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ABSTRACT 

The performance and evaluation of segmentation algorithms will benefit from large fully annotated data sets, but the heavy 

workload of manual contouring is unrealistic in clinical and research practice. In this work, we propose a method of 

automatically creating pseudo ground truth (p-GT) segmentations of anatomical objects from given sparse manually 

annotated slices and utilize them to evaluate actual segmentations. Sparse slices are selected spatially evenly on the whole 

slice range of the target object, where one slice is selected to conduct manual annotation and the next t slices are skipped, 

repeating this process starting from one end of the object to its other end. A shape-based interpolation (SI) strategy and an 

object-specific 2D U-net based deep learning (DL) strategy are investigated to create p-GT. The largest t value where the 

created p-GT is considered to be not statistically significantly different from the actual ground with its natural imprecision 

due to variability in manually specified ground truth is determined as the optimal t for the considered object. Experiments 

are conducted on ~300 computed tomography (CT) studies involving two objects – cervical esophagus and mandible and 

two segmentation evaluation metrics – Dice Coefficient and average symmetric boundary distance. Results show that the 

DL strategy overwhelmingly outperforms the SI strategy, where ~95% and ~66-83% of manual workload can be reduced 

without sacrificing evaluation accuracy compared to actual ground truth data via the DL and SI strategies respectively. 

Furthermore, the p-GT with optimal t is able to evaluate actual segmentations with accurate metric values.  

Keywords: medical image segmentation, segmentation evaluation, sparse ground truth, deep learning 

 

1. INTRODUCTION 

Numerous 3D anatomy segmentation methods have emerged since the advent of tomographic imaging modalities in the 

1970s. Early methods were purely image-based1, 2 which needed ground truth (or reference) segmentations only for 

segmentation evaluation since they did not harvest anatomic priors from existing data sets. Although such approaches 

continue to seek new frontiers, methods that exploit priors in various forms have emerged during the past 2-3 decades and 

have shown significant gain in segmentation robustness and accuracy. These later methods may be generically referred to 

as model-based since they employ some form of model to encode prior information such as anatomic and geographic 

models3, atlases4, deep neural networks5, etc. However, for these methods, fully annotated ground truth (GT) segmentations 

that capture the very variability over a human population of focus they purport to encode is of fundamental importance, 

some of them requiring a large number of such data sets for robust model building alone, not to mention for evaluation as 

well.  

There are two main issues with generating GT segmentations. (I1) Expense: GT reference is most typically provided by 

manual (human expert) contouring of anatomical objects in medical imaging. Thus, generating fully manually large GT 

sets becomes impractical and expensive6. (I2) Imprecision: Owing to various reasons such as human subjectivity in 

interpreting boundaries in images, lack of standard ways of defining objects, or variations in the interpretation of (pseudo) 

standards (when they exist), GT segmentations have imprecision. The magnitude of these imprecisions is object-specific. 

Small, non-compact, and sparse objects entail larger degrees of imprecision proportionate to their size compared to large, 
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well-defined, and compact objects. I1 is purely a cost issue. I2, however, raises several conceptual issues. Although both 

I1 and I2 have been examined to some extent in the literature, this area calls for a lot more attention in view of the promises 

suggested by deep neural network models. Most importantly, the practical question of the savings that result in cost as a 

function of the imprecision in GT data as a result of its “sparsification” has not been examined so far. In other words, is it 

feasible to simulate full GT segmentations from sparse GT data such that the simulated GT is as good (or imperfect) as, 

but not worse than, the GT generated by human experts? The cost saving then will depend on the degree of sparsity 

affordable for the sparse GT data and will be tied with the second issue I2. 

As to I1, several algorithms have been proposed in the past for object-matching or model-training via partially annotated 

samples7, 8, but the lack of fully annotated samples may raise confusion in segmentation evaluation, showing the 

disconnection with I2. Ref9 has investigated methods to evaluate the quality of crowdsourced non-expert annotations and 

to fuse crowdsourced labels to help in biomedical segmentation research. The Expectation-Maximization-based STAPLE10 

method and its extensions are a series of methods commonly used to generate consensus GT from multiple manual 

segmentations. None of these efforts addressed I1 and I2 jointly or one as a function of the other. 

In this paper, keeping I1 in mind, we investigate two pseudo GT (p-GT) generation strategies. They both start from manual 

annotations given on only a sparse set of slices among all slices occupied by the target object and then fill in GT 

segmentations automatically for those skipped slices. We then bring in I2 by investigating how the generated p-GT would 

vary, as we change the degree of sparseness, in comparison to the imprecision existing in the actual GT. The degree of 

sparseness at which the deviation of the p-GT (generated by the chosen p-GT strategy) with respect to the actual GT is as 

good (or as bad) as the imprecision in the actual GT will then be considered as the optimal (highest) affordable sparseness 

level (and hence cost saving) for that p-GT strategy. The p-GT generation strategy can then be considered to behave like 

an alternative to an expert segmenter or a pseudo expert segmenter. To investigate how much manual workload can be 

reduced when maintaining human-level imperfection, experiments are conducted on different degrees of sparseness for 

slice selection for the two proposed p-GT strategies. The performance of p-GT in segmentation evaluation is verified via 

evaluation of actual segmentations in comparison to evaluation by actual fully annotated GT. 

 

2. METHODS 

The proposed p-GT generation approach, called SparseGT, is represented in Figure 1. There are two key aspects to the 

SparseGT method: (i) sparse slice selection strategy, where we first manually create GT segmentations on sparsely selected 

slices, and (ii) segmentation filling strategy, where we fill slices not selected for GT segmentation with pseudo 

segmentations. Both operations are performed in an object-specific manner. Finally, we use the p-GT data to evaluate 

segmentations of the same object samples in comparison to actual (full) GT data. 

2.1 Sparse slice selection 

The method of selecting sparse slices is illustrated in Figure 2. Let t denote the degree of sparseness, with the idea being 

that higher values of t indicate higher degrees of sparseness. The idea is to select one slice and then skip the next t slices 

and repeat this process starting from one end of the object up to its other end in the direction orthogonal to the slice plane. 

Manual contouring (segmentation) is then conducted only on the sparsely selected slices. Subsequently, the contours of 

the object on the skipped slices are filled by an appropriate p-GT strategy. 

Determination of a proper (optimal) t value for each object is crucial in the SparseGT method: Large values of t would 

greatly reduce the workload of expert segmenters but may increase distinguishable deviation from the actual ground truth. 

Let NO be the smallest number of slices covering an object O (such as the mandible) over a population S of patient images 

that include O. An extreme t with least manual work load would be t = ⌊(NO – 2)/1⌋, where only the slices on two ends are 

selected and manually contoured and the remaining slices are skipped, or t = ⌊(NO - 3)/2⌋, where the middle slice and the 

slices at the two ends are manually contoured and all other slices in between are skipped. More generally, if we select n  

NO slices with roughly uniform spacing, t = ⌊(NO - n)/(n-1)⌋. The proper choice for t is a value that is large enough to reduce 

manual workload, while simultaneously producing a p-GT that does not deviate significantly from actual ground truth 

compared with the deviation found among expert segmenters. The selection of t is object-specific and also depends on the 

strategy employed for creating p-GT from sparse data.  
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2.2 Segmentation filling for slices not selected for GT contouring 

The manually annotated contours on the selected sparse slices implicitly represent a sampling of the manner in which the 

expert segmenter behaves in the contouring task. The achievable maximum sparseness for slice selection is not only object-

specific, but also depends on the ability of the p-GT strategy to emulate the behavior of the expert segmenter. Two 

segmentation filling strategies are investigated in this work: one is a straight-forward strategy of shape-based interpolation 

(SI) and the other is deep-learning (DL) based. Shape-based interpolation, first proposed in Ref11, is a family of approaches 

wherein the object is estimated at in-between slices by following the slice-to-slice shape of the object. The method reported 

in Ref11 first applies a 2D distance transform to the binary shape in each given slice with the convention that distances 

inside the object are positive and those outside are negative. To estimate a slice in-between two given slices, the distance 

values are interpolated and then the sign of the estimated distance value is used to determine if a pixel is inside or outside 

the object (see Figure 3(a)).  

For the DL-strategy, a 2D U-net12 based network is used for creating p-GT in this paper; any other suitable architecture 

can be utilized as well. The network is illustrated in Figure 3(b). Input: A 6t + 8 channel image which contains 4 continuous 

sparse slices with the associated manual contours together with blank slices corresponding to the skipped slices in between 

and the corresponding original intensity image slices at the same spatial positions. Output: A t channel binary mask 

predicted for the central block of t skipped slices. Taking Figure 2 as an example where t = 3 is selected as the sparseness 

parameter, the target object in this sample occupies N = 23 image slices numbered 0 to 22, and n = 6 slices – 1, 5, 9, 13, 

17 and 21 – are selected and contoured manually while other slices are skipped. When we intend to automatically create 

contours on slices between Nos. 5 and 9, i.e., on slices numbered 6, 7, and 8, we create a 26-channel input image constituted 

by binary slices and original intensity slices numbered 1 to 13 where only foreground on slices numbered 1, 5, and 9 are 

marked as 1 and all other regions and all other slices are marked as background 0 on the binary slices. After all blocks of 

skipped slices are filled with predicted binary masks, sparse slices with manual contours and blocks of skipped slices with 

predicted contours are concatenated following the original sequence and restored to the original spatial positions. This 

restored binary image is called DL-p-GT. Analogously, we refer to the binary images created by shape-based interpolation 

as SI-p-GT. These pseudo ground truth segmentations can then be used as an alternative to fully manually annotated GT 

data in evaluating segmentations produced by an algorithm. 

Figure 1. A schematic representation of the SparseGT method. 
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2.3 Inter-segmenter variation and estimation of the optimum value of t 

Individual differences among human segmenters are hard to eliminate. Even clinical professionals like dosimetrists in 

Radiation Oncology departments, who manually contour organs at risk for radiation therapy (RT) planning, show 

considerable inter-segmenter variation. Figure 4 presents examples of two objects in the Head & Neck body region as they 

appear in CT images: cervical esophagus, which is a thin tube-like sparse object with low boundary contrast, and mandible 

which is a less challenging object with both sparse and non-sparse aspects and mostly good boundary contrast. s1 and s2 

denote two expert dosimetrists who separately conducted manual annotation on the same object samples.  

 

 

Perfect GT does not exist as inter-segmenter differences always exist. The SparseGT method exploits this fact and tries to 

generate p-GT that is as good as the actual GT data available to us with all of their imperfections. Firstly, we select a 

segmentation evaluation metric. Here, we demonstrate the approach by employing two most commonly used metrics, 

namely Dice Coefficient (DC) and average symmetric boundary distance (ASD). For each object O whose segmentations 

by an algorithm A are to be evaluated, we then obtain the variability of these metric values among a group G of expert 

segmenters by having them create GT segmentations of O on the same given set S of images. Typically, S required for the 

SparseGT approach is much smaller than the size of the data sets required for training model-based segmentation 

algorithms. More importantly, this variability needs to be established only once for O. In this paper, we employ two experts 

to establish this variability for demonstration purposes. For each metric M, we describe its variability by a pair (M, M), 

where M denotes the mean value and M denotes the standard deviation of M over all samples of S among all combinations 

of expert segmenters in G taken two at a time, where one is taken as the reference segmentation with respect to which the 

other expert’s segmentations are evaluated via M. Analogously, we determine the variability (Mp, Mp) of the pseudo 

Figure 3. Illustration of segmentation filling strategies. (a) Shape-based interpolation approach. (b) 2D U-net based deep 

learning method. 
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Figure 4. Illustration of inter-segmenter differences: Cervical esophagus (top row) and mandible (bottom row). 
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ground truth generated by taking different experts in G into account, where Mp denotes the mean value of M and Mp is 

the standard deviation of M over all experts in G. In this paper, for demonstration purposes, we have considered only one 

expert in G. We then determine the optimum value tO of the degree of sparseness as the largest value of t where the 

deviation (Mp, Mp) from p-GT becomes statistically indistinguishable from the variability (M, M) among experts in the 

actual full GT. Once tO is determined for an object, the p-GT generated for O using tO can be used for evaluating the 

performance of algorithm A in segmenting O. 

 

3. EXPERIMENTS, RESULTS, AND DISCUSSION 

3.1 Experiments 

This retrospective study was conducted following approval from the Institutional Review Board at the Hospital of the 

University of Pennsylvania along with a Health Insurance Portability and Accountability Act waiver. Experiments are 

conducted on computed tomography (CT) images of the Head & Neck body region focusing on two objects – cervical 

esophagus (CtEs) and mandible (Mnd). The objects are chosen to represent different shape and size characteristics and 

different degrees of challenges for segmentation. A set of 298 3D images with full ground truth for both objects are used 

in our experiments. The GT data constitute real clinical data as contoured by a dosimetrist for the routine RT planning of 

patients with Head & Neck carcinoma. For 81 data sets among the above cohort, two dosimetrists fully annotated contours 

of considered objects expressly for the purpose of recording the natural imprecision that exists in manual GT in this 

application domain, and thus we also have reference GT variation data as well in our annotations, while we have 

annotations from only one expert segmenter different from the other two for other images in the entire set.   

The data sets with two tracings from two dosimetrists are separately divided into training and test samples, where about 

20% of the samples are randomly selected and compose the test set. The remaining samples form the training set to 

determine tO, which is verified on the test set to check if the test set can also yield indistinguishable deviation with respect 

to expert variability. The voxel size in our data sets varies from 0.93 × 0.93 × 1.5 mm3 to 1.6 × 1.6 × 3 mm3. The object 

sizes are also variable among subjects, where object samples of different subjects occupy varying numbers of slices, 18-

71 slices for CtEs and 17-86 slices for Mnd. The bounding box size is also determined for each object based on its largest 

occupied range and to fit the input size expected by the DL network. The region of interest (ROI) size of samples is set in 

multiples of 8, since there are three convolutional layers with stride 2 in both U-net based networks – 64×96 for CtEs and 

160×144 for Mnd.  

In our experiments, we assume that the extreme (ideal) case is one where the middle slice and two end slices are used for 

sparse selection among NO slices occupied by the considered object, which corresponds to t3 = ⌊( NO – 3)/2⌋, and for the 

more general cases, the degree of sparseness tn  is selected such that 1 ≤ tn ≤ t3, where n = ⌊(NO – 1)/(tn + 1)⌋ + 1 slices are 

selected. The best sparseness factors tO are determined by using the training set. Then, the determined sparseness factors 

are evaluated on a separate test set which also should not yield distinguishable deviations with respect to the reference GT. 

The SI strategy does not need a training stage in generating p-GT, while for the DL-based strategy, 2-fold cross validation 

is conducted to generate p-GT for the training set based on different tn and the models for the test set are trained on the 

whole training set.  

The validity of p-GT in segmentation evaluation is demonstrated by comparing metric values by p-GT with values 

evaluated by actual full GT. Root mean squared error (RMSE) is used to evaluate the deviation of metric values measured 

by p-GT from the values measured from actual GT. RMSE ε is calculated as shown below, where α stands for one of the 

metrics DC and ASD, b = {I1,b, …, IN,b} stands for binary masks of manually created full ground truth, b = {J1,b, …, JN,b} 

denotes binary masks generated by segmentation algorithms, andb = {P1,b, …, PN,b} represents the created p-GT. ε is a 

function of the sparseness parameter t under different p-GT creation strategies and for different objects.  Segmentation 

algorithm A considered to be evaluated is the AAR-RT method described in Ref13. 
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3.2 Results and discussions 

(1) Determining optimal sparseness tO 

Image examples for objects CtEs and Mnd are shown in Figure 5 and the optimum sparseness factor tO are determined as 

illustrated separately in the left columns of Figures 6 and 7. The optimal sparseness factor tO is determined as the largest t 

where the metric values is statistically indistinguishable from the same metric that shows the variability in actual full GT. 

Since we utilize DC and ASD as metrics to measure the difference between segmentations from different human 

segmenters and also between manual and pseudo GT, the estimated tO should receive agreement from the two metrics. T-

test is conducted to determine statistical significance with p-value < 0.05. The cases with significant differences are marked 

‘o’ in the left column of Figures 6 and 7, while cases with insignificant differences are marked ‘*’. Quantitative results are 

listed in Tables 1 and 2, and insignificant cases are marked in bold. 

We can infer from plots and Tables 1 and 2 that, for cervical esophagus, tO = 5 for the SI strategy and tO = 14 for the DL 

strategy, and for mandible, tO = 2 for the SI strategy and tO = 16 for the DL strategy. The reduction of manual workload 

can be estimated as 1 / (t + 1) of original workload, where only one slice out of t + 1 slices needs manual contouring and 

the remaining t slices can be skipped and filled automatically via SI or DL strategies. That means, by using the straight 

forward shape-based interpolation strategy without any training, the manual workload can be reduced to 16.7% of the full 

workload for cervical esophagus and to 33.3% for mandible. Furthermore, given a proper set of training samples, with the 

DL strategy, the workload can be further reduced to 6.67% and 5.88% for CtEs and Mnd, respectively, of the full manual 

workload, leading to 93.33% and 94.12% savings in workload for the two objects, respectively!  

We should note that, among the population of 298 samples, t3 = 16 is the ideal sparseness factor can be reached for most 

of the samples of CtEs and Mnd. Even with the maximum sparseness, the error of DL-p-GT for Mnd can still be lower 

than the inter-segmenter difference, which shows a strength of the DL strategy in that, with human-level accurate 

recognition and proper and consistent object definition (a fundamental tenet of the AAR-RT approach13), it is able to yield 

high-quality delineation masks for the mandible. The excellent performance on the mandible may be also attributed to the 

lower level of challenge in its segmentation. If we compare plots for CtEs and Mnd, although the performance on the 

training set and the test set of CtEs show similar tendency with increasing t and p-value > 0.05 in most cases between 

cross-validation results of the training set and results of the test set, the performances for mandible are similar for both 

metrics, which means CtEs is a more variable object compared to Mnd. The optimal tO value for the SI strategy reflects 

how regular the object shape is along the axis orthogonal to the scanning plane. In this sense, we may infer that although 

Mnd is less challenging than CtEs in segmentation, it is less regular and has more shape change from slice to slice. 

 

Table 1. Difference of pseudo ground truth of cervical esophagus with respect to actual manual ground truth for different sparseness 

factors. Mean and standard deviation values are listed. 

O = CtEs 

DC ASD (mm) 

DL-p-GT SI-p-GT DL-p-GT SI-p-GT 

Straining Stest Straining Stest Straining Stest Straining Stest 

Inter- 

segmenter 

0.88 

0.04 

0.38 

0.28 

t = 4 
0.93 

0.02 

0.93 

0.02 

0.92 

0.03 

0.91 

0.04 

0.18 

0.05 

0.18 

0.05 

0.21 

0.06 

0.23 

0.08 

t = 5 
0.92 

0.02 

0.92 

0.02 

0.89 

0.05 
0.88 

0.05 

0.21 

0.09 

0.2 

0.06 

0.29 

0.11 
0.31 

0.12 

t = 6 
0.92 

0.02 

0.91 

0.03 
0.87 

0.06 

0.86 

0.07 

0.23 

0.07 

0.23 

0.07 
0.38 

0.18 

0.41 

0.19 

t = 7 - 
0.84 

0.08 

0.82 

0.09 
- 

0.49 

0.27 

0.55 

0.29 

t = 8 
0.9 

0.02 

0.9 

0.03 

0.81 

0.1 

0.78 

0.12 

0.28 

0.09 

0.26 

0.1 

0.62 

0.36 

0.68 

0.41 
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t = 12 
0.88 

0.03 

0.89 

0.03 

0.69 

0.13 

0.66 

0.16 
0.36 

0.19 

0.33 

0.11 

1.19 

0.65 

1.34 

0.76 

t = 14 
0.88 

0.03 

0.88 

0.04 

0.63 

0.14 

0.62 

0.15 
0.4 

0.14 

0.39 

0.2 

1.57 

0.83 

1.66 

0.87 

t = 15 
0.87 

0.03 

0.87 

0.03 

0.6 

0.15 

0.6 

0.15 

0.45 

0.19 

0.43 

0.18 

1.83 

0.96 

1.81 

0.92 

t = 16 
0.86 

0.04 

0.87 

0.04 

0.57 

0.15 

0.6 

0.15 

0.47 

0.23 
0.43 

0.22 

2.03 

1.06 

1.82 

1.05 

 

Table 2. Difference of pseudo ground truth of mandible with respect to actual manual ground truth for different sparseness factors. 

Mean and standard deviation values are listed. 

O = Mnd 

DC ASD 

DL-p-GT SI-p-GT DL-p-GT SI-p-GT 

Straining Stest Straining Stest Straining Stest Straining Stest 

inter- 

segmenter 

0.91 

0.02 

0.35 

0.11 

t = 2 
0.97 

0.01 

0.97 

0.01 

0.94 

0.02 

0.94 

0.02 

0.12 

0.05 

0.11 

0.05 

0.26 

0.09 

0.24 

0.08 

t = 3 
0.96 

0.01 

0.96 

0.02 
0.91 

0.03 

0.91 

0.03 

0.15 

0.05 

0.14 

0.06 

0.44 

0.16 

0.43 

0.16 

t = 4 
0.96 

0.01 

0.96 

0.02 

0.88 

0.04 

0.88 

0.04 

0.17 

0.06 

0.16 

0.09 

0.61 

0.23 

0.61 

0.28 

t = 8 
0.94 

0.02 

0.94 

0.02 

0.75 

0.09 

0.74 

0.1 

0.23 

0.09 

0.22 

0.09 

1.48 

0.7 

1.54 

0.8 

t = 12 
0.94 

0.02 

0.94 

0.02 

0.58 

0.15 

0.57 

0.16 

0.25 

0.09 

0.24 

0.11 

3.03 

1.77 

3.16 

2.2 

t = 16 
0.93 

0.02 

0.93 

0.02 

0.36 

0.13 

0.34 

0.14 

0.29 

0.12 

0.26 

0.1 

6.35 

3.39 

6.54 

3.39 

 

      

m-GT 
s1 

m-GT 
s2 

SI-p-GT 
tO = 2 

DL-p-GT 
tO = 16 

Mnd 

m-GT 
s1 

m-GT 
s2 

SI-p-GT 
tO = 5 

DL-p-GT 
tO = 14 

CtEs 
Figure 5. Image examples for CtEs and Mnd. Manual ground truth (m-GT) are generated by two expert segmenters – s1 and 

s2. Pseudo ground truth (p-GT) are generated from sparse m-GT by s1 and the optimal tO via SI and DL strategies respectively. 

2D binary masks are overlaid on the intensity images and overlaid by s1 contours, and the corresponding surface models are 

presented as well.  
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(2)  Segmentation evaluation with pseudo ground truth 

Illustrations for p-GT for CtEs and Mnd in evaluation of actual segmentations are shown in the right columns of Figures 

6 and 7, and quantitative results are listed in Tables 3 and 4, respectively. We observe from the plots and also from 

quantitative results that DL-p-GT shows best capability to replace manual ground truth in that it generates least error in 

evaluation measures compared to simply sparse or SI-p-GT. Also, for DL-p-GT, with increasing sparseness, i.e., increasing 

t, the error does not increase as rapidly as the other two kinds of pseudo ground truth. 

When comparing the RMSEs of p-GT with optimal t separately based on DL- and SI- strategies, we found that the yielded 

errors are actually similar, which means that the p-GT sets created by the two strategies for tO will both have similar 

acceptable evaluation measures with only slight deviation. The RMSEs of p-GT also show the influence the inter-

segmenter difference may have on segmentation evaluation. Specific to the practical usage for segmenting CtEs and Mnd, 

if the dataset for training or model building and the test dataset are contoured by different expert segmenters, there will be 

an error of 0.03 and 0.02 in DC or an error of 0.6 and 0.2 mm in ASD. This error may be blamed on inter-segmenter 

differences but not on the real capability of the trained model or the algorithm. Inter-segmenter differences also show upper 

bounds for how accurate the automatic segmentation algorithms can become, while beyond those bounds it is doubtful, if 

directly verified on other sources of data sets, that the algorithms will be able to yield segmentations with as good 

evaluation measures as with the training data sets. With the explosive development of deep learning architectures, we 

believe that there are several algorithms that are able to reach or surpass this upper bound for objects like Mnd, while there 

is still room for sparse and challenging objects like CtEs to improve14, 15. 
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Figure 6. Illustrations of experimental results for different t for cervical esophagus CtEs. Left column: Variation of  p-

GT taking actual GT from one expert as reference. The optimum sparseness factor tO is determined by the largest t 

without yielding statistically significant difference compared to (M, M).  Right column: Root mean squared error ε of 

evaluation metric values of actual segmentations via AAR-RT method based on DL- and SI-p-GT strategies.     
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Table 3. Root mean squared error (RMSE) of pseudo ground truth of cervical esophagus on actual segmentation evaluation compared 

to by actual manual ground truth. 

O = CtEs 

DC ASD 

DL-p-GT Sparse-GT SI-p-GT DL-p-GT Sparse-GT SI-p-GT 

Straining Stest Straining Stest Straining Stest Straining Stest Straining Stest Straining Stest 

t = 4 0.01 0.01 0.02 0.02 0.02 0.03 0.19 0.11 1.15 1.1 0.47 0.42 

t = 5 0.01 0.01 0.02 0.03 0.03 0.04 0.21 0.19 1.37 1.07 0.58 0.48 

t = 6 0.02 0.02 0.03 0.03 0.04 0.06 0.22 0.17 1.47 1.33 0.65 0.64 

t = 7 - 0.03 0.04 0.06 0.08 - 1.55 1.94 0.76 0.61 

t = 8 0.02 0.02 0.04 0.04 0.07 0.11 0.27 0.32 2.16 1.64 0.8 0.88 

t = 12 0.02 0.02 0.05 0.07 0.12 0.15 0.3 0.27 3.59 2.23 1.25 1.15 

t = 14 0.02 0.03 0.08 0.1 0.14 0.17 0.39 0.46 4.3 4.61 1.3 1.32 

t = 15 0.03 0.03 0.09 0.12 0.15 0.19 0.51 0.62 5.05 6.27 1.42 1.37 

t = 16 0.03 0.02 0.09 0.11 0.16 0.2 0.47 0.64 6.36 5.28 1.62 1.55 

 

Table 4. Root mean squared error (RMSE) of pseudo ground truth of mandible on actual segmentation evaluation compared to by 

actual manual ground truth. 

O = Mnd 

DC ASD 

DL-p-GT Sparse-GT SI-p-GT DL-p-GT Sparse-GT SI-p-GT 

Straining Stest Straining Stest Straining Stest Straining Stest Straining Stest Straining Stest 

t = 2 0.01 0.01 0.01 0.01 0.02 0.02 0.08 0.08 0.51 0.54 0.22 0.19 
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Figure 7. Illustrations of experimental results for different t for mandible Mnd. Notations are same as in Figure 6.  
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t = 3 0.01 0.01 0.02 0.02 0.04 0.04 0.11 0.11 0.9 0.71 0.36 0.35 

t = 4 0.01 0.02 0.02 0.02 0.06 0.06 0.1 0.11 1.05 0.77 0.51 0.53 

t = 8 0.02 0.02 0.05 0.06 0.17 0.18 0.14 0.17 0.94 0.81 1.4 1.56 

t = 12 0.02 0.02 0.09 0.09 0.33 0.34 0.15 0.17 1.85 1.53 3.41 3.9 

t = 16 0.02 0.02 0.14 0.16 0.52 0.52 0.18 0.15 2.68 3.51 7.07 7.6 

 

4. CONCLUSIONS 

In this paper, our goal was to addresses a gap that currently exists in segmentation evaluation, namely, to seek an answer 

to the question “Is it possible to create machine-generated ground truth which is just as good as the full manual ground 

truth from sparse human annotated data sets?” Recognizing the fact that human-drawn ground truth will never be perfect, 

we investigated a novel method named SparseGT of creating pseudo ground truth vastly more efficiently. With a fraction 

of the manual workload needed for creating full ground truth, we have shown that the created pseudo ground truth works 

at least as well as the full ground truth in terms of accuracy. No such work currently exists. We presented two automated 

and object-specific strategies – shape-based interpolation (SI) and deep learning (DL) – for creating pseudo ground truth 

from sparse ground truth data sets. Two objects, cervical esophagus and mandible in the Head & Neck body region, with 

different shapes, sizes, and segmentation challenges have been investigated utilizing ~300 CT data sets. Two segmentation 

evaluation metrics are studied – DC and ASD, and the maximum sparseness factor which yields consonant 

indistinguishable differences measured by both metrics with respect to the imprecision that exists in actual manual ground 

truth is determined as the optimal sparseness factor. The DL method performs overwhelmingly better than the SI strategy. 

We have demonstrated that ~95% of manual workload can be alleviated via the DL strategy without sacrificing accuracy 

compared to actual ground truth data. Even via the SI strategy, which is a straight forward method that does not need any 

model-training, the workload can be reduced by ~66-83%. As such, it can serve as a potential method to enlarge data sets 

for deep learning training, if not directly used for generating pseudo ground truth.   

We are further investigating the underlying core ideas presented in this work in several directions with the inclusion of: 

larger data sets, all major organs in the Head & Neck body region, other body regions and their organs, non-uniform and 

shape-dependent sparse slice selection, etc.  
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