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ABSTRACT 

Accurate measurement of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in the thorax is 

important for understanding the impact of body composition upon various clinical disorders. The aim of this paper is to 

explore a practical system for the automatic localization of the axial slices through the thorax at the T7 and T8 vertebral 

levels in computed tomography (CT), and automatic segmentation of VAT in T7 slice and SAT at T8 slice via deep 

learning (DL). The methodology mainly consists of two models: the localization model based on AlexNet and the 

segmentation model based on UNet. For the first one, two slices (T7 and T8) at the middle of the seventh and eighth 

thoracic vertebrae, respectively, from the full or partial body scan of each patient are automatically detected. For the 

second one, all the CT images and the associated adipose tissue ground truth segmentations are used for training, where 

just T7 and T8 slices are tested by the two-label Unet. The datasets from four universities (Penn, Duke, Columbia, and 

Iowa) are used for training and validation of the models. In the experiments, relevant statistical parameters including 

Mean Distance (MD), Standard Deviation (SD), True Positive Rate (TPR), and True Negative Rate (TNR) indicate that 

the proposed algorithm has high reliability and may be useful for fully automated body composition analysis with high 

accuracy.   

Keywords: visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), thorax, deep learning (DL), localization 

and segmentation, computed tomography (CT). 

 

1. INTRODUCTION  

Many studies have demonstrated that the measurement and analysis of body composition, particularly fat, is important for improved 

assessment of patients with cancer and other diseases [1]. Usually, human body composition analysis based on CT or magnetic 

resonance imaging (MRI) includes two main steps – localization of the body region and segmentation of the tissues in the localized 

region. Specifically, for adipose tissues, there are many ways for both steps [2]. Tong et al. [1] explored the AAR approach for the 

segmentation of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) components of thoracic fat. An end-to-end 

segmentation model of SAT and VAT is still scarce, especially for thoracic fat quantification in CT, which is much more challenging 

than fat quantification in the abdomen on which most papers have focused. This paper proposes a new deep learning (DL)-based 

strategy for thoracic fat quantification. DL has shown promising performances in computer-aided detection (CAD), localization [3], 

segmentation [4], classification [5], etc. 

Our prior works have shown that the total body region adipose tissue volumes are most correlated with adipose tissue areas derived 

from axial (cross-sectional) CT images taken at specific vertebral levels – for the abdomen: T12-L1 for SAT and L3-L4 for VAT [6]; 

and for the thorax: T8 for SAT and T7 for VAT [7]. Based on thoracic SAT and VAT estimation at T8 and T7 levels, a large clinical 

study has recently demonstrated the utility of these measurements in studying pulmonary graft dysfunction in lung transplant surgery 

[8, 9]. However, localization of the axial T8 and T7 slices and the segmentation of SAT and VAT components were performed 

manually [8, 9] in that work. The purpose of this paper is to introduce a system for fully automating both tasks, localizing slice at a 

specific location and then fat (SAT/VAT) segmentation on the selected slice via DL, so as to support practical production-mode 

implementation for on-going and future large scale clinical studies. 
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2. MATERIALS AND METHODS 

2.1 Image data  

This retrospective study was conducted following approval from the Institutional Review Board at the University of Pennsylvania 

(UPenn) along with a Health Insurance Portability and Accountability Act waiver. Existing unenhanced chest CT image data sets 

from 457 lung transplant candidates, predominantly with idiopathic pulmonary fibrosis (IPF) or chronic obstructive pulmonary 

disease (COPD), which were previously acquired as part of a separate prospective study at four lung transplant centers (UPenn, Duke, 

Columbia, Iowa) were utilized in this study. In the four datasets, the image size is 512×512×(40~700), with a voxel size of 0.72-

0.972×(0.5, 0.6, 1, 1.25, 1.5, 2, 2.5, 3, 3.75, or 5.0) mm3. The mean age of the patients is 58.0 yrs (±11.7 yrs) with a mean body mass 

index (BMI) of 26.4 kg/m2 (±4.3). Chest CT scans had been performed per local clinical protocols during full inspiration. 

2.2 General idea of the proposed system 

In our approach, we define the thorax body region as extending from an axial level 15 mm superior to the apex of the lungs to a level 5 

mm inferior to the base of the lungs. The slice localization model makes use of the AlexNet architecture. Its task is to automatically 

find axial slices at the mid-T7 (for VAT) and mid-T8 (for SAT) levels in the given full 3D image of the thoracic body region as 

defined above. We will refer to these slices as T7 and T8 slices. The regions of thoracic VAT and SAT are then delineated in the two 

localized slices, respectively, through a segmentation model based on UNet.  

2.3 Models for localizing T7 and T8 slices  

The localization model adopted AlexNet without changing its network structure. As shown in Figure 1, the AlexNet includes 19 

layers and mainly contributes to the following aspects: convolution, pooling, and activation. However, in order to make use of the 

spatial dynamic variations and irregular shapes in contiguous slices, and considering the limitations of tensor dimension and computer 

hardware, the proposed methodology replaces the original RGB channels with three spatially consecutive slices, and makes the 

ground truth of the middle slice as the final label for training the network. Similarly, testing data are organized in this way. In the case 

of a batch size of 6, the optimizer stochastic gradient descent (SGD) in Keras with a learning rate of 1e-04 is used to train and 

construct the mapping relations between the input three slices and their corresponding label (0 or 1), and another parameter 

momentum for the optimizer is set as 0.9. The loss function, mean squared error (MSE), is defined as follows, where ytrue is the ground 

truth of a sample (slice), ypred is its predicted probability, and N is the total number of slices in the input image. 

  Nyy predtrueN
2

)(MSE  
.
                                                                           (1) 
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Figure 1.  Illustration of the full network architecture for localization. Question mark means the batch size. Five 2D-

convolutional layers use filter sizes of 11×11, 5×5, 3×3, 3×3, 3×3, respectively. The filter size for three max-pooling layers 

is 3×3. It should be noted that the size of a single input sample is 512×512×3 where 3 means three spatially consecutive 

slices, which is a modification of the traditional AlexNet. The output is a probability associated with one of two classes - T7 

slice, not T7 slice, and similarly for the network related to localizing the T8 slice. 

 

2.4 VAT and SAT Segmentation models 

As a kind of fully convolutional network (FCN), for the UNet, the input is flexible in terms of size and dimension. Two UNets operate 

separately for VAT segmentation and SAT segmentation for T7 and T8, respectively. Figure 2 demonstrates the architecture of the 

proposed segmentation model. Compared with SAT, automated VAT segmentation is much harder because of less clearly definable 

boundaries and vastly more complex shape. In order to achieve full-automation, the proposed methodology does not crop or rotate the 

original slice beforehand.  
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Figure 2.  Illustration of the full network architecture for segmentation. Question mark means the batch size. The part of 

bottleneck is between the down-sampling and up-sampling paths, and is built from simple 2 convolutional layers. All 2D-

convolutional layers use a filter size of 3×3, all max-pooling layers and up-sampling filter size is 2×2. The padding for the 

convolutional operation is the same. It should be noted that the four concatenation layers concatenate with the corresponding 

uncropped feature map from the down-sampling path.  

 

In the case of a batch size of 2, the optimizer Nadam in Keras with a learning rate of 1e-05 is used to train the input images and their 

corresponding segmentation binary labels, and the other parameters are set as follows: beta_1 is 0.9, beta_2 is 0.999, schedule_decay 

is 0.004. Since there is a binary classification problem in this work, through a sigmoid function over the final feature map combined 

with the loss function named bce_logdice_loss (BLL), the weight parameters can be updated.   

The sigmoid function for the Unet is defined as follows: 

   ))(((11)( y,xp,kaexpy,xp,kS                                                            (2) 

where ))(( y,xp,ka  represents the activation in feature channel k at the voxel position (x, y). The  )( y,xp,kS  is 

between 0 and 1. In the binary classification task, it represents the event probability, i.e., when the output satisfies a 

certain probability condition, the UNet divides it into positive or negative class. The loss function bce_logdice_loss 

(BLL) is defined as follows. 

))(DC()BC(BLL predtruepredtrue y,ylogy,y                                                       (3) 

where ytrue is the ground truth of a sample (here it can be considered as a pixel) and ypred is the predicted probability. The 

loss functions binary_crossentropy (BC) and dice_coef (DC) are defined as follows. 

  ))1()1()(()BC( 11  predtruepredtruepredtrue ylogyylogyy,y                               (4) 
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where   is a constant with a value of 1 so that the denominator is not zero, and 1  is a value approaching zero which makes the 

logarithmic function tenable. 

3. RESULTS 

For all data sets and for both slice localization and segmentation tasks, we generated ground truth with expert radiologist 

guidance. 
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Several evaluation metrics are utilized in this paper. For the localization task, Mean Distance (MD), which indicates the average 

distance between NOpred and NOtrue, is calculated as  

  NNONO
N

1i




 dMD truepred ,                                                          (6) 

where NOpred is the number of the predicted slice which has the highest score in the tested CT image sequence, NOtrue is 

the ground truth slice number of T7 or T8, N is the total number of testing samples, and d is the distance (in millimeter 

(mm)) between adjacent slices which may be different for different patient scans. Standard Deviation (SD) is calculated 

for all the distances between NOpred and NOtrue. In the segmentation experiment, the Mean and SD for two metrics 

including True-Positive Rate (TPR) and True-Negative Rate (TNR) are presented.  

3.1 Evaluation for localization  

We selected 357 volumes randomly for training and the remaining 100 for testing. Additionally, the 16-bit image intensities are 

converted to 12-bit values according to 
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,                                                        (7) 

where )( y,xf  represents the pixel intensity at position (x,y). Generally, the inputs of DL networks need to be 

normalized. The normalization scheme is defined as 

      minmaxminn1  y,xfy,xf ,                                                         (8) 

where min and max are the minimum and maximum of all voxels in a slice, respectively.  

We assess the error in localization via mean distance MD in mm, over the tested data sets, of the predicted slice location from the true 

slice location, separately for T7 slice and T8 slice. As illustrated in Figure 3, the difference between these slices and the nearby slices is 

very subtle and is quite hard even for experts to localize consistently. In other words, this is a difficult localization problem. 

Following the above normalization scheme, the final results for localization are shown in Table 1. As seen in Table 1, for T7 and T8 

slices, the MDs are 11.2 mm and 10 mm (about 2 slices if the slice interval is 5 mm), and the SDs are 12.3 mm and 9.5 mm. 

Compared with the texture information of slices, localization focuses more on the texture contrast and spatial structure difference of 

various tissues. The proposed normalization scheme here can effectively improve the contrast and retain the relative texture difference.  

A slice above true T7 slice A slice below true T7 sliceTrue T7 slice

A slice above true T8 slice A slice below true T8 sliceTrue T8 slice  

Figure 3.  True T7 slice (first row, middle column), true T8 slice (second row, middle column), and subjacent slices (left and 

right columns), the scanning space (the interval between slices) is 1 mm. 
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Table 1.  Error in localization of T7 and T8 slices expressed by mean distance MD in mm and standard deviation SD. 

Task Level Score Level Score 

Localization T7 
MD  11.2 

T8 
MD  10 

SD 12.3 SD 9.5 

 
3.2 Evaluation for segmentation 

In order to evaluate the performance of the proposed segmentation model, this study also applies the rule in (7) to convert those slices 

in the training and testing sets from 16 bits to 12 bits. In addition, another new normalization scheme is used to preprocess training and 

testing sets, and the segmentation effects among the two proposed normalization schemes are compared.  

Assuming that max_min indicates the maximum among all the minimums and min_max indicates the minimum among 

all the maximums, the distribution range of voxel intensity is compressed according to the following rule: 

min_max ( , ) min_max

( , ) ( , ) max_min ( , ) min_max

max_min ( , ) max_min

f x y

f x y f x y f x y

f x y




  
 

.                                            (9) 

The new normalization scheme is then defined as  

      minmaxmin_maxminmaxn2 __y,xfy,xf  .                                        (10) 

Given that the segmentations for SAT and VAT are two distinct tasks, two separate segmentation models are trained. Compared with 

the continuous distribution and simpler shape of SAT, the occurrence of VAT is much more random and more complex in pattern. 

Figure 4 presents several examples. One can observe that the segmentation of VAT is very challenging. The evaluation indices of 

segmentation are shown in Table 2. The reasons that the whole CT image sequence is chosen to train the segmentation model are as 

follows. Firstly, because of the randomness of VAT distribution, with more samples with different adipose tissue distributions, the 

training becomes more powerful. Secondly, localization focuses more on the spatial structure differences of various tissues (noting 

that it does not mean that the texture information is not important), while segmentation focuses more on the specific voxel intensity of 

adipose tissues. That is to say, even if the slices are different from T7 and T8, they are meaningful for training. As can be seen from 

Table 2, regardless of SAT or VAT, the new normalization scheme has the better performance with a mean TPR of 0.86 and 0.88, 

while the scheme in (8) has the worse scores with a mean TPR of 0.83 and 0.87. The reasons for the distribution of segmentation 

effects in Table 2 can be summarized as follows: For all slices in the new normalization scheme, the distribution interval of the voxel 

intensity of adipose tissue does not change after normalization, but for the scheme in (8), the distribution interval is changed, which 

essentially changes the imaging characteristics of adipose tissue and is disadvantageous to segmentation. These observations 

emphasize the importance of proper intensity normalization in DL-based image analysis tasks and tailoring this normalization to the 

task at hand. 

CT Ground Truth Predicted label

CT Ground Truth Predicted label

(a)

(b)  
Figure 4.  Visual comparison of segmentation results with ground truth segmentations. (a) is one sample of thoracic VAT, 

and (b) is the result of thoracic SAT from the same sample.  
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Table 2.  Segmentation performance for thoracic adipose tissues at the detected T7 and T8 slices via True Positive Rate 

(TPR) and True Negative Rate (TNR). 

Task Tissue Score 
Scheme 

in (8) 

Scheme 

in (10) 
Tissue 

Scheme 

in (8) 

Scheme 

in (10) 

Segmentation VAT 

TPR 
Mean 0.87 0.88 

SAT 

0.83 0.86 

SD 0.18 0.13 0.11 0.10 

TNR 
Mean 0.996 0.997 0.997 0.996 

SD 0.003 0.002 0.005 0.004 

 

4. CONCLUSIONS 

In the work described in this paper, a practical system for localization and segmentation of chest CT visceral and 

subcutaneous adipose tissue components at optimal slice levels via DL has been introduced, which is capable of 

exhibiting high location and segmentation accuracy. The proposed methodology uses AlexNet and UNet to locate and 

segment the two key slices at the T7 and T8 levels, respectively. Additionally, this paper innovatively applies three 

adjacent frames as input data to train the localization model, since their spatial correlation is thought to be helpful for 

localization. Note that all the experimental results were obtained without pre-specifying perfect experimental materials, 

but instead are generated from routine clinical practice CT data sets that contain a wide mix of image qualities as 

encountered in real patient scan data. 
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