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ABSTRACT 

Lung delineation via dynamic 4D thoracic magnetic resonance imaging (MRI) is necessary for quantitative image 

analysis for studying pediatric respiratory diseases such as thoracic insufficiency syndrome (TIS). This task is very 

challenging because of the often-extreme malformations of the thorax in TIS, lack of signal from bone and connective 

tissues resulting in inadequate image quality, abnormal thoracic dynamics, and the inability of the patients to cooperate 

with the protocol needed to get good quality images. We propose an interactive fuzzy connectedness approach as a 

potential practical solution to this difficult problem. Manual segmentation is too labor intensive especially due to the 4D 

nature of the data and can lead to low repeatability of the segmentation results. Registration-based approaches are 

somewhat inefficient and may produce inaccurate results due to accumulated registration errors and inadequate boundary 

information. The proposed approach works in a manner resembling the Iterative Livewire tool but uses iterative relative 

fuzzy connectedness (IRFC) as the delineation engine. Seeds needed by IRFC are set manually and are propagated from 

slice-to-slice, decreasing the needed human labor, and then a fuzzy connectedness map is automatically calculated 

almost instantaneously. If the segmentation is acceptable, the user selects “next” slice. Otherwise, the seeds are refined 

and the process continues. Although human interaction is needed, an advantage of the method is the high level of 

efficient user-control on the process and non-necessity to refine the results. Dynamic MRI sequences from 5 pediatric 

TIS patients involving 39 3D spatial volumes are used to evaluate the proposed approach. The method is compared to 

two other IRFC strategies with a higher level of automation. The proposed method yields an overall true positive and 

false positive volume fraction of 0.91 and 0.03, respectively, and Hausdorff boundary distance of 2 mm. 

Keywords: image segmentation, 4D dynamic MRI, iterative relative fuzzy connectedness (IRFC), thoracic insufficiency 

syndrome (TIS) 

1. INTRODUCTION 

Due to its excellent soft-tissue contrast and lack of radiation exposure, dynamic magnetic resonance imaging (dMRI) of 

the thorax plays an important role in the study of respiratory dynamics, respiratory diseases, and radiotherapy planning 

[1], especially in pediatric populations. Lung segmentation is a necessary first step in these applications for quantitative 

analysis. Our area of application is the study of pediatric Thoracic Insufficiency Syndrome (TIS) – the inability of the 

thorax to support normal respiration or lung growth [2]. Segmentation of the lungs in dMRI is particularly challenging, 

especially in pediatric patients with TIS, due to the absence of MRI signal from hard and connective tissues (cortical 

bone and ligaments) adjacent to the pleural space, motion, and high respiratory rate in patients who are often very sick. 

Manual segmentation by outlining the lung on every slice in every 3D volume of each time point is extremely labor-

intensive and is impractical for conducting studies based on many patient scans. Currently, except for the method of 

using 4D probabilistic atlases for the segmentation of cardiac structures [3], almost all reported lung segmentation 

methods on dMRI use a segmentation propagation strategy wherein the image is segmented at one time point of the 4D 

volume first by using various techniques including manual segmentation, and then propagated via image registration to 
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images at other time points [4, 5]. This approach, besides being somewhat inefficient, may not produce accurate 

delineations [6] especially when the change in lung space from one time point to the next is large or non-uniform. 

Usually adjacent volumes are therefore used for registration, but then the propagated and accumulated registration error 

may become significant for volumes at later time points. The purpose of this paper is to present a practical solution for 

lung segmentation on 4D dMRI images for the TIS application.  

Our solution consists of an adaptation of the iterative relative fuzzy connectedness (IRFC) algorithm in an interactive 

manner as a potential practical tool. We will refer to the method as interactive IRFC or i-IRFC. The method gives users 

effective control on the segmentation process, which is needed on a slice-by-slice basis for challenging segmentation 

tasks like this, and yet keeps the process efficient enough. In its spirit, it resembles the iterative live wire approach [7] in 

that user control is at the slice level, where the process is designed in such a manner that, in practice, user action is 

needed only once in a few slices. The method is compared to two other strategies, also based on IRFC. Repeatability of 

the proposed approach from inter-user and intra-user experiments on TIS dMRI data sets is also evaluated.  

2. MATERIALS & METHODS 

2.1 Image data 

This retrospective study was conducted following approval from the Institutional Review Board at the Children’s 

Hospital of Philadelphia along with a Health Insurance Portability and Accountability Act waiver. Image data sets 

utilized in our evaluation all pertain to pediatric thoracic dMRI. In our image acquisition protocol, for each coronal or 

sagittal slice position, 2D slice images are acquired continuously at a rate of about 200 ms/slice over several natural 

breathing cycles. The data sets consist of 5 dMRI scans (TrueFISP with TR/TE ~ 4.3/2.2 msec, magnetic field strength 

of 1.5 T) from 5 subjects, including 2 normal adults (in coronal imaging plane) and 3 TIS patients (in sagittal imaging 

plane) with voxel size ranging from 2.21×2.21×4.8 mm
3
 to 1.17×1.17×5.0 mm

3
 and 3D scene size varying from 

192×192×31 to 224×256×34, the number of time points varying from 6 to 10. In total, 39 3D volume images are 

involved in this study considering all time points. Manual segmentation is done via CAVASS software and used as 

ground truth for evaluation [8]. All three IRFC algorithms are implemented within the CAVASS software system as well. 

2.2  Methods 

4D dMRI imaging 

In this study, 4D thoracic dMRI images are constructed retrospectively by using a graph-based combinatorial 

optimization solution [9] to form the best possible 4D scene from 1000s of 2D slice images acquired as described above. 

The 4D image construction approach is purely image-based and does not need breath holding or any external surrogates 

or instruments to record respiratory motion or tidal volume [9]. Because of the non-standardness (lack of consistent 

tissue-specific numeric meaning for the intensity values) of the MR images, all 3D images of every time point are 

standardized for image intensity [10]. Prior to standardization, intensity non-uniformities arising from magnetic field 

inhomogeneity are corrected [11]. 

Iterative relative fuzzy connectedness (IRFC)  

IRFC is a top-of-the-line algorithm in the fuzzy connectedness (FC) family which operates with the basic principles of 

FC but by iteratively reinforcing the segmentation evidence in a conservative manner. The FC framework is graph-based 

[12]. Let I = (C, f) denote a 3D image where C is a rectangular array of voxels and f is the MR image intensity function 

defined on C. A graph (C, α) is associated with image I = (C, f) where α is a voxel adjacency relation on C such as 6-, 

18-, and 26-adjacency. Each pair (c, d) of adjacent voxels in α is assigned an affinity value κ(c, d) which expresses the 

strength of the bond between c and d in belonging to the same object. To each path π in the graph (or equivalently in I) 

in the set of all possible paths Πa,b between any two voxels a and b of C, a strength of connectedness Κ(π) is determined, 

which is the minimum of the affinities between successive voxels along the path. 
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A fuzzy connected object is defined with a threshold on the strength of connectedness for the basic FC method called 

Absolute FC. Relative fuzzy connectedness overcomes the need for a threshold and leads to more effective 

segmentations by setting up object and background seeds to compete for membership of voxels with the object and 

background [14]. The central idea is that an object gets defined in an image because of the presence of other co-objects. 

IRFC uses an iterative strategy for fuzzy connectedness calculation wherein the strongest relative connected core parts 

are first defined and iteratively relaxed to conservatively capture the fuzzier parts subsequently. In IRFC, two seed sets 

AO and AB are indicated for an object O and its background B, respectively [14]. A voxel in I will be decided as belonging 

to the object or background by comparing the connection strength between the voxel and AO and the voxel and AB. 

IRFC-based approaches for lung segmentation on 4D dMRI images 

P4D-IRFC: This is a pseudo-4D method based on our previous work developed for upper airway segmentation on 4D 

dMRI images [6], where seeds are propagated automatically along the time dimension. In this approach, seed 

specification is needed in only the 3D image corresponding to the first time-instance of the 4D volume, and from this 

information the 3D volume corresponding to the first time-point is segmented. Seeds are then automatically generated 

for the next time-point from the segmentation of the 3D volume corresponding to the previous time-point, and the 

process continues without human interaction and completes segmenting the airway structure in the whole 4D volume. 

We will follow the same procedure for lung segmentation on 4D dynamic MR images under this approach. 

S3D-IRFC: This is a spatial 3D approach where each 3D volume corresponding to a time point is segmented 

independently. Instead of propagating the seeds from a previous time point to the following time point as in the P4D-

IRFC algorithm, this approach deals with every 3D volume image at each time-point separately on its own, and seeds are 

also set up individually for each time-point. Once seeds are specified, IRFC computation is carried out in 3D space 

leading to lung segmentation for every 3D volume image. 

i-IRFC: This is an interactive IRFC approach which operates in a manner similar to iterative Live Wire [7]. Livewire and 

iterative live wire are boundary-based approaches while all IRFC approaches are region-based. i-IRFC operates in a 

slice-by-slice manner. In one slice of the 4D volume which is strategically selected, seed sets AO and AB are first specified 

for the object and the background. The IRFC engine then operates in the 2D space of the current slice and delineates the 

object in the slice. The user then selects NEXT or PREVIOUS slice. The seeds are propagated automatically to the 

next/previous slice, the IRFC algorithm is executed in the next/previous slice, and the results are displayed. Since the 

delineation takes place almost instantly, the results are displayed instantly and the user can visually verify the delineation 

and accept if fully agreeable by selecting NEXT or PREVIOUS slice again. If the result is not acceptable the seeds are 

specified again or the propagated seeds are modified, and the process continues. This process provides fine control to the 

user in placing seeds for both the object and various background tissue components at the slice level which is difficult to 

implement in the S3D-IRFC and P4D-IRFC approaches. If we observe enough examples, we may be able to learn from 

user-specified seeds in the i-IRFC approach and devise seeds more intelligently for the S3D-IRFC and even the P4D-

IRFC approaches in the future.  

The level of automation of P4D-IRFC is higher than that of S3D-IRFC, which in turn is greater than that of i-IRFC. 

Clearly, i-IRFC trades off efficiency for accuracy. As the degree of automation is lowered in this manner for improving 

accuracy, the precision (repeatability) of the method often declines as well.  

 

3. RESULTS 

3.1  Qualitative evaluation 

Figure 1 illustrates seed setting in the i-IRFC approach in sagittal image and the resulting fuzzy connectedness map 

computed by the i-IRFC algorithm which leads to the final segmentation. Object seeds are denoted by a disc painted 

inside the lung space, and the background seeds are painted in blue on the background components. For IRFC approach, 
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there is no need to use a lot of seeds as shown in Figure 1. One seed for the foreground seems enough and the number of 

background seeds can change, for example, from one background seed to several and then to more seeds roughly around 

the boundary. It is interesting that very few (foreground and background) seeds lead to the similar fuzzy connectedness 

maps as that from more seeds setting. 

 

 

 

 

 

 

 

 

 

 

Figure 2 shows segmentation results obtained via i-IRFC for a 4D reconstructed image over one breathing cycle. Figure 

3 shows segmentation results from the three approaches as well as from manual delineation. P4D-IRFC and S3D-IRFC 

approaches lead to over or under segmentation. i-IRFC achieves better results which most closely resemble the ground 

truth delineations. 

 

 

3.2 Quantitative evaluation 

Quantitative evaluation of the segmentations expressed in terms of true positive volume fraction (TPVF), false positive 

volume fraction (FPVF), and Hausdorff boundary distance (HD) in mm is shown in Table 1.   

 Table 1.  Mean (sd) of TPVF, FPVF, and HD measures for the three segmentation approaches. 

  P4D-IRFC  S3D -IRFC i-IRFC 

TPFV 0.84 (0.09)  0.82 (0.02)  0.91 (0.03) 

FPFV  0.04 (0.025) 0.01 (0.004)   0.03 (0.004) 

HD (mm)  1.71 (0.19)  1.86 (0.32)  2.15 (0.33) 

Figure 2. Lung segmentations obtained via i-IRFC from one 4D dMRI data set of one 
subject for one slice location over one full breathing cycle. 

Figure 1. Illustration of seed specification for object and background tissues in i-IRFC. 
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3.3  Reproducibility of i-IRFC  

To assess the precision of i-IRFC, two operators who have been trained to recognize lungs in dynamic MRI, specified 

seed sets on 5 data sets twice. The intra- and inter- operator variability (precision) is assessed from those delineations 

following the framework described in [15], where precision is defined as R= |(S1 ∩ S2)/(S1 U S2)|, where S1 and S2 are 

binary segmentations in two repeated trials, and |.| denotes volume. Precision results are listed in Table 2.  

 Table 2.  Mean (sd) of intra- and inter-observer repeatability of segmentation with i-IRFC.  

 Precision Intra-observer  Inter-observer Overall 

R (%) 94.1 (0.3) 89.6(0.9) 91.9 (2.7) 

 

4. CONCLUSIONS 

Lung segmentation on thoracic dynamic 4D MRI images is a necessary first step for the quantitative analysis of 

respiratory dynamics in restrictive lung diseases of pediatric TIS patients. In this paper, we propose an interactive IRFC-

based approach as a potential practical solution to this challenging problem. Although less efficient compared to other 

more automated IRFC strategies evaluated, the level of detailed interaction in the i-IRFC method seems necessary to 

reliably segment the lung space in the TIS application with acceptable accuracy for the type of dMRI images that are 

currently obtainable.  

The interdependency of accuracy, precision, and efficiency of segmentation methods [15] when using the same 

delineation engine often allows intentionally favoring one factor over others, as illustrated for i-IRFC in this paper. 

Learning from the user interaction input supplied over many data sets may lead us to methods in the future where more 

efficient specification of the same information from the user may become feasible for this really challenging but 

important segmentation problem. For example, interaction is needed at certain locations in the anatomy. If the locations 

and nature of interaction required can be predicted with sufficient accuracy from learned experience, we may be able to 

improve efficiency without sacrificing accuracy and precision. 

 

Figure 3. Lung segmentation from different approaches. Top: From a patient image. Bottom: From dMRI of 

a normal adult. From left to right: Original image, manual segmentation, P4D-IRFC, S3D-IRFC, and i-IRFC.  
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