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ABSTRACT 

In this study, patients who underwent lung transplantation are categorized into two groups of successful (positive) or 

failed (negative) transplantations according to primary graft dysfunction (PGD), i.e., acute lung injury within 72 hours of 

lung transplantation. Obesity or being underweight is associated with an increased risk of PGD. Adipose quantification 

and characterization via computed tomography (CT) imaging is an evolving topic of interest. However, very little 

research of PGD prediction using adipose quantity or characteristics derived from medical images has been performed.  

The aim of this study is to explore image-based features of thoracic adipose tissue on pre-operative chest CT to 

distinguish between the above two groups of patients. 140 unenhanced chest CT images from three lung transplant 

centers (Columbia, Penn, and Duke) are included in this study. 124 patients are in the successful group and 16 in failure 

group. Chest CT slices at the T7 and T8 vertebral levels are captured to represent the thoracic fat burden by using a 

standardized anatomic space (SAS) approach. Fat (subcutaneous adipose tissue (SAT)/ visceral adipose tissue (VAT)) 

intensity and texture properties (1142 in total) for each patient are collected, and then an optimal feature set is selected to 

maximize feature independence and separation between the two groups. Leave-one-out and leave-ten-out cross-

validation strategies are adopted to test the prediction ability based on those selected features all of which came from 

VAT texture properties. Accuracy of prediction (ACC), sensitivity (SEN), specificity (SPE), and area under the curve 

(AUC) of 0.87/0.97, 0.87/0.97, 0.88/1.00, and 0.88/0.99, respectively are achieved by the method. The optimal feature 

set includes only 5 features (also all from VAT), which might suggest that thoracic VAT plays a more important role 

than SAT in predicting PGD in lung transplant recipients. 

Keywords: optimal biomarkers, feature extraction, lung transplantation, primary graft dysfunction (PGD), computed 

tomography (CT), adipose tissue. 

1. INTRODUCTION 

Primary graft dysfunction (PGD), a key parameter for liver, heart, and lung transplantation, is a syndrome encompassing 

a spectrum of mild to severe lung injury that occurs within the first 72 hours after lung transplantation [1-5]. PGD is also 

found to account for at least one third of deaths during the first post-operative month [6]. Recent research also shows that 

obesity or being underweight is associated with an increased risk of PGD [7-13]. Adipose tissue quantification via CT 
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imaging is an evolving topic of interest. However, very little research of PGD prediction using medical images has been 

performed to date.  

The hypothesis of this study is that a feature-based approach, by using a small robust quantitative feature set derived 

from thoracic adipose tissue on pre-operative chest CT, is able to accurately distinguish patients who will develop PGD 

from those who will not develop PGD. We explore features related to thoracic adipose tissue on chest CT images to 

predict PGD. Two kinds of adipose tissues are usually considered in such analysis: subcutaneous adipose tissue (SAT) 

and visceral adipose tissue (VAT). Previous work showed that the area of fat (SAT or VAT) of a single slice optimally 

selected strongly correlates with 3D fat volumes in the thoracic and abdominal regions [14, 15], and the optimal slice can 

then be used to represent fat burden in the body regions.  

In this study, patients who underwent lung transplantation are categorized into two groups of successful (positive) or 

failed (negative) transplantation according to PGD grade value at day 2 and day 3. The selected features from this study, 

which we call optimal biomarkers, can be separately computed and explained with their original meaning, which is 

impossible for the traditional dimensionality reduction approaches of feature selection such as principal component 

analysis. Those optimal features may be able to improve our understanding of the mechanism of PGD development and 

to predict development of PGD in the lung transplant setting. 

2. METHOD 

Image dataset 

This image analysis study was conducted following approval from the Institutional Review Board at the University of 

Pennsylvania. Unenhanced CT image data sets from 140 adult lung transplant patients had been acquired as part of an 

NHLBI-funded and IRB-approved prospective study at 3 lung transplant centers: Columbia, Penn, and Duke. All 

participants provided informed consent. Chest scans were performed during full inspiration with multi-detector row CT 

scanners (Siemens Sensation, Definition, FLASH, and AS, Siemens Medical Systems; GE VCT & HD, General Electric) 

with 64 to 128 detector rows, 16 to 128 × 0.6 to 1.25 mm slice collimation, kVp of 120, approximately 110-120 effective 

mAs for Siemens machines and 80-500 mA for GE machines with CareDose on, gantry rotation time of 0.4-0.5 s, 

reconstructed with I50f, B30, or B35 kernel for Siemens machines and Standard kernel for GE machines. The image size 

was 512 × 512 with 50-70 slices, and the voxel size varied from 0.7 × 0.7 × 5 mm
3
 to 0.97 × 0.97 × 5 mm

3
.  

 

Fat definition in 3D chest CT 

For all samples in this study, thoracic body regions were defined consistently as extending from 15 mm superior to the 

apex of the lungs to 5 mm inferior to the base of the lungs. All patient CT images were accordingly trimmed to include 

just this standardized body region. In the inferior portion of the thorax, where axial slices pass through the curved 

diaphragm, abdominal visceral fat appears in the slices and has to be excluded. Generally, we define the thoracic SAT-

VAT interface as the interior surface of the rib cage; fat within this surface is considered to be VAT and that external to 

this surface is defined as SAT for all slices which are superior to the diaphragm. For slices passing through the 

diaphragm, the definition of SAT remains the same. The VAT component, however, is modified in these slices by 

removing the visceral fat located within the abdomen. More details can be found in [14, 15]. Fat volume and area are 

computed by using the binary masks from image segmentation, which can be done manually by using the live wire tool 

in CAVASS software [16] or automatically by using the recently developed automatic anatomy recognition (AAR) 

approach [17] and then followed by morphology operations.  

Once the binary masks have been obtained, it is important to normalize fat measurements of volume and area to account 

for variation in size of individual subjects. It may be expected that larger individuals will have overall larger solid organs 

and tissue regions. The factor of normalization employed was the length of the diagonal of a box that encloses thoracic 

skeleton, the idea being that the skeleton is a good indicator of the overall size of a subject. If L denotes this normalizing 

length for a subject, then fat volumes were normalized by dividing by L
3
, and fat areas were normalized by dividing by 
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L
2
. In general, both fat volume and area are normalized for executing the standardized anatomic space approach 

described in the following section.  

 

Optimal slice derived from the standardized anatomic space (SAS) approach 

The SAS approach, described in detail in [15], is landmark-based. It uses mid-axial levels of the vertebral bodies as 

landmarks in the cranio-caudal direction. Once defined, the landmarks are selected on 3D renditions of the skeletal 

structure. The approach consists of two stages - calibration and transformation. The purpose of calibration is to estimate 

mean locations of the landmarks, by using a few reference patient data sets. This stage is executed only once and not 

performed while analyzing each patient data set.  

In the transformation stage, the same landmarks are identified on each patient image. A non-linear (piece-wise linear) 

mapping is defined between the patient landmarks and the estimated mean locations. This mapping defines the anatomic 

location of any given slice in the image data set of any patient in the standardized space. In other words, the mapping 

allows selecting the same anatomically “corresponding” or homologous slices in different patient studies by accounting 

for non-linearities that usually exist in the actual slice location relationships among patients. The SAS approach was used 

to identify the corresponding anatomic slices in each chest CT study, and SAT and VAT areas in each slice as well as 

their whole volumes were quantified. The ability of the slice at each anatomic location in the chest (and abdomen and 

thigh) to act as a marker of the measures derived from the whole chest volume was assessed via Pearson correlation 

coefficient (PCC) analysis. PCC between chest fat volume and chest slice fat area was maximal at the T8 level for SAT 

(0.97) and at the T7 level for VAT (0.86).   

 

Deriving features 

Based on the above consistent definition and delineation of thoracic adipose tissue, single chest CT slices at the T7 and 

T8 vertebral levels are captured to represent the fat burden (VAT and SAT, respectively) in the thoracic region by using 

the SAS approach. Due to the challenges in automatic or manual segmentation of 3D fat, feature extraction from a 2D 

optimal slice is much more convenient and efficient.  

Features used in this study include fat tissue intensity properties and texture properties. Six texture properties are 

computed based on pixel intensity co-occurrence matrix including energy, entropy, maximum probability, contrast, 

inverse difference moment, and correlation [18]. Additional texture properties are derived using the local binary pattern 

(LBP) approach. Fat intensity properties, and texture properties from different texture computing parameters are 

collected to form a feature set consisting of 1142 features in total for each patient study. 

 

Optimal biomarker selection and cross-validation strategy 

The patients in this study are divided into two groups according to primary graft dysfunction (PGD) grade value at day 

two and day three after transplantation, which mainly indicates the failure or success of lung transplantation. PGD grade 

value 3 or greater at day 2 or 3 is considered to be a failure. The transplant should be considered as success otherwise. 

This resulted in 124 patients in the positive group (transplantation successful) and 16 in the negative group 

(transplantation failure). Optimal feature selection is then performed by using the OBM approach [19]. The idea of this 

approach is to find a small set of discriminating features from the large set of all features in several steps as follows: 

 

1) Extract a subset of features that have a low level of correlation among all features. A heat map visualization technique 

that allows grouping of parameters based on correlations among them iss used for this purpose. 

  

2) Extract a subset of features from the whole set that is capable of separating the two patient groups of interest by using 

t-tests.  

 

3) Find the intersection of the above two subsets to generate the final small feature set.  

 

The accuracy of the selected features to perform classification of unseen images into the two patient groups was tested 

with leave-one-out and leave-ten-out strategies. Support vector machine (SVM) is used as the classifying engine. Due to  
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the sample imbalance of the two groups, for the training data set which is used for feature selection and training classifier, 

50% of the positive groups and all negative samples are used for feature selection, and then another 50% of positive and 

all negative samples are used for training classifier. Testing data sets from the leave-one-out and leave-ten-out strategies 

have no intersection with the training data sets. Sensitivity, specificity, accuracy, and area under the ROC curve (AUC) 

are computed to describe the predictive performance of optimal feature sets consisting of different numbers of features. 

3. RESULTS 

In this study, fat (SAT/VAT)  intensity properties, and texture properties based on LBP and co-occurrence matrix are 

assessed. Co-occurrence matrix-based properties are calculated with different window sizes including 3 × 3, 5 × 5, and 7 

× 7, different depth, and all orientations (in 360 degrees). Figure 1 shows the optimal single slices at T8 (for SAT) and 

T7 (for VAT) and corresponding masks of SAT/VAT on chest CT images for two patients who belong to the two groups 

considered (left: failure group, right: successful group). The corresponding texture images derived from the texture 

property “energy” with a window size of 5 × 5 are also displayed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 displays the correlation matrix for all features by using a heat map method of visualization. The size of the 

optimal feature set is within our choice and varies for a given level of accuracy according to the feature selection 

parameters [9]. In this study, we selected optimal feature sets with 5 features. The key point here is not to find as many 

features as possible but to find a small size and useful feature set to distinguish between the two groups with as high 

accuracy as possible. Table 1 lists the corresponding performance measures by using the accuracy of prediction (ACC), 

sensitivity (SEN), specificity (SPE), and area under the curve (AUC) and two validation strategies.  

Fig. 1. SAT and VAT masks and texture images for two patients. The left two columns are for a failure group patient (PGD = 

3) with SAT and VAT components marked in yellow in the top row and corresponding texture images in the bottom row. The 

right two columns are for a successful group patient (PGD = 0). 

Fig.2 Correlation matrix of all features. 
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The optimal feature set with only 5 features from VAT achieves ACC, SEN, SPE, and AUC of 0.87, 0.87, 0.88, and 0.88, 

respectively, by using the leave-one-out strategy. This level of performance with a small number of features is, we 

believe, excellent. The resulting 5 features are: 4th moment, kurtosis, skewness for energy with a window size of 7 × 7; 

peak height for correlation with a window size of 5 × 5; and skewness for maximum probability with a window size of 7 

× 7.  

4. CONCLUSIONS 

This is the first study to demonstrate highly accurate prediction of PGD via chest CT images acquired pre-operatively in 

patients who underwent lung transplantation. The derived features performed well with different validation strategies. 

Across all optimal feature sets, all features are from among texture properties. Properties derived from CT intensity 

(Hounsfield) distributions do not seem to be capable of separating/predicting the two groups. All optimal features found 

are VAT specific. Like intensity features, SAT-specific features also do not have predictive power.  

The proposed method may offer a real practical means of predicting primary graft dysfunction by performing a single CT 

slice acquisition at the mid T7 level, segmenting VAT in this slice, and quantifying the optimal VAT-specific texture 

properties found in this investigation. Such an analysis performed on both lung transplant donors and recipients may shed 

further light on the role of both in the success of lung transplant surgery. This is clinically a highly practical method. 

Larger studies need to be conducted in the future in this fashion of single slice measurement to independently validate 

the findings of this paper. 
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