well as estimating Thl. In view of the expanded
scope of the proposed recognition process (as per Table I),
the method of estimating Thl in this paper is different from
the earlier approach. We will first briefly outline the previous
approach and then present the new strategy. The previous
method to estimate Thl involved a rehearsal of the recognition
process carried out on the training image set. Since we do not
know Thl but have the true segmentations, the idea was to test
recognition efficacy for each of a number of threshold intervals
t and then select the interval Thl that yielded the best match of
the model with the known true segmentations for Ol. Let Imn be
the training gray image from which the true binary delineation
In,l of Ol is obtained. If Jn(t) is the binary image resulting from
thresholding Imn at t, then

T hl ∈ arg min
p, t


n

|(Jn(t)×FMp(Ol))− In,l |
+ |In,l− (Jn(t)×FMp(Ol))|.
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In words, the optimal threshold Thl is found by searching
over the pose space over all training data sets and all thresh-
olds the best match between the true segmentation of Ol

with the result of thresholding Imn restricted to the model.
Since this process involves optimization over the pose space
and threshold intervals, it was computationally expensive.
To keep computation manageable, in Ref. 1 we confined the
above search to 81 different t intervals (resulting from 9
different settings at the lower end of t times 9 at its upper
end).

The new approach, called AAR-OTE (for optimal threshold
estimation), presented below, works not only on the original
gray images used for model building but also on any derived
image of type m ∈ {lCT,PET,PET&CT, tcCT, trCT, teCT,
tbCT, tcPET, trPET, tePET, tbPET, tmCT, tmPET}. The speed
of AAR-OTE ensues from the fact that the search here is in the
1D intensity space rather than the 5D pose and intensity space.
Consequently, there is also no chance of missing the global
optimal which can happen in the earlier approach because of
limited search subspace. Let h(X) denote the histogram of
image X .

Procedure AAR-OTE
Input : Training gray image set Im = {Im1 ,. . .,ImN } for some

modality m ∈ {lCT,PET,PET&CT, tcCT, trCT, teCT, tbCT,
tcPET, trPET, tePET, tbPET, tmCT, tmPET}, training binary
image set Ib

l
= {In,l: 1 ≤ n ≤ N} for object Ol, all for the same

body region B and group G.
Output: Optimal threshold Thl for Ol for modality m for B

and G.
Begin

1. Compute super mask Q for Ol over all training samples,
Q = I1,l∪···∪ IN,l;

2. For n= 1 to N do
3. Compute histograms ho

n(In,l× In) and hb
n([Q− In,l]× In).

4. End;
5. Determine cumulative histograms ho(x) = ho

1 (x) + · ··
+ho

N(x) and hb(x)= hb
1 (x)+ · ··+hb

N(x).
7. For any threshold interval Th and any histogram h(x),

let A(h(x), Th) be the area of h(x) defined by Th. Find
interval T hl ∈ arg max

Th

|A(ho(x),T h)− A(hb(x),T h)|.
8. Output Thl;

End
Super mask Q represents the union of all training binary

image samples for Ol. ho
n(x) denotes the histogram of the gray

values of Ol in modality m in the nth sample.48 Similarly,
hb
n(x) represents the histogram of the gray values outside

Ol but inside Q in the nth sample. Thl then corresponds

to a threshold interval for m that maximally separates the
object from the surrounding background over all training
samples.

At the end of the model building stage, we have FAM(B,
G) complete with fuzzy models of all objects in B and other
associated information (ρ and λ) for a given hierarchy, all
constructed from one modality m1, plus optimal threshold
information for each object which may have been derived from
a different modality m2. All these items of information play a
role in the subsequent step of object recognition.

2.B. Object recognition

The mixed-modality recognition process (AAR-MMR)
which is a modification of the original AAR-R procedure from
Ref. 1 is listed below. We will highlight only the differences but
otherwise give a brief but complete description of the process.

Procedure AAR-MMR
Input: FAM(B, G), an image Im of B of some modality

m ∈ {lCT,PET,PET&CT, tcCT, trCT, teCT, tbCT, tcPET,
trPET, tePET, tbPET, tmCT, tmPET} for group G such that
FAM(B, G) has encoded in it the trained optimal threshold
for m for all objects of B.

Output: Optimally pose-adjusted fuzzy models FM t(Ol),
l = 1, . . . , L.

Begin

1. Call MMR-ROOT to recognize the root object of H in
Im;

2. Repeat
3. Find the next offspring object Ok in H to recognize in

Im;
4. Knowing FMt(Ol), ρk, and λk, call MMR-OBJECT to

recognize Ok in Im;
5. Until all objects are covered in H;
6. Output FMt(Ol), l = 1, . . . , L;

End
To make the explanation of AAR-MMR more tangible,

we will take strategy B-x-s-dCT-m-PET from Table I with
x =Thx as an example. In this case, the fuzzy models FM(Ol),
l = 1, . . . , L, are built from dCT and the binary images of
the objects of the thorax, and so also object position rela-
tionship information ρ and size variation information λ are
all associated with dCT. However, since recognition is to
be performed on m = PET images, the optimal threshold
information Thl for every object is obtained from PET im-
ages. AAR-MMR proceeds hierarchically following H in a
breadth-first manner. The root object O1 (which is TSkn—the

T III. Image data sets used in the experiments.

Group Number of subjects Image modality Imaging protocol details Image information

31–71 male 16 normal PET/CT Unenhanced, axial PET: 144× 144× 338–443, 4× 4× 4 mm3

CT: 512× 512× 338–443, 1.2× 1.2× 4 mm3

50–60 male 25 normal Diagnostic CT Contrast-enhanced, axial, breath-hold 512× 512× 51–69, 0.9× 0.9× 5 mm3

50–60 male 25 normal Diagnostic CT Contrast-enhanced, axial, breath-hold 512× 512× 38–55, 0.9× 0.9× 5 mm3
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F. 4. Surface renditions of sample objects derived from lCT from one subject used for model building (top) and volume renditions of the object fuzzy models
(bottom).

thoracic skin object) is first recognized in the test PET im-
age Im by using the optimal threshold interval value Th1 of
O1 for PET. Note that the optimal threshold value for O1
from dCT would not be appropriate for Im. The rest of the
procedure for recognizing O1 is the same as described in
Ref. 1.

After the root object O1 is localized, other objects are recog-
nized following the hierarchy by using the procedure MMR-
OBJECT. Assume that for some object Ok, its parent Ol has
already been recognized. The parent-to-offspring relationship
ρk (coming from dCT) is used to find an initial pose for the

model FM(Ok) of Ok. This pose is then refined by searching in
the pose space in a region around the initial pose. This region is
determined from knowledge of ρk, its variation, and the scale
factor range λk (all of this information coming from dCT).
Suppose FM p(Ok) is expressed as an image and denotes the
fuzzy model of Ok at pose p. Let J denote the binary image
resulting from thresholding the PET image I at the optimal
threshold Thk for PET for object Ok. Then, the optimum pose
p∗ is found by

p∗ ∈ arg min
p

(|FMp(Ok)− J |+ |J−FMp(Ok )|).

T IV. Location and size error (mean and SD) for recognition on PET/CT images Thx and Abd.

Strategy TSkn PS RPS LPS PC ASkn Lvr Kd RKd LKd Spl Mean

Location error (mm)

B-x-s-dCT-m-lCT
4.1 5.9 7.1 5.5 8.8 3.2 8.9 14.7 16.1 17.8 19.2 10.1
0.9 2.4 2.0 1.5 4.8 1.7 3.6 10.2 9.3 12.0 18.7 6.1

B-x-s-dCT-m-PET
4.7 14.2 21.7 19.0 12.7 2.9 11.2 12.7 20.5 16.0 22.0 14.3
2.0 4.6 5.6 6.1 5.9 1.4 5.5 11.8 17.1 15.3 21.3 8.8

B-x-s-dCT-m-PET&CT
2.8 6.4 6.0 6.3 16.2 2.4 11.9 13.3 21.0 17.3 21.0 11.3
1.2 2.7 3.9 3.1 14.8 1.4 5.3 12.2 17.5 14.3 20.1 8.8

Size error

B-x-s-dCT-m-lCT
1.00 0.98 1.00 1.00 1.03 1.01 1.09 1.04 1.20 1.19 1.14 1.06
0.01 0.02 0.03 0.03 0.06 0.01 0.08 0.05 0.15 0.12 0.24 0.07

B-x-s-dCT-m-PET
1.00 1.10 1.27 1.28 1.03 1.00 1.02 1.00 1.06 1.03 1.03 1.07
0.02 0.05 0.09 0.09 0.06 0.00 0.08 0.10 0.16 0.14 0.24 0.09

B-x-s-dCT-m-PET&CT
1.00 0.99 0.98 0.97 1.05 1.00 1.03 1.00 1.07 1.06 0.99 1.01
0.01 0.02 0.03 0.04 0.07 0.00 0.07 0.10 0.15 0.13 0.24 0.08
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F. 5. Sample recognition results for thorax and abdomen in PET images for the strategy where models were built body region-wise from dCT and deployed
on PET images. The model slices are shown overlaid in color on the test image slices. Left to right: TSkn, PS, RPS, LPS, PC, ASkn, Lvr, Kd, RKd, LKd, and
Spl.

Here, |x | denotes the fuzzy cardinality of x and image
subtraction is done in the sense of fuzzy logic. Thus, in
our example, the geographic and geometric prior information
for the objects come from dCT and the modality-specific
information comes from PET. As we will demonstrate in
Sec. 3, because of this synergistic use of very detailed
prior information, good recognition results can be achieved
even in PET images where there is little anatomic tissue
detail.

As mentioned earlier, the modality m of images employed
in this paper comes from the set {lCT,PET,PET&CT,
tcCT, trCT, teCT, tbCT, tcPET, trPET, tePET, tbPET, tmCT,
tmPET}. Among its members, the first two constitute acquired
original images. Others are derived from the acquired images
as described below.

2.B.1. Combined modality PET&CT

The combined image Im is obtained by first scaling the
intensities of lCT and PET images to the same scale and then
by weighted addition with equal weights.

2.B.2. Texture images for CT and PET

Image texture properties within an object region represent
the interior structure of the object and are used extensively in
image processing and analysis, particularly segmentation.39

The use of texture in the literature is mostly for detecting
pathologies and characterizing and classifying them17,40–43 in
CT and PET images and not for anatomy recognition per
se. The potential of texture inspired us for use in the AAR

approach for the possibility of discriminatively enhancing
each object by an appropriate texture property expressed at
each voxel with the hope of improving recognition perfor-
mance over the original acquired image (lCT or PET). A great
variety of texture description methods have been developed.
Since visual conspicuity is a clue for the effectiveness of recog-
nition, based on our initial visual observation of their ability
to enhance object regions, we decided to examine four texture
properties in this paper—correlation, contrast, and energy, all
derived from gray level cooccurrence (GLC) matrix pertaining
to the original image, and ball-scale or b-scale, derived directly
from the original image.44 Although initial selection is based
on visual conspicuity, the best among the properties is selected
based on their recognition performance as described under
Results.

Given an image Im, m ∈ {lCT,PET}, our goal is to derive
a new image I x, for each x ∈ {tcCT, trCT, teCT, tbCT, tcPET,
trPET, tePET, tbPET}, where a texture property is estimated at
each voxel v of Im by considering a window of size w×w posi-
tioned at v in the 2D plane of the natural slice49 of Im. The GLC
idea involves determining how frequently each possible pair
(a, b) of intensities occurs within this window by considering
all possible pairs of voxels which are separated by a distance d
at an angle φ. From the GLC matrix, A(a,b) thus determined at
v , texture contrast, correlation, and energy values are estimated
at v from A(a,b) by using the following expressions shown
for lCT. Expressions for PET are similar. Here, (µ1, σ1) and
(µ2, σ2) denote mean and standard deviation of the variables
a and b, respectively [in our case, (µ1, σ1)= (µ2, σ2)]. In our
implementation, we fixed the variables at w = 15, d = 1, and
ϕ= 0◦, 45◦, 90◦, and 135◦,

T V. Location and size error (mean and SD) for recognition on PET/CT images in body torso.

BTSkn TO PS RPS LPS PC AO Lvr Kd RKd LKd Spl PO PVAT PSAT Bld Mean

Location error (mm)
4.4 6.8 5.8 7.2 6.1 12.7 11.5 15.1 11.4 8.3 12.9 22.3 12.7 15.3 13.4 9.9 11.0
2.4 5.5 4.6 4.4 3.2 8.9 4.5 7.5 10.4 9.3 15.2 24.2 7.6 8.0 7.2 5.7 8.0

Size error
1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.0 1.1 1.1 1.0 1.0 1.0 1.0 1.1 1.0
0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.0 0.1 0.0 0.1 0.1
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F. 6. Sample recognition results for thorax, abdomen, and pelvis in lCT images for the strategy where models were built for full body torso from lCT and
deployed on lCT images. Model slices are shown overlaid in color on test image slices. Left to right: BTSkn, TO, PS, RPS, LPS, PC, AO, Lvr, Kd, RKd, LKd,
Spl, PO, PSAT, PVAT, and Bld.

I tcCT(v)=

a,b

|a−b|2A(a,b),

I trCT(v)=

a,b

abA(a,b)− µ1µ2

σ1σ2
,

I teCT(v)=

a,b

A2(a,b).

Ball scale or b-scale44 is a concept of using the largest
homogeneous ball centered at each voxel in any given image,
instead of the voxel itself, as the basic unit in image processing
and analysis. Its advantages in image filtering, segmentation,
interpolation, registration, and object recognition have been
previously demonstrated in the literature. We compute a b-
scale image I x, x ∈ {tbCT, tbPET}, corresponding to a given
lCT or PET image Im following the methods of Ref. 44,
where each voxel v in I x is assigned the radius of the largest
homogeneous ball centered at v . For reasons mentioned above,
we use a 2D disc, instead of a ball, in the plane of the natural

slice of Im for defining the b-scale value at v . There is one
scale parameter that defines “homogeneity,” which we esti-
mate automatically from Im following the method described in
Ref. 44.

2.B.3. Texture-based membership images tmCT
and tmPET

In this modality, the value of a voxel v of I x for x = tmCT is
determined as an indicator of “objectness” at v from the values
assigned to v in its original acquired image Im1, m1 = lCT,
and texture energy image Im2, m2= teCT. The 2D histogram
hm1,m2(a,b) of lCT and texture energy of lCT is taken to be the
objectness function. The derived modality I x for x = tmPET
is similarly defined from the respective PET images, m1
= PET and m2 = tcPET. For enhancing object information
in the membership image, texture energy was found to be
better for lCT than other texture properties. Similarly, for PET,
texture contrast was found to be preferable. The objectness

F. 7. Texture images derived from one sample lCT and PET image slice. Top row: lCT, tcCT, trCT, teCT, and tbCT. Bottom row: PET, tcPET, trPET, tePET,
and tbPET.
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T VI. Location and size error (mean and SD) over all objects in Thx and
Abd for recognition on texture images.

tcCT trCT teCT tbCT tcPET trPET tePET tbPET

Location error
(mm)

11.5 14.3 10.3 13.7 12.7 13.0 13.0 14.5
7.0 7.3 5.5 9.8 7.1 6.8 7.8 6.5

Size error
1.05 1.04 1.07 1.04 1.02 1.03 1.03 1.10
0.09 0.08 0.07 0.08 0.09 0.08 0.08 0.08

function is estimated as a cumulative histogram over the
training images. Given a test image Im1, then its texture
(energy or contrast) image Im2 is first computed, and subse-
quently, by using the objectness function estimated at the
model building stage, the objectness or texture membership
image is computed from Im1 and Im2. Since this objectness
function is stored in FAM(B, G), in Fig. 2 there is an arrow
connecting the “Model Building” block to the “Membership
Description” block on the right corresponding to the test
images.

3. EXPERIMENTAL METHODS AND RESULTS
3.A. Image data sets

This retrospective study was conducted following approval
from the Institutional Review Board at the Hospital of the
University of Pennsylvania along with a Health Insurance
Portability and Accountability Act (HIPAA) waiver. All image
data sets are selected from the existing patient image database
of our health system. We employ 16 whole-body PET/CT
images for testing our methods and 25 dCT data sets employed
in Ref. 1 for each of two body regions—thorax and abdomen—
to build the respective fuzzy anatomy models for BT, Thx,
and Abd. Table III lists the image details. All whole-body
FDG-PET/CT image data sets utilized in the current study
had previously been acquired as part of a separate prospective
research study (PI co-author DAT) that enrolled asymptomatic
healthy normal male volunteers who provided written consent
for use of their scans for other future research studies. For all
16 lCT and PET image data sets employed in the current study,
the images appeared radiologically normal with exception of
minimal incidental focal abnormalities. All of these scans had

been obtained on a 16 multidetector row LYSO whole-body
PET/CT scanner with time-of-flight capabilities (Gemini TF,
Philips Medical Systems, Bothell, WA). 3D PET data had
been acquired from the skull vertex to the toes ∼60 min after
intravenous administration of ∼555 MBq of FDG for 3 min
per bed position. Image reconstruction had been performed
at 4 mm nominal slice thickness in the axial plane using
a list-mode maximum-likelihood expectation–maximization
(ML-EM) algorithm with 33 ordered subsets and 3 itera-
tions, and the system model included time-of-flight as well
as normalization, attenuation, randoms, and scatter correc-
tions, where rescaled low-dose CT images were utilized for
attenuation correction of PET images. The 25 dCT image
data sets of the thorax and the 25 dCT image data sets of
the abdomen had previously been acquired in patients for
various clinical indications on 16 or 64 multidetector row
CT scanners (Siemens Medical Solutions, Malvern, PA) dur-
ing full inspiratory breath-hold during the venous phase of
enhancement following intravenous administration of iodin-
ated contrast material (Iopamidol (Isovue-370), Bracco Diag-
nostics, Monroe Township, NJ). A kVp of 120, an average
effective tube current-time product of 150–200 mAs, with
tube current modulation on, and a gantry rotation time of
0.5 s had been utilized during image acquisition. Images were
reconstructed at a nominal slice thickness of 5 mm with an
interval of 5 mm in the axial plane, a 512× 512 matrix, and
a B30f reconstruction kernel. For all dCT image data sets
employed in the current study, the images appeared radiologi-
cally normal with exception of minimal incidental focal abnor-
malities. All 18 objects were delineated in 25+ 25+ 16 3D
image sets following strictly their definition using manual
painting/tracing/editing, iterative live wire, live wire, and
thresholding methods.

3.B. Evaluation strategies

As depicted in Table I, we have conducted 28 recogni-
tion experiments by utilizing the data sets listed in Table III
to perform the following comparisons: for lCT and PET
between using models from dCT versus models from lCT, be-
tween using different texture properties versus original
acquired images, and between body-region-wise approach
versus whole-body torso approach. For all strategies denoted
B-x-s-dCT-m-y , all 25 dCT data sets were used for model

T VII. Location and size error (mean and SD) for recognition on teCT and tcPET images in Thx and Abd.

Strategy TSkn PS RPS LPS PC ASkn Lvr Kd RKd LKd Spl Mean

Location error (mm)
B-x-s-dCT-m-teCT

4.3 12.3 16.7 16.1 6.9 2.3 12.4 6.8 7.1 7.0 21.4 10.3
1.5 4.8 5.5 6.9 4.4 1.5 7.1 4.0 7.4 3.5 13.8 5.5

B-x-s-dCT-m-tcPET
3.3 15.9 18.8 19.7 21.5 3.3 13.1 6.3 6.8 5.9 24.9 12.7
1.3 6.4 9.5 9.2 13.5 1.6 4.8 2.5 3.8 3.3 21.7 7.1

Size error
B-x-s-dCT-m-teCT

0.98 1.09 1.26 1.27 1.00 1.00 1.01 0.98 1.00 1.02 1.18 1.07
0.01 0.05 0.09 0.09 0.06 0.00 0.08 0.05 0.10 0.10 0.19 0.07

B-x-s-dCT-m-tcPET
1.01 1.00 1.04 0.97 1.05 1.00 1.12 0.98 1.00 1.00 1.04 1.02
0.01 0.05 0.10 0.11 0.07 0.00 0.09 0.06 0.10 0.10 0.26 0.09
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F. 8. Texture-based membership images derived from lCT and teCT images for different objects. L to R: BTSkn, TO, PS, RPS, LPS, PC, AO, Lvr, Kd, RKd,
Lkd, Spl, PO, PVAT, PSAT, and Bld.

building. Optimal threshold intervals were estimated from 6
of 16 PET/CT data sets, testing was done on the remaining
10 data sets, and the optimal-threshold-training-testing was
repeated 3 times on different partitioning of the 16 data sets.
For B-x-s-lCT-m-lCT, x ∈ {Thx,Abd,Plv}, the whole-body
images were divided into body region images for Thx, Abd, and
Plv, models were built from 8 of the 16 lCT data sets, testing
was done on the remaining 8 data sets, and the model-building-
testing process was repeated 3 times on different partitioning
of the 16 data sets. For optimal threshold estimation, the eight
training data sets were used. For B-BT-s-lCT-m-lCT and B-
BT-s-lCT-m-tmCT also, the model-building-testing process
was similar except that the whole-body images were trimmed
as per body torso definition although no body region subdivi-
sion was needed.

We describe the accuracy of various recognition strategies
in terms of location error and scale (or size) error. Location
error is expressed as the distance between the centers of the
object model output by AAR-MMR and the true object. Scale

error is expressed as a ratio of the estimated size of the output
object model and the known true object size. The ideal values
for the two error metrics are thus 0 and 1, respectively. In
Secs. 3.C–3.E, we will present results for recognition on orig-
inal PET/CT, texture, and texture-based membership images,
respectively.

3.C. Recognition in PET/CT images

In this section, we will examine results on images I x, for
x ∈ {lCT,PET,PET&CT}. Some exemplary combinations of
objects are displayed in Fig. 4 from the body torso, both
surface renditions of sample objects used for model building
(top) and volume renditions of the object fuzzy models that
were created (bottom). The SAT object is partially removed
to facilitate visualization. The recognition strategies compared
are B-x-s-dCT-m-lCT, B-x-s-dCT-m-PET, and B-x-s-dCT-
m-PET&CT, for x ∈ {Thx,Abd}. The results are summarized
in Table IV.

F. 9. Texture-based membership images derived from PET and tcPET images for different objects. L to R: TSkn, PS, RPS, LPS, PC, ASkn, Lvr, Kd, RKd,
Lkd, and Spl.
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T VIII. Location and size error (mean and SD) for recognition on texture membership images in Thx and Abd.

Strategy TSkn PS RPS LPS PC ASkn Lvr Kd RKd LKd Spl Mean

Location error (mm)
B-x-s-dCT-m-tmCT

4.3 6.0 7.4 4.9 6.1 3.9 7.3 13.5 4.3 9.4 8.5 6.9
1.5 2.3 2.2 1.8 3.5 1.9 3.8 9.1 2.5 7.9 3.5 3.6

B-x-s-dCT-m-tmPET
4.5 13.4 16.8 20.4 12.6 2.6 13.4 11.6 4.6 5.9 15.8 11.1
1.6 5.4 6.1 8.0 6.2 0.9 6.1 8.8 2.9 5.6 12.9 5.9

Size error
B-x-s-dCT-m-tmCT

0.98 0.97 1.00 1.00 1.00 0.99 0.98 1.00 0.97 1.02 0.81 0.97
0.01 0.03 0.03 0.03 0.06 0.02 0.05 0.03 0.07 0.11 0.10 0.05

B-x-s-dCT-m-tmPET
1.00 0.99 1.02 1.01 1.03 1.01 1.04 0.96 0.91 0.90 1.08 1.00
0.01 0.07 0.14 0.15 0.06 0.01 0.09 0.06 0.11 0.09 0.22 0.09

From Table IV, we note that the average position error
for recognition in lCT for thoracic and abdominal objects is
close to 10 mm (<3 voxels) and size error is always close to 1
when models are created from body region dCT. Surprisingly,
with models from dCT, recognition on PET with ∼3 voxels
of localization error becomes feasible even with the poor but
faint hint of anatomy seen in PET images. This is mainly
because of the rich anatomic knowledge encoded in FAM(B,
G). For the lungs, the location error in PET is a bit high because
of the very low radiotracer uptake in these organs. AAR on
combined PET&CT images has better performance compared
to PET images. Among the strategies illustrated in Table IV,
lCT yields the best performance, which is interestingly quite
comparable to the recognition results on dCT images demon-
strated in Ref. 1 for the same objects in thorax and abdomen.
It should be emphasized that the boundaries of many objects
including PC, Lvr, RKd, LKd, Spl, and Bld are quite fuzzy in
lCT images compared to those in dCT. We display in Fig. 5
some sample recognition results for PET by overlaying cross
sections of the models at recognition over PET image slices
for the strategy B-x-s-dCT-m-PET.

Recognition results for lCT using the whole-body torso
strategy B-BT-s-lCT-m-lCT (models from lCT, recognition
on lCT, both over full BT) are summarized in Table V. Figure 6
shows a sample recognition result for each object in BT with
the model slices overlaid on the test image slices. Overall,
the mean position error is 11.0 mm (∼3 voxels) and size
error is close to 1. Generally speaking, AAR shows consistent
and good recognition performance on whole-body torso lCT
images.

3.D. Recognition on texture images

Figure 7 shows one sample texture image corresponding to
lCT and PET for each of the four texture properties considered

in this paper. Instead of presenting all results for all objects for
all texture properties, we first summarize the mean results over
all objects in Table VI and then present the detailed results for
the best among these properties. Table VI lists mean location
and size errors over all objects for body-region-wise recogni-
tion approaches for the four texture description methods for
both lCT and PET. Since, by far, texture energy for lCT and
texture contrast for PET outperformed other attributes, we list
their detailed results in Table VII.

Compared to lCT, its texture modality teCT shows some
improvement for abdominal objects but not thoracic objects.
For tcPET, the improvement for abdominal objects over PET
is more significant. For the same reason explained earlier for
PET, thoracic objects do not show any advantages in consid-
ering texture modality for improving recognition.

3.E. Recognition on texture-based
membership images

Some sample texture membership images for different ob-
jects derived from lCT and PET modalities are displayed in
Figs. 8 and 9, respectively. In Table VIII, we present body-
region-wise recognition results for texture membership im-
ages for lCT and PET. In Table IX, whole-body torso re-
sults for texture membership images derived from lCT are
presented.

Results in texture membership modalities tmCT and tmPET
are overall significantly better than those in original images
lCT and PET. For the kidneys in particular, the improvement
is substantial, even in PET images. The strategy of body-
region-wise modeling from dCT and recognition in texture
membership images produces the best results among all strat-
egies tested, bringing object localization error within 2 voxels.
If we exclude spleen, the location error for the whole-body
torso strategy on tmCT images also approaches 2 voxels. We

T IX. Location and size error (mean and SD) for recognition on texture membership images derived from lCT in body torso.

BTSkn TO PS RPS LPS PC AO Lvr Kd RKd LKd Spl PO PVAT PSAT Bld Mean

Location error (mm)
4.2 7.7 6.1 7.6 6.4 7.5 9.1 12.6 8.4 3.7 5.8 24.2 13.6 12.2 13.6 14.0 9.8
2.5 5.2 4.1 4.0 2.7 3.6 4.0 7.4 5.9 2.6 5.1 26.5 7.9 7.5 7.4 16.1 7.0

Size error
1.00 0.97 0.98 1.00 0.99 1.00 0.96 1.01 0.98 0.99 0.98 0.80 0.98 0.93 0.98 0.86 0.96
0.01 0.02 0.02 0.04 0.03 0.04 0.07 0.05 0.05 0.06 0.09 0.13 0.02 0.07 0.03 0.11 0.05
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T X. Comparison of body-region-wise and whole-body torso
approaches.

Strategy
Location error in
mm (mean, SD)

Size error
(mean, SD)

Body-region-wise in lCT
11.5 1.07

7.2 0.09

Whole-body torso in lCT
11.3 1.04

9.7 0.08

Body-region-wise in teCT
11.8 1.09

6.4 0.09

Body-region-wise in tmCT
7.5 0.97
4.1 0.06

Whole-body torso in tmCT
9.1 0.97
6.9 0.06

Body-region-wise in PET
16.7 1.09
10.4 0.11

Body-region-wise in tcPET
14.8 1.02

8.3 0.1

Body-region-wise in tmPET
12.7 0.99

6.9 0.11

note that the number of training samples for all strategies
where models are built from lCT images is much smaller (8)
compared to number (25) in strategies where models are built
from dCT. The whole-body strategies may therefore approach
or even surpass body-region-wise approaches with a sufficient
number of samples.

To explore this dichotomy between body-region-wise and
body-wide approaches further, we list in Table X location and
size errors over all objects that were common to both strategies.
Note that pelvic objects did not participate in body-region-
wise strategies since we did not have dCT derived models
for them in our previous study.1 The involved objects are PS,
RPS, LPS, PC, Lvr, Kd, RKd, LKd, and Spl. Comparison
is made among the top contenders only. While comparing
based on location error, t-tests showed the differences to be
statistically significant between the following pairs: BT in
lCT vs body-region-wise in PET (P = 0.03); body-region-
wise in tmCT vs body-region-wise in PET (P= 0.002); body-
region-wise in tmCT vs body-region-wise in tcPET (P= 0.03);
BT in tmCT vs body-region-wise in PET (P = 0.008);
body-region-wise in tmCT vs body-region-wise in tmPET
(P= 0.04).

T XI. Computational times in seconds for the key steps.

Operation Body torso Thorax Abdomen

Optimal threshold estimation 1.3 0.7 1.1
Model building 1.2 1.2 0.6
Texture image 51.3 21.7 18.4
Texture membership image 1.1 0.3 0.4
Object recognition 32.2 5.9 24.3

Body-region-wise and whole-body torso recognition on
tmCT images seem to be the best strategies overall. Since there
is no statistically significant difference between their perfor-
mances, the whole-body approach is to be preferred since it
does not call for an extra step of body region subdivision.

3.F. Computational considerations

The computational times are estimated on a Dell computer
with the following specifications: 4-core Intel Xeon 3.3 GHz
base to 3.7 GHz max turbo CPU with 8 GB RAM and running
the GNU/Linux 3.11.10-25-desktop operating system. Mean
computational times for the AAR steps are listed in Table XI.
Note that the texture image is computed only once for a given
test image irrespective of the number of objects to recognize
but the texture membership image is computed separately for
each object. Accordingly, the time reported in the table for
the membership image is per object per subject, as are the
times listed for OTE and model building. For the best strategies
involving tmCT images, thus, the total times for locating all
considered objects in one image for body torso, thorax, and
abdomen are 584.1, 52.7, and 166.6 s, and per object recogni-
tion times are roughly 36.5, 10.5, and 28.8 s, respectively.

In Table XII, we compare the recognition performance
of the previous optimal threshold method to OTE for two
top strategies found in this paper, namely, B-x-s-dCT-m-lCT
(Table IV) and B-x-s-dCT-m-tmCT (Table VIII). From these
tables, we conclude that, while the performance on lCT images
is similar for the two methods, the previous restricted search
method fails on texture images to find optimal thresholds that
are best suited for the different objects. If we expand the search
range of the previous method, its computational cost would
increase rapidly because of the 5D search space.

T XII. Recognition results (mean and SD) on lCT and tmCT images by using the optimal threshold method of Ref. 1.

Strategy TSkn PS RPS LPS PC ASkn Lvr Kd RKd LKd Spl Mean

Location error (mm)
B-x-s-dCT-m-lCT

4.1 6.3 7.7 5.9 7.9 2.9 9.2 14.3 9.8 14.0 25.1 9.7
1.0 2.6 3.3 2.9 4.6 1.5 4.0 10.2 6.8 11.8 21.9 6.4

B-x-s-dCT-m-tmCT
4.0 9.9 15.6 7.0 37.7 7.5 34.2 46.0 50.7 53.6 60.6 29.7
1.0 7.2 12.0 4.2 7.1 2.5 9.4 10.3 10.5 9.3 12.9 7.9

Size error
B-x-s-dCT-m-lCT

1.00 0.97 0.98 0.98 1.02 1.01 1.09 1.04 1.15 1.15 1.19 1.05
0.01 0.03 0.03 0.04 0.06 0.01 0.07 0.05 0.16 0.14 0.23 0.07

B-x-s-dCT-m-tmCT
1.00 1.02 1.10 1.03 1.01 1.02 1.17 1.10 1.36 1.33 1.22 1.12
0.01 0.07 0.14 0.07 0.06 0.00 0.10 0.07 0.10 0.08 0.19 0.08
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4. DISCUSSION AND CONCLUDING REMARKS
4.A. Summary of advances

Considering the fact that there are numerous clinical and
research applications of whole-body PET/CT, our goal in this
work was to test how feasible it is to perform object localiza-
tion on low-dose CT (lCT) of PET/CT acquisitions and also
on PET images. Building on the previous AAR approach,1 we
set out to determine how AAR can be further advanced toward
this goal. In the process, we accomplished the following four
key advances.

(1) Given the low spatial and contrast resolution of lCT and
the lack of definitive anatomic details in PET images,
we sought to determine if image texture would facili-
tate object recognition. Although texture itself helped
somewhat, the best strategy turned out to be the use of
what we called a membership (or fuzzy) image result-
ing from the joint use of voxel intensity and its texture
property, leading to mean object localization within
1–2 voxels. Amazingly, even in PET with only a faint
hint of anatomy, AAR’s richly coded anatomic prior
information was able to make up for the lack of detail in
the image itself. Object texture jointly with its intensity
is definitely useful in body-wide object localization.

(2) We demonstrated the use of fuzzy models created in
our previous work1 from diagnostic CT (even from
different patient groups) in recognizing objects in lCT,
PET, and the derived texture membership images, sug-
gesting the potential for rapid prototyping in body-
wide PET/CT applications. In this connection, we also
arrived at a new optimal threshold retraining tech-
nique, which, compared to our previous algorithm,1 is
applicable to any (original or derived) image without
the need for approximate knowledge of the threshold
needed to highlight each object, improves recognition,
and is computationally efficient.

(3) We extended the previous body-region-wise AAR to
whole-body torso approach which required consider-
ation of object relationships across body regions. As
seen from Table X, the whole-body torso approach
achieves localization accuracies comparable to body-
region-wise AAR even with a much smaller (1/3) train-
ing set, with the advantage that the former obviates the

need for body region subdivision required in the latter
method, affording greater automation and direct body-
wide application.

(4) In Table XIII, we catalog the best localization strategy
found for each of the 18 objects studied. Interestingly,
the best strategy varies among objects. It is plausible
to make such a catalog part of the model itself so
the best strategy can be called upon when recogniz-
ing each object. For illustration, consider kidneys. The
table suggests that, to localize kidneys with the best
accuracy, the composite object Kd (the union of LKd
and RKd as a single object) should be first recognized
in the PET texture contrast image. Subsequently, the
component objects LKd and RKd should be localized
on the texture membership images derived from lCT
and teCT. Such object-specific strategy implementa-
tion is certainly feasible within the AAR framework as
the fuzzy anatomy model FAM(B, G) is currently set
up.

4.B. Comparison with other methods

Most segmentation methods for PET/CT images described
in the literature18–24 have confined to mostly one object in one
body region and did not consider a whole body region or the
whole-body torso. Their goal was different, namely, delinea-
tion of a particular object of interest but not object localization.
A method of multiorgan detection based on information theory
was proposed in Ref. 30. The central idea was to schedule tasks
in an order so that each operation achieves maximum expected
information gain. The validation was carried out on multiorgan
detection in whole-body dCT images and liver segmentation
in PET/CT images. The average localization error for kidney
was reported as 8.97 mm s and maximum error as 19 mm s on
dCT images. Liver was represented by a deformable model
which was defined with seven anatomical landmarks on the
liver including liver center. Landmarks were detected by using
the feature selection and learning-based approach of Ref. 45.
The average localization error for the liver center was reported
as 15 mm s on PET/CT scans.30 Object localization on dCT
images with and without contrast via rectangular boxes was
reported in Ref. 29, where the average localization error was
17 mm s with maximum being 34 mm s. The localization
accuracies of the proposed approach (even on PET images) are

T XIII. Object-by-object best recognition strategy. See Table I for strategy nomenclature.

Object Strategy Object Strategy

BTSkn B-BT-s-lCT-m-tmCT Lvr B-Abd-s-dCT-m-tmCT
TSkn B-Thx-s-dCT-m-trCT Kd B-Abd-s-dCT-m-tcPET
TO B-BT-s-lCT-m-lCT LKd B-BT-s-lCT-m-tmCT
PS B-BT-s-lCT-m-lCT RKd B-BT-s-lCT-m-tmCT
LPS B-Thx-s-dCT-m-tmCT Spl B-Abd-s-dCT-m-tmCT
RPS B-Thx-s-dCT-m-PET&CT PO B-BT-s-lCT-m-lCT
PC B-Thx-s-dCT-m-tmCT Bld B-BT-s-lCT-m-lCT
ASkn B-Abd-s-dCT-m-teCT PSAT B-BT-s-lCT-m-lCT
AO B-BT-s-lCT-m-tmCT PVAT B-BT-s-lCT-m-tmCT
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comparable to or better than the above results in the literature.
An additional advantage of the AAR approach is that it actually
fits a model to the object to be found which is of the same
form as the object rather than a rectangular box. We note that
although many different PET image reconstruction methods
are available now, major scanner vendors all offer very similar
image quality. No special reconstruction method was used for
the images utilized in the paper and they all constitute routine
clinical scans.

4.C. Future opportunities

There are several further avenues we are considering for
the body-wide PET/CT AAR approach. In this paper, we stud-
ied a few simple texture properties. Other advanced descrip-
tors particularly fractals, Gabor filters, Minkowski texture set,
g-scale, and tensor scale may offer representations that are
more specific to each object.

The main motivations for focusing on object recognition
in the AAR methodology are twofold. First, effective object
localization is essential for successful object delineation. If a
model (whatever form it takes such as an atlas, shape model,
fuzzy model, or any other embodiment of prior information)
cannot be brought to fit closely with the object in the image,
delineation will likely fail. Second, disease quantification can
potentially be done without explicit delineation of objects
but from the result after object recognition. We are exploring
this latter idea in body-wide AAR applications in different
systemic disease conditions.

Table XIII suggests that it may be advantageous to tailor
object recognition methods separately for each object based
on the strategy that is best suited for the object. This re-
quires a mode of thinking that is different from a straight-
jacket approach where a uniform method is applied to all
objects. Object-specific strategies allow for highly nonlinear
phenomena to be handled effectively. It is feasible to imple-
ment the strategies implied by Table XIII within the current
AAR approach.

As demonstrated by the texture membership image idea,
although we focused on FDG as the radiotracer for PET in
this paper, the proposed approach is general and applicable
to PET images obtained with other radiotracers including
18F-fluoride, 18F-fluorothymidine, 18F-fluorocholine, 18F-
fluoroestradiol, and 68Ga-DOTATOC amongst many others.
In the same vein, extension of these approaches to PET/MRI
offers exciting possibilities and applications.

In body-wide applications, when dealing with, say, of the
order of 30 objects, the proposed method would require about
20 min of computational time per patient study. For applica-
tions which require interactive speed of response, the current
speed of AAR is certainly not acceptable. However, for appli-
cations where offline computing fits the clinical workflow, the
time is certainly not unacceptable. Upgrading the computing
platform itself may improve the speed by a factor of two.
So, optimized and more efficient implementation of the AAR
methodology is a worthwhile future undertaking.

Intrascanner and interscanner variations, especially for PET
images, can affect object intensity distributions as well as

some texture properties. This phenomenon is not addressed in
this paper. Perhaps accuracy can be improved if this issue is
handled in a manner akin to MRI intensity standardization in
the future.

4.D. Limitations

In this paper, we have not considered many objects that may
be important from the viewpoint of body-wide applications,
especially nonblob-like less space-filling objects, which are
very difficult to segment (delineate) even in higher quality
dCT images. Our rationale was to investigate if it is feasible
to localize better defined objects in these low-quality images
first and then proceed to more difficult sparse objects. We have
recently developed sparse object AAR techniques to recognize
and delineate such objects in dCT images.46 We are studying
ways to adapt these techniques to PET/CT images.

Another limitation of this work is the small set of PET/CT
images considered. Conversely, considering the small number
of data sets used for model building and approximately the
same number of independent data sets used for testing (this
should be compared against the leave-one-out method that is
commonly used in which the model is over fitted), the results
seem to strongly validate the potential of the modified AAR
approach for automatic PET/CT object localization. We also
note that the use of data sets comparable in size to ours is quite
common in the literature.19,25,47
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