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ABSTRACT 

Much has been published on finding landmarks on object surfaces in the context of shape modeling. While this is still an 

open problem, many of the challenges of past approaches can be overcome by removing the restriction that landmarks 

must be on the object surface. The virtual landmarks we propose may reside inside, on the boundary of, or outside the 

object and are tethered to the object. Our solution is straightforward, simple, and recursive in nature, proceeding from 

global features initially to local features in later levels to detect landmarks. Principal component analysis (PCA) is used 

as an engine to recursively subdivide the object region. The object itself may be represented in binary or fuzzy form or 

with gray values. The method is illustrated in 3D space (although it generalizes readily to spaces of any dimensionality) 

on four objects (liver, trachea and bronchi, and outer boundaries of left and right lungs along pleura) derived from 5 

patient computed tomography (CT) image data sets of the thorax and abdomen. The virtual landmark identification 

approach seems to work well on different structures in different subjects and seems to detect landmarks that are 

homologously located in different samples of the same object. The approach guarantees that virtual landmarks are 

invariant to translation, scaling, and rotation of the object/image. Landmarking techniques are fundamental for many 

computer vision and image processing applications, and we are currently exploring the use virtual landmarks in 

automatic anatomy recognition and object analytics. 
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1. INTRODUCTION 

Landmark-based techniques have been widely used in the computer vision and image processing fields, especially in 

medical image segmentation, registration, and shape analysis. Landmarks can be identified in purely manual or 

automatic ways. Some anatomic locations, such as the aortic root or the inferior aspect of the mandible, can be manually 

labeled as landmarks [1-3]. However, labeling landmarks manually is tedious, and may lead to low repeatability, 

especially when labeling a point/voxel in 3D space on slices or on 3D surfaces. An automatic landmark-defining 

program can be devised based on machine learning techniques to initially set up landmarks, followed by another 

operation such as non-rigid registration to refine the correspondence between landmarks [4-6]. These approaches are 

indirect and involve higher complexity derived from non-rigid registration. Much has been published on finding 

landmarks on object surfaces in the context of shape modeling. While this is still an open problem, many of the 

challenges of past approaches can be overcome by removing the restriction that landmarks must be on the object surface. 

The virtual landmarks we propose may reside inside, on the boundary of, or outside the object and are tethered to the 

object. Our goal for virtual landmarks is simply to describe accurately positions relative to the object. Our solution is 

straightforward, simple, and recursive in nature, proceeding from global features initially to local features in later levels 

to detect landmarks. Principal component analysis (PCA) is used as an engine to recursively subdivide the object. The 

method is illustrated in 3D space, but it generalizes readily to any K-dimensional space and can be utilized in any 

landmark-related applications of computer vision and pattern recognition.  

Generally, the main contribution of this paper is to propose a novel PCA-based automatic landmark identification 

approach in which landmarks are not constrained to lie on object surfaces. Then, the approach is demonstrated to be able 
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to work well on different subjects and different anatomic structures and on both binary and gray object representations. 

Finally, empirical demonstration is made to show the theoretical property that the landmarks detected are invariant to 

rigid transformations. 

 

2. MATERIALS & METHODS 

2.1 Image data 

Thoracic and abdominal CT images from 5 near normal subjects are utilized in our experiments. As in our previous 

studies, all CT images were selected from our health system patient image database following approval from the 

Institutional Review Board at the Hospital of the University of Pennsylvania along with a Health Insurance Portability 

and Accountability Act waiver. In this study, 4 objects including liver, trachea & bronchi (tb), the outer boundary of the 

left lung along the left pleura (lps), and the outer boundary of the right lung along the right pleura (rps) from diagnostic 

contrast-enhanced CT (with a voxel size of 0.72×0.72×5 mm
3
) are utilized to illustrate virtual landmark properties. The 

whole-body skeleton from a low-dose unenhanced CT scan (with a voxel size of 1.17×1.17×4 mm
3
) is also used to 

calculate virtual landmarks and to visualize them in the whole body.   

2.2 Virtual landmarks 

Principal component analysis (PCA) 

PCA [7] is a commonly-used statistical pattern recognition procedure that employs an orthogonal transformation to 

convert a set of observations of possibly correlated random variables into a set of linearly uncorrelated random variables 

called principal components. Roughly speaking, the eigenvalues resulting from applying this analysis to the points in a 

3D object region indicate the variance (dispersion) of the object points in the three directions represented by the 

corresponding eigenvectors. The largest eigenvector indicates the direction of elongation of the object and the other two 

eigenvectors indicate roughly the directions of breadth and thickness of the object.         

Iterative PCA based virtual landmark identification 

The idea underlying the concept of virtual landmarks of an object is illustrated with a 2D example in Figure 1. Given a 

binary image representing the object, PCA of the entire binary 2D object region is first carried out to find the four 

principal axes directions, denoted in the figure in green by A1,1, A1,2, A1,3, A1,4, emanating from the geometric centroid of 

the object. Along these axes, we find points P1,1, P1,2, P1,3, and P1,4 that indicate the extent of the object in those directions. 

These four points together with the geometric center form the first level landmarks (first subscript denotes level). These 

points and the axes subdivide the shape into four pieces in the four (not necessarily equal) quadrants. For each piece, we 

perform PCA again and find the 16 second level landmarks denoted P2,1, P2,2, …, P2,16 and the 4 geometric centers. The 

four points P2,13, P2,14, P2,15, and P2,16 obtained for the 4th quadrant and the corresponding geometric center are shown in 

the figure for illustration (2
nd

 level principal axes are shown in red). The process continues up to a specified level. Note 

that the points are ordered and hence have unique labels. This allows us to specify the landmarks we need by their labels 

for representing a given shape. For our example, we may use just the 7 points P1,1, P1,2, P1,3, P1,4, P2,13, P2,14, and P2,16 

(which already denote the shape roughly). Different objects may be codified by different numbers of points. Note how 

the points tend to move closer to the object surface at higher levels. In the 3D case, at level n, we will have 8
n-1

 octants 

and there will be in total  ∑      
    points for n levels. The total number of virtual landmarks for 1, 2, and 3 levels are 

7, 63, and 511, respectively. Landmarks at early levels capture overall form whereas points at later levels provide more 

subtle details of form. Note that the above expression gives the maximum number of virtual landmarks for a given 

number of levels. In a given shape, empty octants at any given level and beyond will not contribute any landmarks.  

Unlike methods of finding landmarks on boundaries, this approach generalizes to spaces of any finite dimension easily. 

For K-dimensional space, the maximum total number of points for n levels will be       ∑         
   . From the 

definition and the iterative PCA procedure, it is easy to demonstrate that the derived landmarks are invariant to 

translation, rotation, and (uniform) scaling of the binary object. The method also readily generalizes to non-binary 
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objects – fuzzy objects and objects with gray values defined for their voxels – by considering the “weight” of the 

individual voxels within the object in performing PCA. 

 

3. RESULTS 

3.1 Virtual landmarks of different objects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 shows the virtual landmarks derived for different objects: whole-body skeleton, rps, lps, liver, and tb, where 

landmarks in 3D space are overlaid on to those objects’ 3D surface renditions. In all examples shown, landmarks up to 

Figure 1. The illustration of landmarks from iterative PCA on a 2D object. 

Figure 2. Virtual landmarks of skeleton, rps, lps, liver, and tb 

derived from image data from one subject. 
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the third level and only those landmarks representing the geometric centers are demonstrated. The virtual landmarks 

seem to be distributed through whole objects more-or-less uniformly, meaning that they are not concentrated all in one 

portion of the object. Note also how the landmarks may lie anywhere in space.   

Many landmarks may not be on the surface of objects, especially for the skeleton. In fact, it is rare to find a landmark 

precisely on the object’s surface. Placement exactly on the surface can happen only when an eigenvector intersects the 

surface precisely at a point which is also the tangent point to a plane drawn orthogonal to the eigenvector. The landmarks, 

even when outside or inside the object, still have a strong connection with the target structure. That is why they are 

named virtual landmarks. From Figure 2 we can see that the concept of virtual landmarks seems to apply equally well to 

different objects. Interestingly, some points at the junction of the bronchi are also selected by the approach as virtual 

landmarks. 

3.2 Virtual landmarks from different subjects 

Figure 3 shows the virtual landmarks of tb and lps, each set derived from 5 subjects. Observe that the virtual landmarks 

from these different subjects follow a similar pattern, which preliminarily demonstrates that the landmarks are detected 

at homologous locations in different samples of the same object from different subjects. This will form the fundamental 

basis for applications based on virtual landmarks, such as building object models or locating objects automatically on 

images, etc. In other words, virtual landmarks seem to be able to encapsulate the intrinsic shape properties of objects.   

 

 

 

 

 

 

 

 

 

 

 

 

  

 

3.3 Virtual landmarks after translation, scaling, and rotation 

Five thoracic CT images as well as their binary masks were translated (10 mm in x and y direction), scaled in x, y and z 

direction by a factor of 1.2, and rotated by 90 degrees with respect to the original image for all four objects. The virtual 

landmarks were computed and the Euclidian distance among virtual landmarks before and after the transformation was 

computed (Table 1). The average distance (error) is a fraction of the pixel size (which is 0.72 mm), stemming mostly 

from interpolation errors. This empirically demonstrates that the virtual landmarks are invariant to rigid transformations 

of the image/objects. This, we believe, is a useful theoretical property of the approach in landmark-based applications.  

 

Figure 3. Virtual landmarks of tb and lps in five patients. 
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Table 1. Mean (sd) distance (in mm) between virtual landmarks from objects before and after rigid 

transformation. 

 Translation Scaling Rotation 

 0.22 (0) 0.24 (0.22) 0.61 (0.15) 

3.4 Virtual landmarks on binary versus gray images 

As mentioned earlier, virtual landmarks can be derived from the object binary mask or from the corresponding intensity 

image. The landmarks derived from these two methods may differ depending on the pattern of intensity distribution 

within the object. Table 2 shows the Euclidian distance (the average and standard deviation) between corresponding 

landmarks derived from those two methods for different objects. 

Table 2. Mean (sd) of distances (in mm) between virtual landmarks derived from binary and gray images for 

liver, tb, lps, and rps. 

liver tb lps rps 

0.29 (0.21) 7.18 (3.94) 18.61 (10.19) 21.85 (15.28) 

Considering the fact that slice separation is 5mm in these data sets, the average distance for landmarks of liver and tb is 

around 1 voxel, implying that the virtual landmarks of liver and tb derived from binary and gray images are almost the 

same. However, these distances for lps and rps are larger. The reason is the larger degree of non-uniformity of image 

intensities inside these objects. Figure 4 shows the binary masks of liver, tb, lps, and rps overlaid on gray image slices 

for one subject. The intensity inside the liver mask is more uniform than the intensities of lps and rps. Virtual landmarks 

for liver from binary image and gray image are much similar to each other comparing with other three objects, tb, rps, 

and lps. In general, virtual landmarks generated by the two methods can be quite different, especially at higher levels of 

subdivision.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Binary masks (in color) for liver, tb, rps and lps on the top row.  Virtual landmarks 

from the binary images are at the middle row. And virtual landmarks from gray images are at the 

bottom row. 
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4. CONCLUSIONS 

This paper introduces a novel PCA-based automatic landmark identification approach which automatically resolves the 

issue of establishing homology among landmarks from different object samples. Previous approaches to landmark 

identification consisted of two disparate steps of first detecting landmarks and then finding homology. In the virtual 

landmark approach, the concept of homology is built into the definition of the landmarks. The method removes the 

restriction of past approaches which require the landmarks to be situated on the object surface and allows them to be 

anywhere with respect to the object, although they remain tethered to the object by its shape and/or intensity distribution. 

The approach guarantees that virtual landmarks are invariant to rigid transformations. The virtual landmarks seem to be 

tagged at homologous locations in the same object derived from different subject image data sets.  

 

One application of virtual landmarks is to automatically localize anatomic body regions with the idea that the geometric 

relationship between these landmarks of reference objects and the boundary locations of body regions can be learned 

through a neural network regressor, and then the locations can be predicted. More details can be found in Reference [8] 

which is a separate paper presented at this SPIE Medical Imaging 2017 conference. Clearly, virtual landmarks can be 

readily used for active shape and active appearance modeling, where finding homologous landmarks has remained an 

open problem. Further exploration of the properties and applications of virtual landmarks, particularly for automatic 

anatomy recognition, constitutes some of our on-going and future works. 
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