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Purpose: The derivation of quantitative information from medical images in a practical manner is
essential for quantitative radiology (QR) to become a clinical reality, but still faces a major hurdle
because of image segmentation challenges. With the goal of performing disease quantification in lymph
node (LN) stations without explicit nodal delineation, this paper presents a novel approach for disease
quantification (DQ) by automatic recognition of LN zones and detection of malignant lymph nodes
within thoracic LN zones via positron emission tomography/computed tomography (PET/CT) images.
Named AAR-LN-DQ, this approach decouples DQ methods from explicit nodal segmentation via an
LN recognition strategy involving a novel globular filter and a deep neural network called SegNet.
Method: The methodology consists of four main steps: (a) Building lymph node zone models by
automatic anatomy recognition (AAR) method. It incorporates novel aspects of model building that
relate to finding an optimal hierarchy for organs and lymph node zones in the thorax. (b) Recognizing
lymph node zones by the built lymph node models. (c) Detecting pathologic LNs in the recognized
zones by using a novel globular filter (g-filter) and a multi-level support vector machine (SVM) clas-
sifier. Here, we make use of the general globular shape of LNs to first localize them and then use a
multi-level SVM classifier to identify pathologic LNs from among the LNs localized by the g-filter.
Alternatively, we designed a deep neural network called SegNet which is trained to directly recognize
pathologic nodes within AAR localized LN zones. (d) Disease quantification based on identified
pathologic LNs within localized zones. A fuzzy disease map is devised to express the degree of dis-
ease burden at each voxel within the identified LNs to simultaneously handle several uncertain phe-
nomena such as PET partial volume effects, uncertainty in localization of LNs, and gradation of
disease content at the voxel level. We focused on the task of disease quantification in patients with
lymphoma based on PET/CT acquisitions and devised a method of evaluation. Model building was
carried out using 42 near-normal patient datasets via contrast-enhanced CT examinations of their tho-
rax. PET/CT datasets from an additional 63 lymphoma patients were utilized for evaluating the
AAR-LN-DQ methodology. We assess the accuracy of the three main processes involved in AAR-
LN-DQ via fivefold cross validation: lymph node zone recognition, abnormal lymph node localiza-
tion, and disease quantification.
Results: The recognition and scale error for LN zones were 12.28 mm � 1.99 and 0.94 � 0.02,
respectively, on normal CT datasets. On abnormal PET/CT datasets, the sensitivity and specificity of
pathologic LN recognition were 84.1% � 0.115 and 98.5% � 0.003, respectively, for the g-filter-
SVM strategy, and 91.3% � 0.110 and 96.1% � 0.016, respectively, for the SegNet method. Finally,
the mean absolute percent errors for disease quantification of the recognized abnormal LNs were
8% � 0.09 and 14% � 0.10 for the g-filter-SVM method and the best SegNet strategy, respectively.
Conclusions: Accurate disease quantification on PET/CT images without performing explicit delin-
eation of lymph nodes is feasible following lymph node zone and pathologic LN localization. It is
very useful to perform LN zone recognition by AAR as this step can cover most (95.8%) of the

3467 Med. Phys. 47 (8), August 2020 0094-2405/2020/47(8)/3467/18 © 2020 American Association of Physicists in Medicine 3467

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmp.14240&domain=pdf&date_stamp=2020-06-15


abnormal LNs and drastically reduce the regions to search for abnormal LNs. This also improves the
specificity of deep networks such as SegNet significantly. It is possible to utilize general shape infor-
mation about LNs such as their globular nature via g-filter and to arrive at high recognition rates for
abnormal LNs in conjunction with a traditional classifier such as SVM. Finally, the disease map con-
cept is effective for estimating disease burden, irrespective of how the LNs are identified, to handle
various uncertainties without having to address them explicitly one by one. © 2020 American Associ-
ation of Physicists in Medicine [https://doi.org/10.1002/mp.14240]

Key words: automatic anatomy recognition (AAR), disease quantification (DQ), FDG-PET/CT, tho-
racic lymph node zones

1. INTRODUCTION

1.A. Background

Accurate assessment of lymph node (LN) involvement via
positron emission tomography/computed tomography (PET/
CT) plays an important role in the clinical diagnosis, staging,
treatment planning, treatment response assessment, and out-
come prediction of patients with cancer.1 However, it is not
easy to detect LNs due to their obscure boundaries and low
contrast with subjacent tissues on CT images. The Interna-
tional Association for the Study of Lung Cancer (IASLC) has
defined a standard way of identifying lymph node zones (or
stations) in the thorax for describing the anatomical locations
of lymph nodal metastases, which is essential for disease
staging and potentially for prognostication of patient out-
come.2 While this is helpful in standardizing a means of inter-
preting and reporting thoracic lymph node disease sites, it
still leaves the radiologist with the arduous task of memoriz-
ing and following the definitions and finding the zones on
CT images manually. At the same time, labeling individual
pathologic1 LNs in clinical radiology practice is performed
manually by qualitative visual assessment on CT and PET/
CT scans, which is also time consuming and prone to error in
the assignment of lymph nodes to particular nodal zones.
The ability for automatic localization of nodal zones, zone-
wise disease burden estimation, and zone-wise enumeration
of the different pathologic nodes has many potential applica-
tions in clinical disease staging, response assessment,
response prediction, restaging, etc.

One possible approach to quantify disease in LN zones is to
segment pathologic LNs individually on CT or combined CT
and PET, identify the zone towhich each LN belongs, and then
quantify total disease in each zone. However, this approach is
difficult to realize in a production-mode implementation of
disease quantification mainly because segmenting (delineat-
ing) individual LNs is very challenging. Alternatively, if we
can directly localize (recognize) LN zones on CT and quantify
total disease burden in each zone via PET without explicitly
delineating nodes, the rather ill-defined problem of

delineating individual nodes can be circumvented. Works on
recognizing nodal zones directly in CT imagery are rather
sparse3–8 compared to a much larger body of literature on LN
delineation (segmentation), noting that6–8 require detection or
segmentation of LNs for zone localization and3–5 constitute
our own early work. Considering the challenges of segmenting
LNs, we take a different approach: Recognizing (localizing)
LN zones in CT images first via our Automatic Anatomy
Recognition (AAR) method,9 then recognizing pathologic
LNs in each zone without explicitly delineating them, and
finally quantifying disease via PET images, thereby accom-
plishing disease quantification (DQ) without explicitly delin-
eating either the nodal zones or LNs. This approach is inspired
by our recent AAR-disease quantification (DQ) methodology
for quantifying disease in anatomic organs via PET/CTwith-
out the explicit segmentation of organs or pathology.10 In this
paper, we will take this stance to quantify nodal disease via
PET/CT and our focus will be the thoracic body region.
Hence, our review of literature below will be confined to past
works related to the thoracic body region only.

1.B. Related work

As mentioned above, approaches focusing on direct LN
zonal recognition are very few. There are two approaches to
localize zones: Model-based and atlas-based. In Ref. [3], we
modified a previously developed fuzzy-model-based body-
wide AAR system9 to automatically localize IASLC-defined
lymph node zones on CT images. The LN zones are first
modeled in the way anatomic organs are modeled in Refs. [9–
11] based on their shape and geographic layout. Subse-
quently, the AAR approach is utilized to localize LN zones in
given patient images. The approach has been extended to
other body regions.5,6 In Ref. [7], the authors utilized spatial
priors from a multi-atlas label fusion strategy to detect (all,
not necessarily diseased) LNs and map LN stations. Unlike
the model-based strategy, the atlas-based approaches do not
directly localize LN zones. They achieve a nodal zone inclu-
sion accuracy of 85–88%. In Ref. [8], a multi-atlas organ seg-
mentation approach is utilized to identify IASLC-defined
mediastinal and hilar LN zones on CT scans guided by the
segmented organs. The previous AAR approaches achieved a
zonal localization accuracy of 4–5 voxels which leaves con-
siderable room for improvement for localization accuracy
from the perspective of DQ. Our goal in this paper is (a) to

1In this paper, we assume that LNs with high FDG uptake relative to
the background tissue in PET images are “pathologic” nodes.
Although this is true in many disease conditions, we note that not all
high uptake nodes necessarily constitute disease involvement by can-
cer.
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bring this error down to 2–3 voxels, and (b) to demonstrate
that zonal disease quantification can be subsequently per-
formed accurately without explicit delineation of LNs.

Compared to research on automatic localization of LN
zones, most published papers focused on detection and seg-
mentation of LNs on CT images irrespective of whether or not
the individual LNs are pathological. LN detection methods
can be divided broadly into two groups: Those based on classi-
cal pattern recognition techniques and those based on the more
recent deep learning strategies. In the first group, hand-crafted
features are first selected followed by the detection and delin-
eation of LNs. Features selected include those derived via
Hessian analysis,6,7,12,13 texture properties computed from
Haralick gray-level co-occurrence matrix,14 Haar-like fea-
tures,12,15,16 histogram of oriented gradients,17 and local binary
pattern,18 etc. Once the features are extracted, a classifier is
often used to decide if a blob-like entity characterized by the
features is a real LN. The classifiers employed include support
vector machine (SVM),7,12,18,19 random forest,14 etc.

Methods based on deep learning can extract features auto-
matically within the neural network and also perform within
the same network the LN detection task. In Ref. [20], the
authors developed a 2.5D representation for LN detection by
using a convolutional neural network (CNN). The basic idea
is to use the CNN as a classifier for each patch extracted from
image volumes of interest. In Ref. [21], the authors used three
convolutional neural architectures (CifarNet, AlexNet, and
GoogLeNet) to compare and evaluate LN detection perfor-
mance. In Ref. [1], a fully convolutional network is trained to
detect lymph node clusters and a conditional random field
approach is used subsequently to segment LNs. A 3D U-Net
is used in Ref. [22] to segment mediastinal LNs in CT images
where other anatomical structures like lungs, airways, and
aortic arch, etc., are also segmented in order to improve the
performance of LN segmentation. In Ref. [23], a data aug-
mentation approach based on generative adversarial networks
is proposed, and the U-Net model is trained for lymph node
segmentation. The U-Net and Mask R-CNN architectures are
combined for segmentation and detection of mediastinal
lymph nodes and anatomical structures in CT data in Ref.
[24].

Owing to advantages of the functional information from
PET and anatomical structure information from CT, in Ref.
[25] a Markov random field model to segment lung tumors is
proposed, which encoded the information from both modali-
ties. In Ref. [26], random forest classification within the
mixed spatial-spectral space of component-trees modeling
PET/CT images was employed for segmentation of lym-
phoma. In Ref. [27], a fully convolutional neural network
(FCN) is used to segment lung cancer utilizing PET and CT.
In Ref. [28], the authors proposed two-stream chained deep
neural network for esophageal gross tumor volume segmenta-
tion that fused the CT and PET modalities. All of these
papers focus on detection or segmentation of LNs on CT
scans. As far as we know, there are no reports that deal with
methods to recognize LNs, particularly pathologic, by using
deep learning networks on PET/CT images.

Currently, several commercial vendors offer software for
disease measurement (for example, Refs. [29,30]); however,
they all operate under the paradigm of first manually per-
forming recognition of diseased regions by manually specify-
ing a region of interest (ROI), subsequently automatically
delineating lesions by making use of information from PET
alone or from both PET and CT, and finally measuring dis-
ease burden in the form of volume and PET standardized
uptake value (SUV) statistics within the lesion region.
Although numerous papers have been published as we dis-
cussed above1,15,16,19,23 their focus has been LN segmentation
and not disease burden estimation within LN zones. To the
best of our knowledge, no methods have been reported for
LN disease quantification aside from the manually guided
methods29,30 mentioned above.

In summary, a complete automated system for LN disease
quantification (LN-DQ) on PET/CT images within well-de-
fined LN zones has numerous clinical applications. Although
several individual components of such a system have been
worked on and published, none of them has reached the final
goal of disease measurement in zones. Most methods focused
on LN segmentation and did not show how disease measure-
ment can be accomplished continuing beyond nodal segmen-
tation. Methods that demonstrated LN zone localization also
fell short and did not demonstrate how DQ can be performed
within each zone. In this paper, we present a methodology for
a complete LN-DQ system which, given a PET-CT image,
reports LN-zone-wise disease burden. It bypasses the chal-
lenging and somewhat ill-defined problem of explicit nodal
delineation but rather localizes the LN zones and recognizes
the individual pathologic nodes within the recognized zone for
estimating total disease burden within each zone without
explicitly delineating either the zone or the nodes they contain.

We will refer to our methodology as AAR-LN-DQ, an
abbreviation for Automatic-Anatomy-Recognition-Lymph-
Node-Disease-Quantification. Overall, it consists of four
modules as illustrated schematically in Fig. 1. (a) Building a
fuzzy anatomy model of the LN zones in a body region of
focus (in our case, thorax) following AAR principles9; (b)
Performing LN zone recognition; (c) Recognizing diseased
LNs within the localized zone; and (d) Performing disease
quantification within each zone. In Section 2.A, we briefly
summarize the IASLC zonal definitions, including our adap-
tations to make them computationally unambiguous, and our
approach to model LN zones by treating them as 3D ana-
tomic objects. Our approach to zonal recognition (localiza-
tion), described in Section 2.B, also follows AAR principles
but with a key novelty. We select several anatomic organs as
“anchor” objects to locate LN zones relative to them and
determine with a comprehensive search the best anchor organ
for each zone and the best overall hierarchy in which to
arrange anchor organs and the zones related to them. Follow-
ing delineationless AAR-DQ principles formulated recently,10

in Section 2.D we present an approach to directly quantify
disease burden within each zone. It makes use of the fuzzy
object model mask resulting from zonal recognition and con-
sists of four key steps: (a) Recognizing high uptake
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confounding objects (such as heart); (b) recognizing patho-
logic nodes (Section 2.C) using a novel concept of a globular
filter (g-filter) or a deep network SegNet; (c) estimating dis-
ease severity at each voxel in the zone by considering its
SUV, its fuzzy object mask membership, its confounding
object membership, and its g-filter output; and (d) estimating
disease burden within each zone. In Section 3, we present our
results from experiments involving 42 near-normal diagnostic
CT images (used for model building) and 63 PET/CT data-
sets from patients with lymphoma. Our concluding remarks
are summarized in Section 4.

The AAR-LN-DQ approach has the following unique fea-
tures: (a) It treats LN zones as any anatomic 3D object, which
makes the general AAR approach become directly applicable
in their localization. (b) It decouples dependence on explicit
segmentation (delineation) of lymph nodes from disease
measurement, and performs disease quantification directly
from zonal and nodal (rough) localization information found
automatically. This in turn makes the disease quantification
process robust, efficient, and practical. (c) It takes a fuzzy
approach to handle uncertainties throughout: for LN zone
modeling, zone and node recognition, disease mapping, and
disease quantification. (d) It creatively combines explicit
modellable high-level knowledge encoded via AAR with the
ability of deep networks to harness exquisite low-level details
to build a practical system for measuring nodal disease bur-
den. (e) By the characteristics of the AAR approach, AAR-

LN-DQ is not tied to any specific body region or object(s),
and hence it is applicable body-wide although in this paper
we focus on the thorax.

A preliminary version of the LN zone and node recognition
aspect of this paper appeared in the SPIE Medical Imaging
Conference of 2014 and 2018.3,5 The current paper differs from
those conference presentations in major ways. (a) The present
paper gives a comprehensive literature review. (b) It describes
all involved steps fully with detailed algorithmic steps includ-
ing the above recognition steps. (c) It describes a method to
find an optimal way of determining the anchor objects and the
associated hierarchy. (d) It describes an approach to quantify
disease within zones by considering both zonal and nodal
recognition. (e) It presents results involving a much larger set
of patient image data. (f) Most importantly, based on earlier
experience, numerous improvements have been made, and a
complete AAR-LN-DQ approach is designed and presented.

2. MATERIALS AND METHODS

2.A. AAR-LN-DQ approach

We will follow the scheme in Fig. 1 to describe our
approach, summarize briefly previous methods for complete-
ness when used unaltered (please refer to earlier AAR papers,
specifically,9,11 for details), and describe AAR-LN-DQ-specific
new advances in detail. We will follow the notation used in

1. Constructing Fuzzy Anatomy Model for LN zones of B

1A. Gather image data sets 
1B. Ground truth 

delineation

1D. Design optimal disease 
maps for LN zones

2. Recognition of LN zones in image I

1C. Find opt anchor 
objs & hierarchy for 

LN zones

2A. Recognize root object in I

2B. Recognize other objects/ LN zones in I
per hierarchy

3. Recognize pathological LNs in the localized zones in I

3A. g-filter method 3B. SegNet method

4. Disease quantification in LN zones in image I

4A. Perform disease mapping for LNs in I

4B. Quantify disease for each LN zone in I

FAM(B)

FMT (Oi), i=1,…, L

NM(Zi), i=1, …, L

QX (Z1, IPET), …, QX(ZL, IPET)

Patient image 

database 

PET/CT Patient 

image data set I

FIG. 1. A schematic representation of the AAR-LN-DQ approach.
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previous AAR publications closely, but will need some new
terminology as well which we will introduce as we progress.
In Table I, we summarize the terminology used in the paper.
Our body region of interest B in this paper is the thorax.

2.B. Constructing fuzzy anatomy model for lymph
node zones

2.B.1. Gathering image data

This retrospective study was conducted following approval
from the Institutional Review Board at the Hospital of the Uni-
versity of Pennsylvania along with a Health Insurance Portabil-
ity and Accountability Act waiver. For the near-normal set Im,

contrast-enhanced diagnostic chest CT scans of 42 near-normal
subjects (radiologically normal with exception of minimal inci-
dental focal abnormalities) are selected. For abnormal sets Dm

and Cm, we selected whole-body 18F-fluorodeoxyglucose
(FDG)-PET/CT scans of 63 patients with Hodgkin lymphoma
or Diffuse large B-cell lymphoma. Only the thoracic portion of
these scans was utilized in our study. All PET/CT scans had
previously been acquired on scanners with time-of-flight capa-
bilities (Gemini TF, Philips Medical Systems, Bothell, WA). 3D
PET data had been acquired ~60 min after intravenous adminis-
tration of ~555 MBq of FDG for ~3 min per bed position.
Image reconstruction had been performed at 4 mm nominal
slice thickness in the axial plane. Voxel size in PET images was
much larger than in the lCT counterpart, as such PET images
were interpolated to make their voxel size equal that of lCT
images. The two image datasets are summarized in Table II.

2.B.2. Defining and delineating objects

As per AAR methodology, anatomic body region of B and
its organs are precisely defined first (see Ref. [9]).

For LN zones, we followed the IASLC definitions2 but
adapted them to our goal with some changes as deemed nec-
essary. For example, in implementing those definitions com-
putationally, we found that in some cases some zones became
empty based on the spatial relationships of the anatomical
structures that determine the boundaries of the zones. For
similar reasons, we split Zone 3a into two zones — 3a-sup,
which is equivalent to Zone 3a based on the IASLC defini-
tions, and 3a-inf, which is a new zone we created to cover the
inferior portion of the pre-vascular mediastinum that was not
addressed by the IASLC definitions. Every zone is specified
with a boundary in each of anterior, posterior, superior, infe-
rior, left, and right directions to express the limits of the zone
anatomically. These limits are defined by planes which are
not necessarily parallel to the image coordinate planes. In our
implementation, for modeling the zones as 3D objects, we
express each zone as a polyhedron by following the defini-
tions. Figure 2 shows an example using Zone 3p for illustra-
tion. See Supplementary Material for a compact description
of the definitions of the LN zones.

For generating ground truth binary masks, all objects (or-
gans and LN zones) are delineated following their definitions.
This step generates the set of binary images I b from the input
set of images Im. The tracings are done on the dCT images
of this set. Table III lists all organs and zones considered in
this study and their acronyms used throughout this paper.

In addition to the binary masks described above used for
model building, we also created ground truth delineations of
all pathologic nodes in the patient PE/CT datasets Dm and
Cm. Each such node was identified on the PET images manu-
ally by the radiologist (Torigian) and was delineated on PET
by first thresholding and subsequently by verification on lCT
and manual correction as needed. These masks will be used
as ground truth for estimating disease maps in LN zones and
for determining the accuracy of recognizing pathologic nodes
and the accuracy of disease quantification in LN zones.

TABLE I. Notations used in this paper.

Notation Definition

O1,. . .,OL Our body region of interest B is the
thorax
L 3D objects of B that are considered in
our study which are organs and lymph
node zones in B

Im ¼ Im1 ; � � � ; ImN
� �

A set of training images in modality m
of B from N near-normal subjects,
where m 2 {dCT, lCT, PET}. dCT and
lCT represent diagnostic contrast-
enhanced CT and low-dose CT

(ICT, IPET) The image pair in a PET/CT acquisition
from a given patient

Ib ¼ In;l : 1� n�N&1� l� L
� �

The set of all binary images of the
objects of B which are used for model
building, In,l being the binary image
representing object Ol in image Imn

Dm ¼ Dm
1 ; � � � ;Dm

k

� �
A set of training images of B in
modality m of patients with disease

Cm ¼ Cm
1 ; � � � ;Cm

M

� �
A set of test images of B in modality m
of patients with disease

FM(Ol) Fuzzy model of object Ol derived from
the set of all binary images of Ol

dZ(x) Disease map associated with LN zone
Z. It maps SUV x at a voxel v within Z
to disease severity at v on a [0, 1] scale

FAM(B) Fuzzy anatomy model of the whole
object assembly in B which includes all
prior information gathered about
objects such as the hierarchical
arrangement of objects, their SUV
properties, disease maps, object
relationships, fuzzy models, etc

FMT(O) Transformed FM(O) corresponding to a
state when O is recognized in a patient
image

NM(Z) A fuzzy nodal mask

QX(Z, I
PET) A set of quantitative measures2

describing the disease burden within
LN zone Z

2Notation QX is fashioned after notations DX and RX commonly used
for diagnostics and therapeutics, and is intended to denote quantita-
tive disease analytics, as employed in[10].
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2.B.3. Find optimal anchor objects and hierarchy
for LN zones

In the AAR set up, the fuzzy anatomy model FAM(B) of B,
with all its organs and LN zones of interest is defined by 5
elements.

FAM Bð Þ ¼ H;M; q; k; gð Þ: (1)

For a detailed description of these parameters, see Refs.
[9,11]. Briefly, H is a hierarchy of objects in B, represented as
a tree. M is a set of fuzzy models, one model for each of the
L objects in B, M = {FM(Ok): k = 1, ..., L}. q describes the
parent-to-offspring relationship in H over the population. k is
a family of scale factor ranges. g denotes a set of measure-
ments pertaining to the object assembly in B including inten-
sity properties and all learned parameters that are needed for
object recognition and disease quantification. Note that the
object ensemble considered for FAM(B) includes organs and
LN zones. Our interest in organs per se is secondary here;
they are used as anchor objects of reference for LN zones, the
latter being our primary objects of focus. Achieving high

accuracy of recognition of LN zones is crucial for guarantee-
ing high accuracy of disease quantification in zones. Recog-
nition accuracy in turn is determined by the anchor objects
chosen for the zones and the constructed hierarchy H. This is
where AAR-LN-DQ differs significantly from previous AAR
strategies in the model building process, as we explain below.
Please see Ref. [9] for details on the remaining parameters M,
q, k, and g of FAM(B).

The idea underlying H in FAM(B) is to facilitate locating
an LN zone Z in a given image I based solely on prior infor-
mation. The prior information is encoded in the form of the
relationship of Z with a reference organ O. For each zone Z,
our goal is to select that organ O with respect to which Z has
the steadiest relationship, so that once O is recognized in I
accurately, Z can be placed (localized) in I with least error. To
achieve this goal, we set aside TSkn as the root object in H
since it is easy to recognize in I. We consider each of the
remaining organs listed in Table III as a potential reference
anchor object for each LN zone. Additionally, we allow com-
posite organs created by the union of organs taken two at a
time as reference anchors. Denoting the set of organs in

TABLE II. A description of the image datasets used in this study.

Dataset
#

Number
of

subjects Modality Imaging protocol Image size, resolution Use, train/test division

DS1 42 Diagnostic (near-normal) CT; used
for building FAM(B) and testing zone
recognition

dCT: Contrast-
enhanced, axial,
breath-hold

512 9 512 9 45–68,
0.77 9 0.77 9 5.0 mm3

Zone recognition, 30/12 (Dm/Cm), sixfold

DS2 63 Patient PET/CT; Used for node
recognition and disease quant

lCT: Unenhanced,
axial, quiet
breathing

512 9 512 9 52–92,
CT:
1.14 9 1.14 9 3.75 mm3

PET: 4 9 4 9 4 mm3

Node recognition & disease quantification, 53/
10 (Dm/Cm), fivefold. Total number of
pathological LNs = 214

Azygos vein

Superior aspect of 
manubrium

Right wall of 
trachea

Left wall of 
trachea

Posterior wall of
trachea Anterior aspect 

of spine

(a)

(c)

(b)

(d)

FIG. 2. Definition of lymph node Zone 3p. (a) Inferior boundary: Inferior aspect of the horizontal portion of azygos vein. (b) Superior boundary: Superior aspect
of manubrium. (c) Right & left boundaries: right & left wall of trachea. (d) Anterior & posterior boundaries: anterior & posterior wall of trachea. The zone is dis-
played as green overlay. [Color figure can be viewed at wileyonlinelibrary.com]
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Table III (excluding TSkn) by O, the set of reference anchor
organs considered becomes OA = O ∪ {Oi ∪ Oj: Oi 6¼ Oj &
Oi, Oj 2 O}. From the 14 zones listed in Table III, we create
ten zones by merging some of the smaller zones into a single
zone. This was done mainly to make sure that we catch a
sufficient number of pathologic nodes in our datasets so that
testing the accuracy of disease quantification becomes
statistically meaningful. Otherwise, many zones will remain
empty or catch very few pathologic nodes. Specifically, the
set of zones we considered is Z = {Z12, Z3a-inf, Z3a-sup,
Z3p, Z4, Z56, Z7, Z89, Z10R, Z10L}, where
Z12 = Z1 ∪ Z2R ∪ Z2L, Z4 = Z4R ∪ Z4L, Z56 = Z5 ∪ Z6,
and Z89 = Z8 ∪ Z9.

To find H, we take the following approach. For each zone
Zi in Z and organ O in OA, we form a mini hierarchy as illus-
trated in Fig. 3(a) and create FAM(B) by using a subset of
dataset DS1 (Table I). We use this model to test the error h
(Zi, O) of recognition of zone Zi in a second disjoint subset of
DS13. We then choose for Zi that organ Oi in OA that yields
the least recognition error among all members of OA. Finally,
we form the hierarchy H as illustrated in Fig. 3(b) by making

the best organ selected in this manner to be the parent for
each zone. Note that there are |Z| 9 |OA| experiments of the
type described above involved in our search for optimal hier-
archy, where |x| denotes the cardinality of set x. For our case,
the number of experiments is 580.

For recognition error h(Zi, O), we utilized the error in
localizing zone Zi, which is expressed as the 3D distance
between the true geometric center of Zi and the geometric
center of the fuzzy model FMT(Zi) that is localized in the
image under question. If Oi yields the smallest error h(Zi, Oi),
then this suggests that Zi has the tightest (least variable) posi-
tional relationship with respect to organ Oi.

2.B.4. Design optimal disease maps for LN zones

The process of disease quantification involves a training
part, which belongs to the model building stage of the AAR-
LN-DQ process, and an actual disease estimation part. For
the sake of continuity, we will present both parts in Sec-
tion 2.D — Disease quantification.

2.C. Recognition of lymph node zones

Once FAM(B) is built for the objects (organs and LN
zones) in B (thorax) following the procedure described in
Section 2.B, it can be employed to recognize LN zones
included in the model in any given image4 I of B. The proce-
dure for recognizing zones follows the same process as
described in previous AAR publications for organ recogni-
tion. There are some minor differences due to the fact that,
now, the primary objects of interest are LN zones, and not
organs. We will explain these differences below; please see
Refs. [9,11] for details on the basic recognition algorithms.

AAR organ recognition starts off by first recognizing the
root object TSkin (the outer boundary of skin of the thoracic
body region in our case) of H in I following the method
described in Ref. [9]. Subsequently, organ recognition in I

TABLE III. Organs and LN zones in the thorax considered in this study and
their abbreviations.

Organs Description Zones Description

TSkn The outer skin boundary of the
thoracic body region

Z1 Zone 1

TSk Thoracic skeleton Z2R The right part of
Zone 2

AS Arterial system Z2L The left part of
Zone 2

IMS Internal mediastinum Z12 Z1 ∪ Z2R ∪ Z2L

LPS Left lung (pleural sac) Z3a-
sup

The superior part
of Zone 3a

RPS Right lung (pleural sac) Z3a-
inf

The inferior part of
Zone 3a

RS Respiratory
system = LPS + RPS + TB

Z3p The posterior part
of Zone 3

SCord Thoracic spinal cord Z4R The right part of
Zone 4

TB Trachea and bronchi Z4L The left part of
Zone 4

PC Pericardium boundary representing
the heart

Z4 Z4R ∪ Z4L

E Thoracic esophagus Z5 Zone 5

Ao Aorta Z6 Zone 6

VS Venous system Z56 Z5 ∪ Z6

TV TB + VS Z7 Zone 7

AD AS + SCord Z89 Z8 ∪ Z9

AR AS + RS Z10R The right part of
Zone 10

LR LPS + RPS Z10L The left part of
Zone 10

TSkn

O

Zi

(a) (b)

TSkn

Oi Oj Ok

Zi Zj Zk

FIG. 3. (a) Mini hierarchy considered for determining optimal anchor organ
to be paired with each LN zone Zi. (b) Optimal hierarchy formed after an
optimal organ Oi is found for each LN zone Zi.

3We actually divide DS1 into 3 subsets — a training set used to
build models, a validation set to determine optimal hierarchy, and a
test set to determine the accuracy of zonal recognition. This we do
in a multi-fold manner as explained in Section 3.

4Note that I may be a dCT image from data set DS1 or a lCT image
ICT from DS2.
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proceeds in two stages following the objects in H in a
breadth-first order. In the first stage, called one-shot recog-
nition, the child organ O in H is located (recognized)
purely from the parent-to-child relationship information q
encoded in FAM(B). This strategy already places the trans-
formed fuzzy model FMT(O) of the child O in I in the
close proximity of the true location (pose) of O in I. In
the second stage of refined recognition, the result from the
first stage is fine-tuned based on image intensity properties
(including known actual pixel value ranges for O, O’s
known texture properties, etc.) in the vicinity of FMT(O)
in I by maximizing the agreement of these properties in I
relative to those in the region defined by FMT(O). In
AAR-LN-DQ, for organs in H, we follow exactly the same
process. However, unlike organs, LN zones are conceptu-
ally defined regions of space without any observable inten-
sity (or texture) boundaries in images, as such we perform
only one-shot recognition for them. This is the reason that
accurate localization of their parent organs becomes cru-
cial as well as determination of the optimal parent to be
assigned to each zone as an anchor organ. Thus, after the
root object is located, we localize the anchor organs by
using the two-stage process, and subsequently their off-
spring zones are localized using the one-shot strategy.
Finally, the result of the recognition process is the adjusted

fuzzy model FMT(O) in I for each object O (organ or
zone).

2.D. Lymph node recognition

We have designed two strategies for LN recognition, the
first based on a new concept of globular filter or g-filter
and the second based on a deep neural network SegNet.
The g-filter approach looks for blob-like objects within the
zonal mask using spherical-ball templates of varying sizes
that best match the intensity and uptake properties in ICT

and IPET that are expected for pathologic nodes. Subse-
quently, it employs machine learning techniques to identify
nodes by iteratively relaxing/refining the classification strat-
egy from ball level to the slice level to the voxel level. In
this process, the fuzzy model masks from Hrt (heart) and
TSk (skeleton of thorax) are excluded from the zonal mask.
The deep network approach trains a SegNet network to
identify pathologic nodes by using the recognized zonal
masks and the truly pathologic nodes identified within them
together with the ICT and IPET image information within the
masks. Both approaches output masks denoting roughly the
whereabouts of the pathologic nodes (and not their explicit
delineations). The two approaches are described in detail in
the rest of this section.

Iteration

Detect balls by g-filter

Ball Level and Slice Level

Voxel Level

Output Rough LN Mask
Recognized LNs

Generate Ball Set

Classify Balls

Classify Voxels

Union of all recognized LNs

FIG. 4. A schematic representation of the g-filter approach. The light gray mask denotes lymph node ground truth; the bright mask denotes the rough mask
obtained at each level. [Color figure can be viewed at wileyonlinelibrary.com]
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2.D.1. g-filter approach to node recognition

A schematic representation of the proposed g-filter
approach is depicted in Fig. 4. It includes two main parts:
generating ball candidates by g-filter and removing false posi-
tive balls and voxels by SVM thorough three levels — ball
level, slice level, and voxel level. The aim of ball level and
slice level is to remove false positive balls. The voxel level
plays a role in the refinement of LN recognition. Note that
these three levels are executed iteratively.

This approach is delineated as Algorithm g-filter (gF)
below. The individual steps in the algorithm are described at
an intuitive level in the rest of this section.

Step 0. Suppressing confounding objects: In this step, the
confounding objects with high uptake, namely heart
(FMT(Hrt)) and bone marrow (FMT(Tsk)) from skeletal struc-
tures are removed if zone Z (FMT(Z)) partially overlaps with
those objects. Removal is done by fuzzy set subtraction. In
Fig. 5, we illustrate examples of high uptake confounding
regions arising from the two objects Hrt and TSk.

Step 1. g-filter to detect balls: Let ICT = (V, fCT(v)) and
IPET = (V, fPET(v)), where fCT(v) and fPET(v) denote the image
intensity value at voxel v in ICT and IPET, respectively. We will
apply the g-filter to each image ICT and IPET separately to
detect the most plausible spherical ball with its center at each
voxel v as described below. For ICT, this will yield a new
image denoted ICTg ¼ V ;FCT vð Þð Þ, where the intensity func-
tion FCT(v) = (dCT(v), rCT(v)) assigns two values to each
voxel v: dCT(v) denotes the filter response at v (see below)
and rCT(v) corresponds to the radius of the most plausible
ball centered at v. Similarly, the output of the g-filter for IPET

will be a vector-valued image IPETg ¼ V ;FPET vð Þð Þ, where
FPET(v) = (dPET(v), rPET(v)). Let the fuzzy model FMT(Z) of
the recognized zone Z in ICT (and hence IPET) be denoted as
an image (V, fFM(v)) where fFM(v) stands for the fuzzy

membership of Z at voxel v. Thus, at every voxel v in the
given PET/CT image pair (ICT, IPET), we will have seven val-
ues: fuzzy mask membership fFM(v), CT intensity fCT(v),
PET intensity fPET(v), two filter output values FCT(v) for the
CT image, and two filter output values FPET(v) for the PET
image.

The filter operation on ICT is as follows (it works
exactly identically on IPET). At each voxel v of ICT, each
ball b, selected from a series of template balls, centered at
v of radius from a pre-determined minimum rmin to maxi-
mum rmax is considered. A t-statistic of the difference in
intensity distributions (histograms) inside b and outside5 b
is estimated and Welch’s unequal variance t-test is used to
find the optimal ball at v as follows. Let X1, s1, and N1

denote the mean, standard deviation, and the sample size
of voxel intensities from inside b and let the correspond-
ing values for outside b be X2, s2, and N2. Then the t-
statistic is given by

t ¼ X1 � X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
N1
þ s22

N2

q : (2)

The ball that gives the maximum t value at v from
among the template set of balls is considered to be the
most plausible ball at v, rCT(v) is taken to be the radius of
this optimal ball, and the filter response dCT(v) is taken to
be the statistic t. The above process proposes a ball b(v) at
every voxel v in ICT (and similarly in IPET) with radius
rCT(v) and response dCT(v). At true nodal “centers”, we
expect dCT to peak, so we find local maxima as potential
nodal locations. Thus, only those balls which satisfy two
conditions are selected to be in b0: (a) b(v) has a locally
maximum response dCT(v); and (b) the membership value
at v in X is greater than 0. In words, b0 constitutes a set of
all balls, confined to the mask of zone Z, with confounding
objects (heart and bone marrow) suppressed, such that each
ball represents the most plausible sphere that can be fit to
the manifestation of an LN that appears within Z in ICT.
Note that b0 constitutes the union of balls found in ICT and
IPET separately. b0 may contain too many false balls that do
not correspond to pathologic nodes or even nodes. The
remaining steps in gF gradually weed out most false balls
as explained below. Figure 6 demonstrates an example of
b0 found in two ICT datasets.

We emphasize that the g-filter is quite different from the
popular Hessian-based method14,31 of deriving features at
every voxel about the underlying shape (spherical, cylindri-
cal, etc.). The g-filter explicitly finds the best matching ball
within a set of template balls that can exist at every voxel with
the voxel as its center. The Hessian method on the other hand
finds features for the part of the surface (spherical, cylindri-
cal, etc.) that may exist in the vicinity of the voxel. These fea-
tures will have to be subsequently put together into a gestalt
to find balls in the Hessian method.

Algorithm g-filter (gF)

5Voxels immediately outside b within one voxel distance are consid-
ered for finding the histogram of the outside region.
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Steps 2, 3. Ball-level and slice-level classification: For
both ball-level and slice-level classifications, we use a set of
features derived from within the balls from CT and PET
images in addition to the radius and response values in the fil-
ter outputs ICTg and IPETg . The features associated with a ball b
(v) at voxel v in ICT are as follows: mean and standard devia-
tion (SD), maximum value, minimum value and median value
of fCT(v), dCT(v), rCT(v), and 10 texture properties derived
from the gray level co-occurrence matrix obtained from the
CT image, namely: energy, entropy, correlation, contrast,
variance, inertia, cluster shade, cluster tendency, and homo-
geneity.30 Similar features are defined based on IPET. For
ball-level classification, the features are derived from the ball
region, and for slice-level classification, the features are from
the region of the cross section of the ball in the slice under
consideration. For both cases, the number of positive samples
(balls/slices containing a pathologic LN) is much smaller
than that of negative samples. Multiple classifiers were
designed to fully use positive samples by training each classi-
fier with balanced sample sets including all positive samples
and the randomly selected negative samples for every

classifier.31 Here, ten SVM classifiers are trained by the same
positive training balls and different sets of negative training
balls selected from the total negative ball set randomly. A vot-
ing strategy is used to combine the outputs of the 10 classi-
fiers. Ball-level classification yields a reduced set of balls b1
which is further reduced to set b2 by the more conservative
slice-level selection.

In summary, the set of balls b0 produced in Step 1 has two
issues: there are too many false balls and some balls that
cover pathologic LNs may not cover them fully well. Steps 2
and 3 are designed to drastically reduce the number of false
balls. The second issue will be addressed in Step 4 and its
iterations.

Steps 4, 5. Voxel-level classification: In these steps, voxels
within the union of all balls in the set b2 are classified (again
using a SVM classifier) as either belonging to or not belonging
to a pathologic node. These steps iteratively refine the voxel-
level recognition of pathologic nodes and also expand the
region of containment by taking the union of the balls associ-
ated with the resulting voxels (note that there is a ball

Heart

Spine

FIG. 5. Examples illustrating Step 0 of Procedure gF. Top row (L to R): A CT slice showing zone Z89; the corresponding PET slice where the confounding high
uptake region is from Hrt; and PET slice with the overlay of fuzzy set X found after suppressing Hrt. Bottom row: Same as top row but for zone Z89 and con-
founding region coming from an FDG avid lesion in the TSk. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 6. Examples of balls (set b0) produced in Step 1 of procedure gF for two CT datasets shown in two rows. L to R: A CT slice, corresponding slice with the
response value dCT(v), radius value rCT(v), and cross sections of balls overlaid on the CT slice. Zone Z considered here is the union of all zones in Z. [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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associated with every voxel with voxel as the ball center). Fig-
ure 7 illustrates the refinement that takes from ball-level to
slice-level to voxel-level in nodal recognition due to Steps 2–4.

Step 6. Output: Finally, a fuzzy mask NM(Z) is output
where the fuzzy membership value fFM(v) associated with
each voxel v denotes the belongingness of v in some patho-
logical node within Z. NM(Z) is found by taking a fuzzy inter-
section between the fuzzy recognition LN zone mask X (with
the confounding object recognition masks removed) found in
Step 0 and the union of all recognized pathological LNs
found in Step 5. In other words, the recognized LNs become
fuzzified when multiplied by the fuzzy zone mask X.

2.D.2. SegNet approach to node recognition

The goal for this approach is: Given the results of zonal
recognition in the form of the fuzzy model masks FMT(Z) for
zones Z and FMT(O) for O 2 {Hrt, TSk}, to recognize patho-
logic nodes in Z, the output being a probability map that indi-
cates the likelihood of each voxel in Z being in a node with
disease. Since the probability map can also be thought of as

being similar to the fuzzy mask NM(Z) output by procedure
gF, we will denote the output of SegNet also by NM(Z). The
output in this approach may also be thought of as a fuzzy seg-
mentation. The architecture of SegNet32 employed here con-
sists of encoder and decoder sub-networks, each of which is
made up of convolutional, batch normalization, and ReLU
layers; see Fig. 8. The novelty of SegNet lies in the decoder
part, which makes use of pooling indices computed in the
max-pooling step of the corresponding encoder to complete
non-linear up-sampling. It is shown in Fig. 8 by arrows.

The encoder performs convolution with a filter bank to
generate a set of feature maps. These are processed by batch
normalized and element-wise ReLUs. Then, max-pooling
with a 2 9 2 window and stride 2 (non-overlapping window)
is applied. Here, the encoder network is designed for LN
recognition in low resolution feature maps, and the decoder
network is used to recover higher resolution feature details at
the deepest encoder output, which utilize the maximum pool-
ing indices from the max-pooling step. The final decoder out-
put is fed to a two-class (true — meaning pathologic, and
false node) Softmax classifier to produce class probabilities
for each voxel independently.

FIG. 7. An example of balls (set b2) produced finally in Step 5 of procedure gF. Ball cross section is overlaid on a CT slice. Row 1, L to R: After ball-level and
slice-level classification. Row 2, L to R: After voxel-level classification with two iterations and the ground truth of pathologic lymph nodes. Zone Z considered
here is the union of all zones in Z. [Color figure can be viewed at wileyonlinelibrary.com]

Conv+BN+ReLUPoolingInput Image Up-Sampling Softmax

FIG. 8. Network architecture utilized in the SegNet approach to LN recognition. Each encoder and decoder does the operations of convolution, batch normaliza-
tion, and ReLU. Input to the network: fuzzy model masks from zonal recognition, FMT(Z) for zones Z, FMT(O) for O 2 {Hrt, TSk}, and other input images
(PET/CT, radius image, response image, etc; see text). It outputs a probability map that indicates the likelihood of each voxel in Z being in a pathologic node.
[Color figure can be viewed at wileyonlinelibrary.com]
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In summary, we input the LN zones from AAR to the
encoder sub-network, and it will extract features with a bank
of convolution operations, batch normalization and ReLU
layer by layer. Finally, the global features can be learned to
complete LN recognition. Then, the resolution of the feature
map can be recovered in the decoder sub-network, and the
same size of output recognition mask can be obtained after
Softmax layer. Compared to FCN or U-Net, the main differ-
ence of SegNet is that it captures and stores the max-pooling
indices, for example, the locations of the maximum feature
value in each pooling window. (Although U-Net can provide
more contextual information by long-skip connection, it will
increase the number of parameters and memory compared to
the SegNet.) Importantly, note that we train the network to
recognize pathologic nodes only within the zones and not
within the whole image. This is the spirit of AAR recognition
which already hones in on the region of interest in the image
for the network to look for diseased nodes.

The decoder sub-network performs up-sampling its input
feature maps using the memorized max-pooling indices from
the corresponding encoder feature maps. This helps to
recover higher resolution feature maps and complete the LN
recognition task. Compared to the task of semantic pixel-wise
segmentation,32 here the emphasis is on recognizing the
pathologic LNs and not delineating the boundary of the LNs
since our disease quantification strategy needs only rough
localization of the LNs. Note also that since the network is
trained to recognize only the pathological nodes excluding
confounding objects such as Hrt and TSk, there is no need to
separately subtract the fuzzy masks of these objects as in pro-
cedure gF. This is a major difference between gF and SegNet.

We used on the average 2166 image patches extracted
from lymph node zone regions for training in each fold,
with 705 image patches in each fold for testing the perfor-
mance. We used data augmentation strategies including
random translation in the horizontal and vertical directions
ranging from �10 to 10 voxels to improve training. The
size of the input image is resized to 256 9 256, and the
convolutional kernel size is 3 9 3 in each convolution
layer, where the number of kernels is 64. To train the
model, we used stochastic gradient descent with a fixed
learning rate of 0.001 and momentum of 0.9 using Matlab
implementation of SegNet. We train the models until the
training loss converges, in which the maximum epoch
number is 20. Before each epoch, the training set is shuf-
fled and each mini-batch (4 images in a batch) is then
picked in order, thus ensuring that each image is used only
once in an epoch. The standard cross-entropy loss is
employed as the objective function for training the net-
work. We select the model which performs highest on the
validation dataset. We created three different versions of
SegNet — SegNet-2, SegNet-4, and SegNet-6 — by using
the same architecture but with 2, 4, and 6 input channels,
respectively, as follows: SegNet-2: CT and PET images;
SegNet-4: CT and PET images and the respective g-filter
response images, SegNet-6: CT and PET images and the
associated g-filter response and radius images for both.

We have used three variants of SegNet called SegNet-2, Seg-
Net-4, and SegNet-6 depending on the input images utilized. The
input images are as follows (in addition to the fuzzy model
masks): PET and CT images for SegNet-2; PET, CT, and radius
and response images from CT for SegNet-4, and PET, CT, and
radius and response images from both PETand CT for SegNet-6.

2.E. Disease quantification

The goal of this step is: Given a PET/CT image pair (ICT,
IPET) and the fuzzy nodal mask NM(Z) of the pathologic
nodes found in zone Z by one of the above two methods of
nodal recognition, to output disease quantities QX(Z, I

PET). In
our case, the disease quantity consists of three elements,
QX(Z, I

PET) = [SUVmean(Z, I
PET), SUVmax(Z, I

PET), fTLG(Z,
IPET)], where the elements represent, respectively, the mean
and maximum SUV within Z and total lesion glycolysis
(TLG). TLG is commonly utilized33 to express the total dis-
ease burden of a lesion by taking the product of the (meta-
bolic) lesion volume and mean SUV within the lesion. We
extend this concept to the whole LN zone Z in a fuzzy man-
ner where the membership expressed in NM(Z) at each voxel
v takes on a fuzzy value accounting for various uncertainties
due to partial volume effect in IPET, ill-defined boundaries,
non-committal segmentation, and disease severity. Accord-
ingly, we define a fuzzy TLG of Z, denoted by fTLG(Z, IPET),
as follows.

fTLG Z; IPET
� � ¼ vj j

X
v

dZ IS vð Þð ÞIS vð ÞNMðZÞ vð Þ: (3)

In this equation, |v| denotes the volume of voxel v, dZ(IS(v))
is the disease severity estimated at v, NM(Z)(v) denotes the
membership value of NM(Z)6 at v, and IS(v) is the SUV at v
computed from IPET(v) using the following equation. (In Eq.
(3), all voxels are assumed to be of the same size in IPET. If
this is not the case, |v| should be brought inside the summa-
tion sign.)

IS vð Þ ¼ IC vð Þ
ID=BW

: (4)

Here, ID is the injected dose of the radiotracer (expressed
in MBq), BW is the body weight of the patient (expressed in
g), and IC(v) denotes the radioactivity concentration (ex-
pressed in MBq/cc where we assume 1 cc of tissue weighs
1 g) measured at voxel v of IPETwhich is corrected for decay
from the time of injection to the time of image acquisition.

`The disease quantification process for any LN zone Z
consists of two steps. Step 0: Estimating an optimal disease
map dZ(x) to map the SUV x = IS(v) at a voxel v in Z to dis-
ease severity corresponding to that SUV; and Step 1: To esti-
mate QX(Z).

6We have used a binarized version of NM(Z)(v) in all our experi-
ments where the threshold is set at 0.5.
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2.E.1. Step 0. Estimating disease map dZ(x)

The disease map dZ(x), where x = IS(v), is a parametric
function which indicates disease severity at every voxel v
within LNs as a function of the voxel’s SUV value x. dZ(x) is
modeled as a Gaussian fuzzy mapping function where SUV
x < (ld – rd) are de-emphasized by Gaussian weight while
x ≥ (ld – rd) are set to the maximum value.

dZ xð Þ ¼ exp � x� ld �rdð Þð Þ2=2r2d
h i

; if x\ ld �rdð Þ
1; if x� ld �rdð Þ

(
:

(5)

On the PET images in the training datasets Dm where we
have carefully delineated pathological nodes, we estimate the
mean ld and standard deviation rd of the SUVs within the dis-
eased nodes. For any zone Z and voxel v in it, then, the above
disease map is employed to define disease severity dZ(IS(v)) at
v. The estimated parameters of the disease map are saved in the
fifth element g of the anatomy model FAM(B).

2.E.2. Step 1. Estimating disease quantity QX(Z,
IPET)

Given a test image pair (ICT, IPET) from the set Cm, first the
objects are recognized in ICT. Following procedure gF or Seg-
Net, nodal masks NM(Z) are determined for each zone Z.
Subsequently, the disease map is retrieved from FAM(B) and
fTLG(Z, IPET) is computed following Eq. (3). fTLG(Z, IPET)
(expressed in cc) is a weighted sum of the SUV values of
voxels within the mask of the recognized LNs multiplied by
the voxel volume |v| (expressed in cc). There are two weights
for each voxel — mask weight NM(Z)(v) and disease weight
dZ(IS(v)). The estimation of SUVmax(Z, I

PET) within the fuzzy
mask NM(Z) is straightforward: Find the maximum SUV
within the mask where the membership NM(Z)(v) is non-
zero. For estimating SUVmean(Z, IPET), we take a similar
approach: the mean is computed overall voxels in NM(Z)
where the membership value is non-zero and the SUVs are
weighted by the disease map value.

In summary, our whole AAR-LN-DQ approach to quan-
tify LN disease by zones consists of four distinct stages:
One-time model building which includes all processes
related to collecting prior knowledge; recognition of zones;
recognition of pathological nodes within each localized
zone; and disease quantification within each zone. All key
parameters in the entire process are learned in the model
building/training stage. The only parameters that are hand-
set are as follows. Related to node recognition via gF: rmin,
rmax, and number of iterations k. These are currently set to
5, 12 , and 3 pixels, respectively. Related to node recogni-
tion via SegNet: the initial learning rate, minimal batch size
of training samples, and the maximum number of training
epochs. These are set to 0.001, 4, and 40, respectively.
Thus, the whole gF methodology has three hand-set param-
eters and SegNet has three additional parameters whose
values are fixed as above.

3. RESULTS AND DISCUSSION

The datasets for our experiments listed in Table I are used
as follows. DS1 (near-normal CT): Used for building FAM(B)
and testing zonal recognition with a train-test division as
explained below. DS2 (patient PET/CT): Used for nodal
recognition and disease quantification, where a portion of
DS2 is used for model building (estimating the parameters of
the disease map dZ(x)) and the remainder is used for testing
as explained below.

3.A. Lymph node zone recognition

For this experiment, dataset DS1 is utilized. Thirty
studies from DS1 are utilized for building FAM(B) and the
remaining 12 studies are used for testing recognition accu-
racy. This entire process is repeated six times each time
by selecting a different 30-12 partition to yield a total of
72 test cases. Note that in the first fold, the 30 studies are
also used for finding the best hierarchy following the pro-
cedure described in Section 2.B.3. Subsequently, this hier-
archy is used in all folds and in all other experiments
(including node recognition) for testing. The resulting best
hierarchy is displayed in Fig. 9.

In Table IV, we summarize the zonal recognition results
where the mean and standard deviation of errors over the
tested experiments from the known true zonal definitions are
listed. We employ two metrics to express this error for a zone
Z: Location error (LE), defined as the distance (in mm) of the
geometric center of the fuzzy model FMT(Z) of Z at recogni-
tion from the geometric center of the ground truth of Z; and
scale error (SE), defined as the ratio of the estimated size of
Z at recognition to its true size. Figure 10 displays sample
zone recognition results.

We note that zones are localized within 2–3 voxels with
respect to the ground truth location and the scale error is
mostly close to 1 (ideal value). We feel that this is quite
remarkable given that there are no intensity boundaries that
define the spatial extent of the zones. Compared to the results
reported in Ref. [3], the results have improved considerably
by the use of the optimized hierarchy approach. In our visual
assessment of the recognition results (Fig. 10), we find gener-
ally that the fuzzy model masks at recognition cover the
zones very well even when LE is about three voxels. This is
all that matters for finding (recognizing) pathological nodes
within localized zones.

3.B. Lymph node recognition

Recall that the two fundamental differences between
AAR-LN-DQ and other published methods on LN detection
are: (a) AAR-LN-DQ takes a global-to-local approach by
explicitly modeling and recognizing the zones and then local-
izing the nodes within the already located zones, and (b) it
focuses only on pathologic nodes since our goal is disease
quantification within zones. As such, the LN recognition step
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takes as input the given PET/CT image pair (ICT, IPET) of a
patient, localized zonal mask FMT(Z) of each zone Z, and
localized masks FMT(O) for two special organs, namely, the
heart (Hrt) and the skeleton (TSk). The last entity is needed
because Hrt and (bone marrow portion of) TSk act as con-
founding objects in our disease quantification quest, as such
these objects have to be suppressed from the recognized
zones that contain them, even partially. The output of the LN
recognition step is a fuzzy nodal mask NM(Z) where the
fuzzy membership indicates the degree of belongingness of
every voxel in Z in some pathologic node within Z.

For evaluating node recognition, dataset DS2 is employed
(recall that DS1 is composed of studies from near-normal
subjects). However, the FAM(B) model built from DS1 in the
first fold is utilized for performing zone recognition needed
as the first step before nodal recognition on DS2. A fivefold
break-up of DS2 is designed: 53 for training procedures, the
remaining ten for testing, and the entire process is repeated
five times, to yield a total of 50 non-overlapping test cases.
Training procedures correspond to training the SVM

parameters in the gF procedure and training SegNet. Since
the studies in DS2 contained pathological nodes mainly in
the mediastinal region and not in Z10R and Z10L, for nodal
recognition we will focus on the rest of the zones Z1 through
Z9 in our set Z of all zones. Moreover, since each individual
zone in this set did not contain a sufficiently large number of
samples, for evaluating nodal recognition, instead of examin-
ing each zone separately, we created one composite zone
named Z19 by combining all zones:
Z19 = Z1 + Z2R + . . . + Z89. Note, however, that zone
recognition still followed the process described above; that is,
each of the component zones was recognized separately and
the resulting fuzzy model masks FMT(Z) were utilized in pro-
cedure gF and SegNet.

We established the ground truth for node recognition via
PET/CT image reading by a board-certified radiologist (co-
author Torigian) with > 20 yr of clinical and research experi-
ence in thoracic, oncologic, and cross-sectional (CT, PET,
magnetic resonance (MR)) imaging. The actual image loca-
tion of each pathological node identified in this manner was

TSkn

PC TV RS Ao TB AD AR LR AS IMS TSk

Z12 Z3a-inf Z3a-sup Z3p Z4 Z56 Z7 Z89 Z10R Z10L

FIG. 9. Optimal hierarchy arrived at by AAR-LN-DQ Approach. For object abbreviations, see Table III.

TABLE IV. Mean and standard deviation of location error (LE) and scale error (SE) in zonal recognition.

Z12 Z3a-sup Z3a-inf Z3p Z4 Z56 Z7 Z89 Z10R Z10L Mean

LE (mm) 11.50 13.22 13.41 9.63 11.27 13.54 17.14 12.17 8.84 12.10 12.28

1.50 2.27 1.89 1.44 2.18 2.91 3.27 1.83 1.21 1.48 1.99

SE 0.80 0.89 0.96 0.90 0.83 1.07 1.03 1.00 1.00 0.98 0.94

0.01 0.04 0.02 0.02 0.03 0.02 0.02 0.01 0.02 0.02 0.02

FIG. 10. Sample zone recognition results (2nd row) with the ground truth zonal extent (top row) also shown. The zones are displayed as overlay on the CT slices.
Zones shown are (L to R): Z12, Z3a-inf, Z4 (R and L combined), and Z56 (with all its sub-zones combined). Note how small and subtle some zones are. [Color
figure can be viewed at wileyonlinelibrary.com]
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recorded for the purpose of evaluating node recognition and
disease quantification. Our datasets contained a total of 214
pathological nodes in the 63 patient cases.

Sample node recognition results are shown in Fig. 11 for
both gF and Seg-Net-2 methods where the recognized zonal
model masks as well as the final nodal recognition masks
NM(Z) are shown overlaid on sample CT and PET slices.
Nodal recognition results from our evaluation are summa-
rized in Table V. We make the following observations from
these quantitative results as well as our qualitative examina-
tions. (a) Zonal recognition captures ~96% of the patholog-
ical nodes, suggesting that AAR zone recognition is very
effective, although it would be ideal if recognition can be
improved to reach ~100% capture rate. (b) The g-filter and
the iterative strategy in gF seem to help considerably in
minimizing false negatives. Beyond the third iteration,
improvement in sensitivity was not significant. Therefore,
for disease quantification via gF, we take the output at
k = 3. Interestingly, for the gF method, false positives are
not a challenge, achieving a level of <1.5%. This is a real
strength of the gF approach. (c) All versions of SegNet
achieve higher sensitivity than the gF approach (with statis-
tical significance, P < 0.001) for recognizing pathological
LNs, reaching over 91–96%, roughly 9% better than the gF
approach, while the latter slightly (by about 2.5%) outper-
forms SegNet in specificity (also with statistical signifi-
cance, P < 0.001). No statistically significant difference
was found among the SegNet versions in sensitivity or
specificity. (d) For disease quantification, as we will see
below, the fuzzy masks NM(Z) found by the gF approach
cover the pathological nodes much better than any version
of SegNet, resulting in higher accuracy of disease quantifi-
cation via gF than SegNet.

The g-filter method is natural-intelligence (NI)-driven
where we embed into its process prior human knowledge of
different sorts explicitly such as shape and location of con-
founding objects, shape of the LNs, and radius and response
information. As such, it achieves high TP rate to detect LNs.
Subsequently, SVM effectively removes false positive balls/

voxels and refines recognition results. This NI-driven strategy
improves LN recognition performance. In addition, the g-fil-
ter method has two attributes akin to deep neural networks:
layering and iteration. Layering comes from the division of
classification task into three levels: ball-level, slice-level, and
voxel-level. Iteration represents repetition of these three lay-
ered levels to refine LN recognition. With these strategies,
the g-filter method shows some advantages in performance
over SegNet.

3.C. Disease quantification

For evaluating the disease quantification method, we uti-
lize dataset DS2, although DS1 comes into play in the form
of the anatomy model FAM(B) created from it. The only
training component specific to disease quantification is
related to the estimation of the parameters of the disease map
dZ(x). For this task, we follow the same fivefold cross valida-
tion 53-10 train-test division of studies in DS2 as in nodal
recognition.

The true disease quantities are described by

Qt
X Zð Þ ¼ ½SUVt

meanðZ; IPETÞ;
SUVt

maxðZ; IPETÞ; fTLGtðZ; IPETÞ� : (6)

FIG. 11. Sample nodal recognition results for both gF and SegNet methods overlaid on CT (top) and PET (bottom) slices. L to R: A CT/PET slice from one study;
CT/PET slice with ground truth masks of pathological nodes; CT/PET slice with recognized zonal mask region; CT/PET slice with the recognized nodal mask
NM(Z) output by procedure gF; CT/PET slice with recognized nodal mask output by SegNet-2. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE V. Results for nodal recognition. Mean and standard deviation over
the tested cases and folds are shown.

TP rate Sensitivity Specificity

Zone recognition 0.958 0.985 0.752

gF

k = 0 0.907 0.459 0.682

k = 1 0.928 � 0.05 0.383 � 0.03 0.997 � 0.01

k = 2 0.928 � 0.05 0.809 � 0.11 0.988 � 0.01

k = 3 0.928 � 0.05 0.841 � 0.11 0.985 � 0.01

SegNet-2 0.908 � 0.11 0.913 � 0.11 0.961 � 0.02

SegNet-4 0.919 � 0.06 0.927 � 0.08 0.958 � 0.01

SegNet-6 0.936 � 0.04 0.930 � 0.06 0.961 � 0.01
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Since the ground truthmasks for the pathological nodes within
any zone Z are known,SUVt

meanðZ; IPETÞ and SUVt
maxðZ; IPETÞ

can be computed in a straightforward manner. fTLGtðZ; IPETÞ is
computed by using amodified form of Eq. (3):

fTLGt Z; IPET
� � ¼ vj j

X
v

IS vð ÞNMtðZÞ vð Þ; (7)

where NMt(Z) denotes the union of the binary masks for all
pathological nodes within zone Z, and NMt(Z)(v) is the value
of the binary mask (0 or 1) at voxel v within Z.

We express component-wise error in QX(Z, I
PET) as devia-

tion with respect to the ground truth value in that component:

e Z; IPET
� � ¼ ½e1 Z; IPET

� �
; e2 Z; IPET

� �
; e3 Z; IPET

� ��;
where

e1 Z; IPET
� � ¼ SUVmeanðZ; IPETÞ � SUVt

meanðZ; IPETÞ
SUVt

meanðZ; IPETÞ
;

(8)

and e2 and e3 are defined similarly for the second and third
components, respectively, of QX(Z, I

PET).
In Tables VI–VIII, we summarize the mean and standard

deviation of e1, e2, and e3, respectively, over all tested cases
and folds for both gF and the SegNet methods. As for eval-
uation of nodal recognition and for the same reasons, we
performed evaluation of DQ for the combined zone Z19. To
understand the influence of the confounding objects Hrt
and TSk and disease map, we show error statistics with and
without the consideration of these two factors. We make
the following observations based on Tables V–VII. (a)
Overall, gF achieves the best performance with better accu-
racy for SUVmax and fTLG than SegNet and an accuracy for
SUVmean similar to that of SegNet methods. (b) gF also
seems to be overall more stable than other methods with
smaller standard deviation, especially in estimating fTLG.
(c) Removal of confounding objects Hrt and TSk via AAR
is one of the key factors responsible for improving DQ
accuracy, particularly for estimating fTLG, where the
improvement is 17–33%. Interestingly, this gain is the least
for the gF approach. (d) The use of disease map also boosts
accuracy, also specifically for fTLG, where the gain (6–
29%) is larger for SegNet methods than gF. Notably, dis-
ease map also makes fTLG estimation substantially more
robust by lowering the standard deviation, where again Seg-
Net methods gain more than gF.

3.C.1. Computational considerations

The computing platform consists of an i7-Core CPU with
64 Gbyte RAM and one NVidia Titan XP GPU (12G
GDDR5X memory with 3840 CUDA cores) running under
Ubuntu 18.04 OS.

Computational times were as follows. Time for AAR
model building once the optimal hierarchy is determined:
~4 h. Time for training each network: ~6 h. Time for zone
recognition per zone: ~30 s. Time for nodal recognition/
zone: ~30 s. Time for DQ per study: ~20 s. Total time for
analyzing one study: ~80 s.

4. CONCLUSIONS

Inspired by our recent work10 on quantifying disease via
FDG-PET/CT in organs without explicitly delineating them,
in this paper we extended that approach to LN zones and
showed its application in the thorax. LN zones differ majorly
from organs in that they are not manifest with visually per-
ceptible boundaries in the image but are present as virtual
conceptual 3D regions. We devised a recognition strategy tai-
lored to LN zones based on the AAR framework to achieve
high enough accuracy so that the subsequent step of DQ
affords acceptable accuracy. We creatively combined the
high-level AAR model-based strategy to localize zones with
a specially designed filter, called globular filter, to recognize
only pathological nodes within the already recognized LN
zones, but also excluding confounding objects like heart and
bone marrow localized via AAR. The DQ operation is then

TABLE VI. Mean and standard deviation of the error (e1) in estimating
SUVmean over all tested cases for the different methods with and without the
consideration of disease map and confounding objects Hrt and TSk.

Disease map

gF SegNet-2 SegNet-4 SegNet-6

N Y N Y N Y N Y

With Hrt & TSk 0.10 0.11 0.31 0.10 0.38 0.34 0.34 0.10

0.07 0.03 0.14 0.01 0.09 0.08 0.10 0.01

Without Hrt & TSk 0.11 0.10 0.11 0.10 0.09 0.07 0.30 0.05

0.05 0.05 0.05 0.05 0.02 0.07 0.09 0.07

TABLE VII. Mean and standard deviation of the error (e2) in estimating
SUVmax over all tested cases for the different methods with and without the
consideration of disease map and confounding objects Hrt and TSk.

Disease map

gF SegNet-2 SegNet-4 SegNet-6

N Y N Y N Y N Y

With Hrt & TSk 0.05 0.04 0.16 0.16 0.16 0.16 0.16 0.16

0.10 0.10 0.07 0.07 0.07 0.07 0.07 0.07

Without Hrt & TSk 0.06 0.05 0.15 0.15 0.15 0.15 0.15 0.14

0.09 0.09 0.06 0.06 0.06 0.06 0.06 0.06

TABLE VIII. Mean and standard deviation of the error (e3) in estimating fTLG
over all tested cases for the different methods with and without the considera-
tion of disease map and confounding objects Hrt and TSk.

Disease map

gF SegNet-2 SegNet-4 SegNet-6

N Y N Y N Y N Y

With Hrt & TSk 0.31 0.24 0.73 0.35 0.74 0.33 0.75 0.34

0.11 0.09 0.32 0.13 0.35 0.13 0.49 0.14

Without Hrt & TSk 0.14 0.08 0.42 0.14 0.41 0.12 0.42 0.14

0.12 0.09 0.26 0.10 0.25 0.09 0.26 0.10
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performed with a disease mapping strategy within the zone
excluding the confounding objects. We also used several ver-
sions of a deep network trained on the recognized LN zones
to localize pathologic nodes. To the best of our knowledge,
no demonstrated method exists for automatically estimating
the triple disease quantities within LN zones in the thorax, or
any other body region. The proposed AAR-LN-DQ approach
shows that it is feasible to perform this estimation accurately,
robustly, and fully automatically.

Since the method is firmly entrenched in AAR whose gen-
eralizability to different body regions has been already
demonstrated, AAR-LN-DQ can also be generalized to other
body regions (neck, abdomen, pelvis) readily once the anat-
omy model FAM(B) can be generated for that body region B
and the appropriate confounding objects, such as kidneys and
bladder, are identified and included in the model.

For methods of LN detection and delineation,12–19,33 false
positives are a challenge. Interestingly, the specificity of
locality afforded by AAR via the recognition process miti-
gates this problem substantially and allows the gF approach
to reach high specificity of nodal recognition of 98.5%. This
high-level human knowledge is a challenge to deep networks
as well, as well as the difficulties posed by the confounding
objects. Our approach of marrying model-based high-level
AAR zonal recognition excluding the confounding objects
with the ability of deep networks to garner low-level details
shows how model-based strategies can boost network perfor-
mance when designed properly with human insight into the
problem. The idea of the disease map is another strong fea-
ture of AAR-LN-DQ which shows that accuracy and robust-
ness can be both improved for both gF and SegNet
approaches.

There is room for improvement of sensitivity for the gF
approach which may further improve DQ accuracy. Among
the three parameters rmin, rmax, and number of iterations k,
k = 3 seems adequate since no improvement is observed for
higher values. The current values set, rmin = 5 pixels and
rmax = 12 pixels, can be changed to expand the set of tem-
plate balls which may enhance sensitivity. However, it is
unknown as to how this may influence the current high speci-
ficity of nodal recognition and the resulting DQ accuracy.

Another gap in the present work is that zones have been
grouped together for certain operations (mainly DQ). This
was necessitated mainly to garner enough statistics to per-
form meaningful analysis although the whole methodology
can be executed zone by zone without any conceptual hur-
dles. With a sufficiently large number of datasets available
with ground truth and with balanced distribution of patho-
logic nodes by zones, we will be able to gain an understand-
ing of zone-wise accuracy in nodal recognition and DQ.

Finally, in this paper we focused on FDG-PET/CT and
assumed that pathologic nodes are manifested by high
FDG uptake. As such, lymph nodes that are involved by
disease but which do not demonstrate increased radio-
tracer uptake will lead to false negative results if based
on PET alone. Similarly, lymph nodes that are involved
by non-neoplastic disease (e.g., inflammation) may

manifest with increased FDG uptake, leading to false
positive results. These limitations may be mitigated by
taking into account CT-based properties of lymph nodes
(e.g., size, volume, shape, etc.) to increase specificity.
Also, the current work was studied and implemented only
in the context of FDG-PET/CT images. The approach
may also be extended to the assessment of lymph nodes
on PET/CT scans using other radiotracers.
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	 1.INTRODUCTION1.A.Back�groundAccu�rate assess�ment of lymph node (LN) involve�ment via positron emis�sion tomog�ra�phy/com�puted tomog�ra�phy (PET/CT) plays an impor�tant role in the clin�i�cal diag�no�sis, stag�ing, treat�ment plan�ning, treat�ment r...

