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ABSTRACT 

Segmentation of organs at risk (OARs) is a key step during the radiation therapy (RT) treatment planning process. 

Automatic anatomy recognition (AAR) is a recently developed body-wide multiple object segmentation approach, where 

segmentation is designed as two dichotomous steps: object recognition (or localization) and object delineation. 

Recognition is the high-level process of determining the whereabouts of an object, and delineation is the meticulous low-

level process of precisely indicating the space occupied by an object. This study focuses on recognition.  

The purpose of this paper is to introduce new features of the AAR-recognition approach (abbreviated as AAR-R from 

now on) of combining texture and intensity information into the recognition procedure, using the optimal spanning tree 

to achieve the optimal hierarchy for recognition to minimize recognition errors, and to illustrate recognition performance 

by using large-scale testing computed tomography (CT) data sets. The data sets pertain to 216 non-serial (planning) and 

82 serial (re-planning) studies of head and neck (H&N) cancer patients undergoing radiation therapy, involving a total of 

~2600 object samples. Texture property “maximum probability of occurrence” derived from the co-occurrence matrix 

was determined to be the best property and is utilized in conjunction with intensity properties in AAR-R. An optimal 

spanning tree is found in the complete graph whose nodes are individual objects, and then the tree is used as the 

hierarchy in recognition. Texture information combined with intensity can significantly reduce location error for gland-

related objects (parotid and submandibular glands). We also report recognition results by considering image quality, 

which is a novel concept. AAR-R with new features achieves a location error of less than 4 mm (~1.5 voxels in our 

studies) for good quality images for both serial and non-serial studies. 
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1. INTRODUCTION

Radiation therapy (RT) planning is performed to reduce radiation-induced toxicities and the risk of secondary 

malignancies while maximizing therapeutic effects by precisely controlling how ionizing radiation will be administered 

to designated portions of the body [1]. Segmentation of target structures (e.g., tumor) and organs at risk (OARs) is a key 

step that is required during the treatment planning process. Because manual segmentation of these structures is 

challenging, time-consuming, and affects patient throughput in busy radiation therapy departments, developing accurate 

automated methods is crucial to aid pre-treatment RT planning [2].  

Image segmentation mainly consists of two related steps: object recognition (or localization), the high-level process of 

determining the whereabouts of an object of interest in an image, and object delineation, the meticulous low-level 

process of precisely indicating the space occupied by an object of interest in an image. Automatic anatomy recognition 
(AAR) [3] is a recently developed body-wide multiple object segmentation approach, which has previously been applied 

to localize different objects (and lymph zones) in different body regions such as thorax [4], abdomen [5], and pelvis [6], 

not only on computed tomography (CT) images but also on magnetic resonance (MR) images [7] and PET/CT images. 

Most of previous work with AAR involved scans from near normal subjects [8].  

The purpose of this paper is to introduce new features of the AAR-recognition approach. Compared with previous work 

on AAR in whole-body object recognition, new extensions are introduced including the following: (1) Texture properties 

derived from a co-occurrence matrix is employed in the AAR framework which significantly improves AAR recognition 

performance; (2) an optimal hierarchy for recognition is achieved by using the optimal spanning tree to minimize 

recognition errors; (3) illustration on a much larger scale of routine clinical RT data sets is provided, including data sets 

with presence of pathology and with different image qualities, involving 216 non-serial and 82 serial studies with a total 

of 2600 object samples (OAR samples) from head and neck (H&N) cancer patients. 

2. MATERIALS AND METHODS

Image data 

This retrospective study was conducted following approval from the Institutional Review Board at the Hospital of the 

University of Pennsylvania along with a Health Insurance Portability and Accountability Act (HIPAA) waiver. Two data 

sets from the Department of Radiation Oncology, University of Pennsylvania, are utilized in this study. 

The first data set is from non-serial (planning CT) studies from 216 H&N cancer patients. These cases were selected 

from among existing patient cases. The contour data (segmentations of OARs) for the cases were previously created by 

radiation oncology dosimetrists in the process of routine clinical radiation therapy planning of these patients. The data 

sets constitute 54 cases gathered from each of four groups: 40-59-year-old males and females (denoted GM1 and GF1, 

respectively), and 60-79-year-old males and females (denoted GM2 and GF2, respectively). We corrected the previously 

drawn contours in only those cases with gross deviations from our standardized definitions of H&N OARs, and left the 

task of creating standardized, high-quality, model-worthy contours for future consideration.  

The second data set is from serial studies from 30 patients who underwent proton beam RT (PBRT) fractionated 

treatment serially (re-planning CT). For each patient, we selected image data sets at 2 to 3 serial time points, accounting 

for a total of 82 studies. Since manual object (and tumor) contouring is impractical to perform for every serial CT scan 

associated with treatment fractions, ground truth segmentations drawn for clinical purposes were not available for the 

corresponding CT data sets. Therefore, two dosimetrists from the Penn Radiation Oncology department created 

manually-drawn contours on these serial studies for research purposes for the following 5 objects: Esophagus, Spinal 

Canal, Mandible, Orohypopharynx constrictor muscle, and Larynx. The dosimetrists were asked to record the start time 

and end time for each contouring session for each object.  

Generally, the serial and non-serial data sets had a scene size of 512 × 512 × 110-140, and a voxel size of 0.93  0.93  

1.5 mm3 to 1.6  1.6  3 mm3. Among the 216 image data sets for non-serial studies, 36 were selected as model-worthy,

for which streak artifacts did not occur on more than 3 slices, and the other samples (> 80% of all subjects) were utilized 

for testing. 
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Objects in head and neck region 

Although some object contouring guidelines available in the literature are followed by dosimetrists and oncologists, the 

flexibility allowed and the looseness of the definitions make the resulting contours unsuitable for building precise 

computational population object models. We observed this variability within the slice plane as well as in the cranio-

caudal direction for long objects such as esophagus and spinal canal that cross body regions. We therefore standardized 

the object definitions, based on existing guidelines which are employed in RT.  

 

 

 

 

 

 

 

 

 

The anatomic objects considered were: Skin outer Boundary (SB), Left and Right Parotid Glands and their union called 

Parotid Glands (LPG, RPG, PG, respectively), Left and Right Submandibular Glands and their union called 

Submandibular Glands (LSG, RSG, SG, respectively), Esophagus (ES), Larynx (LX), Spinal Canal (SC), Mandible 

(MD), and Orohypopharynx constrictor muscle (OHP). We further sub-divided object SB into an inferior portion below 

the neck (SBi) and a superior portion in the neck (SBs) by developing an automatic algorithm. The reason for this 

division was that SBs has far less subject-to-subject variation than SBi due to the different extent to which the upper 

extremities are included/excluded in different subjects. Figure 1 shows object samples from 5 model-worthy data sets for 

each of 9 objects SC, ES, LPG, RPG, LSG, RSG, LX, MD, and OHP, which are compositely surface rendered. 

Fuzzy model building 

The Fuzzy Anatomy Model of the H&N body region B for a group G, FAM(B, G) = (H, M, ρ, , ), was built from the 

binary and gray scale images following mostly the methodology in [3] using the model-worthy data sets. Note that H 

denotes a hierarchical arrangement of the objects; M is a set of fuzzy models with one model for each object; ρ represents 

the parent to offspring relationship in G in the hierarchy;  is a set of scale ranges (one for each object);  includes a host 

of parameters representing object properties such as the range of variation of size, image intensity, etc., of each object.  

Hopt  from training data sets 

The tree structure for H is determined by finding an optimal hierarchy, Hopt, using a strategy which is more advanced 

than in our previous work. In this strategy, for each parent-child object pair (P, C), assuming that the location of P is 

known, C is localized in the image and the error in location is found. The mean of this error over all training images is 

Figure 1. 5 object male samples from 5 model-worthy 

data sets for each of 9 objects (SC, ES, LPG, RPG, 

LSG, RSG, LX, MD, OHP): Different colors indicate 

45 different object samples in each panel. 

Proc. of SPIE Vol. 10578  1057822-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/4/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



found and used as the cost for the arc (P, C) in a complete graph involving all objects. Then, an optimal spanning tree is 

found in this graph, which is used as the hierarchy Hopt. The found optimal hierarchy for H&N is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recognition procedure with optimal threshold and texture 

After fuzzy object models were built offline, the AAR object recognition/ localization procedure (AAR-R) proceeds as 

follows. AAR-R finds the root object first in the hierarchy Hopt by calling R-ROOT. We always use SB as the root object 

since it is much easier to find accurately than other objects. Subsequently, AAR-R localizes the offspring objects by 

calling R-OBJECT in a breadth-first order in Hopt. R-OBJECT combines optimally the prior information in FAM(B, G) 

with the information in the given image I in locating each object.  

At the model building stage, for each object Ok, an optimal threshold interval is estimated by performing a recognition 

rehearsal (training) step wherein the best pose for the fuzzy model FM(Ok) over all training images is determined by 

minimizing the sum of the false positive and false negative region volumes over all training images. Subsequently, in the 

actual recognition process on test image I, this learned optimal threshold is used for finding the best pose for FM(Ok). 

Object texture properties derived from the image [9] are used for some objects instead of/ in addition to image intensity. 

The above process for finding optimal threshold is then performed correspondingly in the image/ texture image. Image 

and/or texture property that is best suited for each object is determined, and this information is stored in the model 

FAM(B, G) in the element  and used at recognition. In this study, we found texture property “maximum probability of 

occurrence” derived from the co-occurrence matrix to be optimal for gland related objects where it made significant 

difference in accuracy of localization.    

 

 

Figure 2. Optimal hierarchy found for the H&N objects in 
this study. SB: Skin outer Boundary, SBs: SB superior part, 
Sbi: SB inferior part, SC: Spinal Canal, LX: Larynx; LPG, 
RPG, PG: Left & Right Parotid Glands and their union, 
LSG, RSG, SG: Left & Right Submandibular Glands and 
their union, MD: Mandible, OHP: Orohypopharynx 
constrictor muscle, ES: Esophagus. 

SB 

LX SBs SC 

SBi 

RPG LPG 

ES 

MD 

OHP PG RSG SG LSG 

Proc. of SPIE Vol. 10578  1057822-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/4/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



AAR-Recognition evaluation and image quality 

Qualitative evaluation 

Figure 3 shows the recognition results of the objects of interest by overlaying the recognized models onto the original 

images. Recognition on images with good quality (artifacts or major deviations in not more than 3 slices) is shown in the 

top row of Figure 3, and recognition on images with low quality is shown in the bottom row of Figure 3. Note how even 

in the presence of extreme artifacts objects are localized quite accurately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quantitative evaluation  

Location error (LE) and scale error (SE) are used to quantitatively evaluate recognition results. Location error is the 

distance (in mm) of the geometric center of the object model at recognition to the known true geometric center of the 

object. Scale error is the ratio of the estimated object size to its true size. The ideal values for these factors are 0 mm and 

1, respectively.  

 

Recognition results were derived from experiments E1 and E2 by considering image quality as described via an image 

quality score (IQS) in this study. A method to express object quality score (OQS) and IQS is devised, which is reported 

in a separate paper submitted to this symposium (#10576-85).  

 

Briefly, OQS is computed based on quality grades assigned to individual object regions in an image by considering 

several quality factors such as streak artifacts, image noise, image contrast enhancement (which means the presence of 

administered contrast material in the object), shape distortion, object intensity deviation, and mouth and neck posture 

deviation, etc. A logical predicate then generates OQS for each object in an image, and another logical predicate uses 

OQS of all objects in an image to generate IQS for an image. Two trained observers performed object quality grade 

assessment on all serial and non-serial studies.  

 

 

Figure 3. Top row shows recognition results on good quality CT image data for key objects: LX, PG, MD, 

and OHP. Bottom row shows recognition results on low quality CT image data for the same key objects. 

3. RESULTS 
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Table 1. Location error in mm (LE) and scale error (SE) 

for recognition for experiments E1 and E2. Mean and 

SD values over tested samples for some objects are 

listed. Column labeled All shows mean and SD values 

over all objects. 

 
SB SBs LX RPG RSG All 

 
E1  

LE 
4.86 

0.82 

2.84 

1.28 

3.23 

2.04 

4.24 

1.62 

3.11 

1.64 

3.84 

1.41 

SE 
1.0 

0.03 

0.99 

0.02 

1.29 

0.12 

1.11 

0.08 

0.93 

0.14 

1.03 

0.08 

E2 

LE 
9.25 

3.07 

10.75 

4.29 

16.93 

8.05 

14.44 

5.22 

17.64 

7.93 

14.02 

6.12 

SE 
1.02 

0.04 

0.98 

0.03 

1.13 

0.17 

1.20 

0.13 

0.90 

0.17 

1.04 

0.11 

 

 

(E1) involved application of model FAM(B, GM) to high quality data sets (objects with artifacts and other distortions in 

not more than 3 slices) in group GM; (E2) is similar to (E1), but applied to low quality data sets. The objects involved in 

E1 were more-or-less free of streak artifacts and other major artifacts. The objects may have come from any data sets in 

GM with any IQS value. Although the objects were nearly free of artifacts, they may be still affected by pathology. There 

were 361 object samples used in E1 from group GM out of a total of 1140 samples (32%). The recognition on high quality 

images and low-quality images for serial studies is 3.84 mm vs. 14.02 mm, respectively, for location error (LE), and 1.03 

vs. 1.04, respectively, for scale error (SE). Overall, the accuracy of recognition (object localization) on those high quality 

data sets is around 1.5 voxels (< 4 mm). Recognition on images with high quality achieved much lower location error 

and scale error than that on images with low quality. Table 1 summarizes some early results from this work. We get 

similar results on serial data set. 

 

 

4. CONCLUSIONS 

This paper introduces new features of AAR-recognition and illustrates object localization from AAR in head and neck 

cancer patients on CT images including: (1) combining texture and intensity information in AAR-recognition; (2) 

achieving optimal hierarchy based on the optimal spanning tree for recognition, which in turn is based on recognition 

error as a cost function; and (3) illustrating AAR-R for localizing objects on a large number (nearly 300) of serial and 

non-serial head and neck CT data sets acquired for radiation therapy along with a large number (2600) of object samples. 

This is by far the largest study on real-world clinical CT data sets, and demonstrates object localization accuracy as a 

function of object/image quality. AAR-R can effectively localize objects within about 1.5 voxels of true location in the 

presence of common pathology and when streak artifacts (such as from dental fillings) are in not more than 3 slices. 

Surprisingly, our recognition process is quite robust to the presence of low to moderate amount of streak artifact. Texture 

properties combined with intensity properties significantly improve recognition performance. Further exploration of the 

relationships between image quality and image segmentation will be performed in the future. This may improve our 

understanding and facilitate the evaluation of different object localization algorithms on large scale data sets.  
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