
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Automatic labeling of respiratory
phases and detection of abnormal
respiratory signals in free-breathing
thoracic dynamic MR image
acquisitions based on deep learning

Sun, Changjian, Udupa, Jayaram, Tong, Yubing, Wu,
Caiyun, McDonough, Joseph, et al.

Changjian Sun, Jayaram K. Udupa, Yubing Tong, Caiyun Wu, Joseph M.
McDonough, Catherine Qiu, Carina Lott, Jason B. Anari, Drew A. Torigian,
Patrick J. Cahill, "Automatic labeling of respiratory phases and detection of
abnormal respiratory signals in free-breathing thoracic dynamic MR image
acquisitions based on deep learning," Proc. SPIE 11315, Medical Imaging
2020: Image-Guided Procedures, Robotic Interventions, and Modeling,
113150A (16 March 2020); doi: 10.1117/12.2549983

Event: SPIE Medical Imaging, 2020, Houston, Texas, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 18 Oct 2020  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Automatic labeling of respiratory phases and detection of abnormal respiratory signals in free-

breathing thoracic dynamic MR image acquisitions based on deep learning 

Changjian Sun1, 2‡, Jayaram K. Udupa2*, Yubing Tong2‡, Caiyun Wu2, Joseph M. McDonough3, Catherine 

Qiu3, Carina Lott3, Jason B. Anari3, Drew A. Torigian2, Patrick J. Cahill3 

1 College of Electronic Science and Engineering, Jilin University, Changchun, China. 

2 Medical Image Processing Group, 602 Goddard building, 3710 Hamilton Walk, Department of Radiology, University 

of Pennsylvania, Philadelphia, PA 19104, United States. 

3 Wyss Campbell Center for Thoracic Insufficiency Syndrome, Children's Hospital of Philadelphia, Philadelphia, PA, 

19104, United States 

*Corresponding author; ‡ co-first authors.

ABSTRACT 

4D thoracic images constructed from free-breathing 2D slice acquisitions based on dynamic magnetic resonance imaging 

(dMRI) provide clinicians the capability of examining the dynamic function of the left and right lungs, left and right hemi-

diaphragms, and left and right chest wall separately for thoracic insufficiency syndrome (TIS) treatment [1]. There are two 

shortcomings of the existing 4D construction methods [2]: a) the respiratory phase corresponding to end expiration (EE) 

and end inspiration (EI) need to be manually identified in the dMRI sequence; b) abnormal breathing signals due to non-

tidal breathing cannot be detected automatically which affects the construction process. Since the typical 2D dynamic MRI 

acquisition contains ~3000 slices per patient, handling these tasks manually is very labor intensive. In this study, we 

propose a deep-learning-based framework for addressing both problems via convolutional neural networks (CNNs) [3] 

and Long Short-Term Memory (LSTM) [4] models. A CNN is used to extract the motion characteristics from the 

respiratory dMRI sequences to automatically identify contiguous sequences of slices representing exhalation and 

inhalation processes. EE and EI annotations are subsequently completed by comparing the changes in the direction of 

motion of the diaphragm. A LSTM network is used for detecting abnormal respiratory signals by exploiting the non-

uniform motion feature sequence of abnormal breathing motions. Experimental results show the mean error of labeling 

EE and EI is ~0.3 dMRI time point unit (much less than one time point). The accuracy of abnormal cycle detection reaches 

80.0%. The proposed approach achieves results highly comparable to manual labeling in accuracy but with close to full 

automation of the whole process. The framework proposed here can be readily adapted to other modalities and dynamic 

imaging applications. 

1. INTRODUCTION

4D constructed thoracic images can improve disease visualization and quantification and thus provide a basis for lung 

function evaluation and study of disease processes such as thoracic insufficiency syndrome (TIS) [5]. Recently, several 

MRI-based 4D construction methods have been proposed [2, 6]. In our ongoing TIS projects [1, 2, 6], thoracic 4D MRI 

plays a very important role. TIS is a complex condition that involves deformities of the spine, rib cage, sternum, and chest 

wall and which can seriously compromise lung function. In most cases, children with TIS are also born with congenital 

spinal disorders, such as scoliosis [5, 7]. In normal developing children, lung growth parallels chest and spine growth. In 

children with TIS, lung growth is limited by rib deformities and spinal curves. As a result, children may become dependent 

on nasal oxygen or ventilator support to breathe, which makes it difficult to acquire dMRI data sets and perform 4D 

construction by using external devices or gating techniques to obtain respiratory signals. We previously developed a 4D 

construction method that was based on free-breathing slice acquisitions and a graph-based global optimization technique 

[2], which completely eliminated the need for any signals for gating. 
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One of the shortcomings of the previous approach is that human effort is needed to manually label end expiration (EE) 

and end inspiration (EI) time points in the respiratory cycle of the dMRI sequences. For one patient, considering that 

typically, for each of 30-40 sagittal slice locations across the thorax, ~80 dMRI slice data are acquired under free-breathing 

conditions over several respiratory cycles, the total number of resulting slices is 2400 to 3200. Labeling all of these frames 

manually takes about 4 hours per patient and greatly reduces the throughput of the entire pipeline for deriving useful 

quantitative information from these data. Auto-labeling of EE and EI time points via an optical flow-based method was 

proposed recently to address this concern [6]. This method has one drawback, which prompted us to develop the proposed 

solution. During dMRI acquisition, often patients take a deep breath or perform shallow breathing. This affects 

quantification derived with the assumption of tidal breathing conditions. Our current approach is to manually detect these 

abnormal cycles when present and simply discard such data sets from further analysis completely. Even though the data 

sets are discarded, the manual detection process itself is time-consuming.   

The main contribution of this paper is a combined method, a deep-learning-based tool, for automatic labeling of respiratory 

signals as well as for detecting abnormal respiratory cycles. With such a tool, we can perform labeling of breathing phases 

and the detection of abnormal respiratory cycles with very minimal user interaction. The framework is based on 

convolutional neural networks (CNNs) [3] and Long Short-Term Memory (LSTM) [4] models. A CNN is used to extract 

the motion characteristics from the respiratory dMRI sequences to automatically identify contiguous sequences of slices 

representing exhalation and inhalation processes. EE and EI annotations are subsequently completed by comparing the 

changes in the direction of motion of the diaphragm. Irregular (shallow and deep) breathing patterns cause the CNN to 

extract non-uniform motion feature sequences corresponding to each sagittal scanning position. These feature sequences 

can be used to distinguish between normal tidal breathing and abnormal breathing cycles. An LSTM model is used for 

detecting abnormal cycles based on these motion feature sequences of normal and abnormal breathing. The accuracies of 

labeling EE and EI time points and detecting abnormal breathing cycles are evaluated by comparing with the manual 

method. The experimental results show that the proposed method outperforms previous methods in terms of accuracy and 

almost fully automates the process.  

2. MATERIALS AND METHODS

Image data 

Our experimental data were retrospectively collected from the Children's Hospital of Philadelphia (CHOP). This study 

was conducted following approval from the Institutional Review Board at CHOP along with a Health Insurance Portability 

and Accountability Act waiver. The slices in our acquisition are 224×256 pixels with a pixel size of 0.78×0.78 - 1.46×1.46 

mm2. A total of 48 dMRI data sets gathered from 45 subjects were utilized in our study. This ensemble included data sets 

from 20 normal children, 20 pediatric patients with TIS, and 5 normal adults, three of whom were scanned twice. Since 

our study is sagittal slice location specific and not patient-specific, the total number of such locations in our data sets is 

~1800 and the number of locations with abnormal cycles is 112. 

Main idea of auto-labeling and abnormal breathing signal detection 

In our set up, for each of 35-40 sagittal slice locations across the chest, 80 dMRI slices are acquired rapidly (in 200-300 

ms per slice) while the patient is undergoing free breathing. Since all processing is done identically in this paper on the 

sequence of slices acquired for each sagittal location, we will confine our description to one fixed sagittal location and 

represent the sequence of 80 slices acquired for a sagittal location by  
1 2
, ,...,

MT T Tf fA f . This constitutes a time 

sequence of slices. Our goal for the combined CNN-LSTM strategy is to discard any subsequences within A that constitute 

abnormal breathing cycles, and for the normal cycles, to mark each 
iTf in A with one of the three labels: EE, EI, and none.

The main idea of our method is to use the CNN model to extract the motion information associated with respiratory phase 

successively from two adjacent frames. Subsequently, we derive the motion information (feature sequences) of the time 

series through CNN. Meanwhile, the normal EE and EI phases are labeled according to the characteristic sequence. Finally, 

LSTM performs screening and culling of abnormal respiratory signals by employing the feature sequences. Prior to training, 
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the optical flow method is applied to the images for preliminary extraction of motion characteristics of adjacent frames. 

Figure 1 is a schematic overview of the framework. 

Motion feature extraction based on optical flow and CNN 

We initially specify manually on one slice a region of interest (ROI) covering the right hemi-diaphragm. This specification 

is required on one sagittal location only per patient dMRI scan. For the left hemi-diaphragm and all other sagittal locations, 

the ROI is determined automatically based on this manually provided information. The reason for the ROI is to confine 

all processing to the ROI only since the hemi-diaphragms are the most indicative of the nature of the motion that takes 

place. First, we compute optical flow within the ROI. The optical flow image contains target motion information estimated 

from two adjacent time slices, which is used to train the CNN model to get the features of the expiratory-inspiratory motion. 

The process of selecting ROI and the architecture of CNN are shown in Figure 2. 

After obtaining a sequence of 79 ROI optical flow images  
1 2 -1
, ,...,

MT T TF F FF   from the given time sequence of 80 

slices  
1 2
, ,...,

MT T Tf fA f  at each sagittal location, the slice images in F are divided into two categories: E denoting 

the expiration phase, and I denoting the inspiration phase. The CNN is trained to classify the images in F into these two 

classes. Our network has 4 convolutional layers, 3 pooling layers, and 3 fully-connected layers. After each convolutional 

layer, a ReLU activation is used. We use a two-component softmax output layer to predict the motion of the slice under 

consideration. The output of the CNN is a series of two-dimensional vectors 

 Acquire dMRI data set 

Motion feature extraction via CNN 

Extract optical flow matrix within ROI

Prediction of E and I, exp & insp half-cycles

Mark EE and EI based on changes in E and I

Optical flow matrix extraction

CNN model

Labeling of EE and EI

Feature extraction via LSTM

Detection of abnormal breathing cycles

LSTM model
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Figure 1. A schematic representation of the framework for automatic labeling of respiratory phases and 
detection of abnormal respiratory signals. 
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 1 1 2 2 -1-1
[ , ],[ = , ],...,[ , ]

MM
T T T T T TP pI pE pI pE pI pE , 

(1) 

characterizing the class probabilities for E and I such that =1
i iT TpI pE+ . 

Labeling of EE and EI phases by using motion features 

From the sequence of probabilities P, we can detect EE and EI phases by using the following rules: 

EI: 
i iT T>pI pE AND 1 1i iT + T +<pI pE (2) 

EE: 
i iT T<pI pE AND 1 1.i iT + T +pI pE>  (3) 

Figure 3 illustrates this principle. 

Abnormal breathing signal detection based on LSTM 

LSTM [4] is a network architecture for analyzing signals and is designed for sequence processing. Our idea is to use the 

probability sequence, which indirectly contains timing information, to train an LSTM network to predict those acquisitions 

EI

EE

EI

 Figure 3.  The EE and EI annotations for one breathing cycle. The blue and 
orange dots denote E phase points and I phase points, respectively.
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Figure 2. Choosing an ROI is the only operation that requires human 
interaction. Thereafter, each optical flow image is calculated from every pair of 
two time slices that are adjacent in the time sequence as an input to the CNN. 
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A that may contain an abnormal respiratory cycle. Another characteristic of LSTM networks is that they require far fewer 

training samples than other deep networks. To analyze the inter-time-slice information, we apply a sequential learning 

strategy by inputting a series of features extracted from the time-distributed CNN into our LSTM layer. Each series P of 

probabilities associated with each (sagittal) z-position is treated as one training sample for the LSTM network. Our LSTM 

layer has 64 units and the final output is two types of probabilities indicating the likelihood of the input slice sequence A 

containing/ not containing an abnormal cycle. 

3. EXPERIMENTS AND RESULTS

By calculating the deviation in the time instance of each auto-labeling result from the closest ground truth marking of time 

points, the average of all results is used to describe the error in auto-labeling. We also compare the performance of the 

labeling method based only on optical flow (abbreviated as OF) [6] with the method of combined OF and CNN 

(abbreviated as CNN-OF). The combined results for labeling EE and EI are summarized in Table 1. The CNN-OF method 

is closer to the result of manual labeling than OF. 

In the experiment of abnormal signal detection, we collected abnormal signals from 112 sagittal locations from 20 subjects. 

Similarly, we also collected normal signals from 112 sagittal locations. Based on these 224-position data sets, we 

performed 8-fold cross-validation. The mean accuracy of detecting abnormal cycles is 80.0%. The true positive rate and 

true negative rate are 79.5% and 80.3%, respectively. Although CNN-OF performs slightly better than direct OF method, 

it is an integrated strategy which together with LSTM performs also abnormal signal detection. 

Table 1. Auto-labeling (EE+EI) error (mean±SD) in terms of 
number of time points of deviation from manual labeling. 

Right lung Left lung Both 

OF 0.23±0.16 0.35±0.28 0.29±0.19 

CNN-OF 0.23±0.11 0.32±0.17 0.27±0.12 

4. CONCLUSIONS

To improve the efficiency of 4D thoracic image construction and to identify slices that are not suitable for the construction 

process or that would mislead construction, we proposed a deep-learning-based method for automatic labeling of 

respiratory signals and detection of abnormal respiratory signals from dynamic thoracic MRI datasets. With this framework, 

we can perform labeling of breathing phases and the detection of abnormal respiratory signals with only minimal user 

interaction in the same single system. In our experimental results compared to a previously reported labeling method, the 

proposed method has improved accuracy considerably for slices in the vicinity of the heart. For the task of detecting 

abnormal signals, the true positive rate and true negative rate reached 79.5% and 80.3%, respectively. They are expected 

to improve after obtaining more data sets in the future. The proposed approach is useful for building a 4D image 

construction system and can be adapted to any other dynamic modality for automatic labeling of signals for 4D image 

construction purposes. 
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