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ABSTRACT 

The derivation of quantitative information from images to make quantitative radiology (QR) clinically practical 

continues to face a major image analysis hurdle because of image segmentation challenges. This paper presents a novel 

approach to disease quantification (DQ) via positron emission tomography/computed tomography (PET/CT) images that 

explores how to decouple DQ methods from explicit dependence on object segmentation through the use of only object 

recognition results to quantify disease burden. The concept of an object-dependent disease map is introduced to express 

disease severity without performing explicit delineation and partial volume correction of either objects or lesions. The 

parameters of the disease map are estimated from a set of training image data sets. The idea is illustrated on 20 lung 

lesions and 20 liver lesions derived from 
18

F-2-fluoro-2-deoxy-D-glucose (FDG)-PET/CT scans of patients with various 

types of cancers and also on 20 NEMA PET/CT phantom data sets. Our preliminary results show that, on phantom data 

sets, “disease burden” can be estimated to within 2% of known absolute true activity. Notwithstanding the difficulty in 

establishing true quantification on patient PET images, our results achieve 8% deviation from “true” estimates, with 

slightly larger deviations for small and diffuse lesions where establishing ground truth becomes really questionable, and 

smaller deviations for larger lesions where ground truth set up becomes more reliable. We are currently exploring 

extensions of the approach to include fully automated body-wide DQ, extensions to just CT or magnetic resonance 

imaging (MRI) alone, to PET/CT performed with radiotracers other than FDG, and other functional forms of disease 

maps. 
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1. INTRODUCTION

It is now generally believed that quantitative radiology (QR), when brought to routine clinical practice, will bring about 

significant enhancement of the role of radiology in the medical milieu. The derivation of quantitative information from 

images, however, continues to face a major image analysis hurdle, namely the identification and delineation of “objects” 

of interest in the image. The “object” may be an anatomic organ, a sub-organ, a tissue region, a pathological region, or an 

anatomic zone such as a well-defined lymph node station. Called image segmentation, this process has a rich and long 

history spanning nearly 5 decades [1, 2] in the general area of image processing. Image segmentation has, however, 

remained the toughest challenge in image analysis and analytics and an essential roadblock to the practical 

implementation of QR. The purpose of this paper is to present a novel approach that explores how to decouple disease 

quantification (DQ) methods from explicit dependence on image segmentation. The idea is to express disease severity by 

designing disease mapping functions without performing partial volume correction and delineation of either objects or 

lesions. The parameters of the disease map are estimated from a set of training image data sets. 

The main contribution of this paper is to propose a novel disease quantification approach for PET/CT images without 

delineation of objects.  In the demonstrated manual mode of recognition, whether at the object level or even at the lesion 

level, the method is least intrusive on the lesion itself in terms of human interaction needed and the actual quantification 
strategy. 
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2. MATERIALS & METHODS

2.1 Image data 

Twenty phantom PET/CT scans were obtained based on a NEMA [7, 8] NU-2 IQ phantom (manufactured by Data 

Spectrum, Durham NC), but with the central 5 cm diameter “lung” cylinder of the IQ phantom removed and the initial 

background activity level set to be equivalent to 15 mCi in a 70 kg patient, and the 271-day half-life of 
68

Ge after 6 

months the activity of about 9.5 mCi. Body-wide 
18

F-2-fluoro-2-deoxy-D-glucose (FDG)-PET/CT scans are utilized in 

this study, as PET/CT is the most commonly used modality for molecular imaging of patients with cancer and provides 

image data that are quantifiable prior to and following treatment, allowing for individualized regional and global disease 

assessment of patients with cancer [9]. All patient PET/CT images were selected from our health system patient image 

database by a board certified radiologist (Torigian) following approval from the Institutional Review Board at the 

Hospital of the University of Pennsylvania along with a Health Insurance Portability and Accountability Act waiver. 

PET/CT scans with 20 lung lesions and 20 liver lesions were used to illustrate the disease quantification approach. The 

leave-one-out strategy is used for evaluation. 

2.2 Methods 

Recognition and delineation 

As formulated in all of our previous segmentation work, we think of image segmentation as consisting of two related 

processes – object recognition and object delineation. Recognition is the high-level process of determining the 

whereabouts of the object or locating the object in an image. Delineation is the low-level process of precisely 

demarcating the boundary of or the region occupied by the object in the image. In a segmentation method, each process 

can be implemented to perform manually or automatically [3] or at different levels of automation and by using different 

strategies, and the degree of coupling and integration between the processes can also vary. Generally, when the processes 

are properly decoupled, the recognition process can be automated to perform much more robustly than delineation. On 

many occasions, delineation becomes ill-defined due to artifacts such as noise, blur, image non-uniformity, intensity 

non-standardness, the presence of pathology and its variations, and simply the lack of adequate intensity information in 

the image, even though recognition itself can be performed quite effectively. The aim of this study is to explore the 

possibility of using only recognition results to perform disease quantification via whole-body PET/CT acquisitions. 

We will denote the low-dose unenhanced CT image by IC and the matching PET image by IP for all PET/CT images we 

employ. We will also assume that they are in alignment. Since our focus here is not automatic object recognition, we will 

assume that the object of interest O (which may be a solid organ, a tissue region, or a lymph node zone) has already been 

recognized or localized by some method, and that a rough (or fuzzy) mask (or model) FM(O) is available for O. For the 

purpose of illustration of the DQ ideas, our method of recognition here can be manual or automatic; that is, we will 

indicate FM(O) by a rectangular box on (IC, IP) just enclosing the object or FM(O) as the recognition results. Note that 

manual “recognition” can happen at the object level or lesion level; disease quantification in both cases is fully automatic 

with no interaction of any kind such as adjusting parameters, etc. needed. 

Disease map and quantification 

For quantifying disease burden in a body region b, we perform disease quantification for each object O of b by making 

use of FM(O), the standardized uptake value (SUV) image IS derived from the PET image IP, and an object-specific 

disease map, denoted by dO(x), which indicates disease severity within O at every voxel as a function of the voxel’s SUV 

value x. dO(x) is modeled as dO(x) = gd(x) – gn(x), where gd(x) and gn(x) are half and full Gaussians with parameters (d, 

d) and (n, n), respectively. Our intent is that gn(x) describes the SUV distribution within the normal tissues of object

O, and gd(x) expresses SUV-to-degree-of-disease relationship for O.
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The disease map dO(x) removes any contributions from normal tissue to the “degree of disease”. Assume for now that 

parameters (d, d) and (n, n) have been determined (see below for the estimation method). We describe disease 

burden within O by: SUVmean(O), SUVmax(O), and total lesion glycolysis TLG(O). SUVmean(O) and SUVmax(O) 

can be determined in a straightforward manner from FM(O) and IS. Denoting the membership within FM(O) at voxel v 

by fmO(v) and volume of voxel v by |v|, TLG(O) is computed from  

                                              
O S S O

 v 

TLG(O) = v d (I (v)) I (v) fm (v).                                                                               (2) 

In words, TLG(O) (expressed in cc) is a weighted sum of the SUV values of voxels within object mask FM(O) 

multiplied by the voxel volume |v| (expressed in cc), assuming all voxels are of the same size. There are two weights for 

each voxel – mask weight fmO(v) and disease weight dO(x). Mask weight fmO(v) is binary when FM(O) is specified by a 

manual recognition method, or a fuzzy membership value when O is recognized by an automated method such as the 

Automatic Anatomy Recognition (AAR) methodology of [3]. The fuzzy treatment in disease quantification enables us to 

handle both the segmentation issue of deciding whether or not a voxel belongs to a lesion and determining the SUV 

measurement at each voxel without explicit partial volume correction and committing a binary segmentation. 

Consequently, if done properly, we believe the process becomes more stable and repeatable.  

To estimate the parameters of gn(x), we use normal data sets and the ground truth delineations of normal samples of 

objects. Optimal estimations of parameters (d, d), denoted (md, sd), are determined through an optimization process of 

minimizing the difference between “true” estimation of total lesion glycolysis, denoted TLGt(O), which we assume to be 

available, and our fuzzy estimation TLG(O) in (2). Since different objects can differ in their SUV distributions in normal 

and disease conditions, this optimization must be performed separately for each object (and also disease type). For object 

O, the optimum parameters are given by 

                                              
d d

argmin 2
d d tμ , σ   

J

(m , s )  [ (TLG(O) - TLG (O)) ]  ,                                                                        (3) 

where J denotes the set of training images used for optimization. The determination of true disease burden TLGt(O) is 

really challenging. Although commercial clinical image analysis software systems are available [4, 5], which can 

perform expert guided disease measurement, their performance is not stable for lesions that are not focal, large, discrete, 

and sufficiently radiotracer-avid with respect to the background. They also require a region of interest (ROI) to be 

specified very tightly with respect to each lesion to be measured. Owing to these reasons, we created true measurements 

by individually thresholding each lesion on the PET image to produce visually optimal results under the guidance of an 

expert radiologist (Torigian) who has over 12 years of experience in making such measurements clinically. We iterated 

this process over all lesions considered in this study repeatedly until we did not find the need to change the 

segmentations. Because of the difficulty of establishing true measurements, we also conducted a phantom study where 

truth is known absolutely and does not depend on image acquisition or any image operations. We will denote these “true” 

measurements for object O by SUVmeant(O), SUVmaxt(O), and TLGt(O).  

In our approach, apart from computing total disease burden within object O, each “lesion” within O can also be detected 

as individual fuzzy connected components by using the machinery of fuzzy connectedness [6]. Once recognized in this 

fashion, the disease burden in terms of SUVmean, SUVmax, and TLG can be computed for each lesion of O as well. 

Recall that O refers to a solid organ, a tissue region, or a lymph node zone. For a lymph node zone, individual lesions 

correspond to lymph nodes with abnormal radiotracer uptake.  

In summary, the disease quantification process consists of a one-time training step to optimally estimate the parameters 

of the disease map for each object O, recognizing object O in a given image IC, and computing disease burden of O 

within O’s fuzzy mask at the object level and lesion level. 
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3. RESULTS  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Both manual and automatic anatomy recognition strategies are used in this manuscript. Figure 1 and Table 1 show the 

disease quantification results from the manual recognition strategy. AAR-based object recognition [3] and AAR-DQ are 

shown in Figure 2 and Table 2. An ROI, FM(O), a binary mask, is specified by a rectangular box to keep manual 

recognition simple and efficient. We denote manual methods by MO and ML, respectively; in MO the organ is specified 

by a rectangular box just enclosing the organ, and in ML the box specified just encloses each lesion. Disease 

quantification results from ML for lung and liver lesions as well as for the simulated lesions in phantom data sets are 

shown in Table 1 below. Results for the ML method are very similar or slightly better. Figure 1 displays one slice from 

each of the phantom data set, a patient liver study, and a patient lung study, where the CT and PET slices along with the 

disease map as gray-scale images are displayed.   

Table 1.  Mean (sd) of the %deviation of TLG(O) from TLGt(O) for phantom and patient lesions.   

Phantom Liver lesions Lung lesions 
Mean 

All lesions Large Small Large Small 

1.93 (1.24) 5.51 (4.46) 7.74 (3.4) 8.52 (4.56) 15.13 (3.28) 7.77 (3.33) 

Table 1 lists the %deviation of TLG(O) from TLGt(O) for phantom, liver, and lung lesions. The phantom results 

demonstrate that when ground truth is known precisely, the DQ-MO approach measures total disease burden very 

accurately. The larger deviations in measuring smaller lesions in patients also highlight the difficulty in establishing 

Figure 1. Phantom (1
st
 row), liver lesion (2

nd
 row), and lung lesion (3

rd
 row) examples. CT image slice with a box (left), 

PET image slice with the same box (middle), and the derived disease map (right). In this example, the liver contains two 

lesions and the right lung contains one. 
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Or

ground truth for patient images in a reliable and consistent manner, especially for lesions that are not focal, discrete, 

large, or radiotracer-avid with respect to the background. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 shows the disease maps for a liver lesion and for a lung lesion based on AAR recognition results. The regions 

marked in yellow are the recognized liver and right lung objects. Firstly, we build fuzzy object models for liver and lung 

with a specific structure [3], and then use the AAR approach to automatically recognize the liver and lung. The above 

operations are performed on CT images as shown in the first column of Figure 2, and the recognition results are 

propagated to the PET images as shown in the second column. The third column shows the recognition results being 

overlaid onto the disease map of the whole image, and the last column shows the final disease map inside of the liver and 

right lung. Table 2 shows the mean (sd) of the %deviation of TLG(O) from TLGt(O) for patient lesions with DQ-MO 

and AAR-DQ approaches. Generally, DQ-MO can achieve disease quantification accuracy at almost 90% and over 85% 

for AAR-DQ. 

4. CONCLUSIONS 

In this paper, we demonstrate a practical way to decouple disease quantification on PET/CT images from explicit 

dependence on image segmentation (meaning delineation). The approach enables disease quantification based only on 

object recognition results without calling for explicit partial volume correction or delineation. The method shows the 

potential of the approach for body-wide disease quantification based on PET/CT images when combined with body-wide 

anatomy recognition methods [3]. We are currently exploring these extensions as well as extensions to just CT or MRI 

alone, to PET/CT images acquired using radiotracers other than FDG, and disease maps other than Gaussian. 

 

 

Table 2.   Mean (sd) of the %deviation of TLG(O) from TLGt(O) for patient lesions with ROI from 

manual delineation (DQ-MO) and AAR-recognition (AAR-DQ).     

Liver lesions Lung lesions 
Mean 

DQ-MO AAR-DQ DQ-MO AAR-DQ 

11.30 (7.22) 12.27 (8.85) 9.55 (4.05) 14.67 (9.24) 11.97 (10.85) 

Figure 2. DQ-AAR on liver (top row) and lung (bottom row).  Left column is the recognition results (in yellow) of 

liver and lung on the CT images, and the second column is the recognition results from CT being propagated to 

PET image.  Third column is the recognition results being overplayed onto the disease map of the whole image and 

last column shows the final disease map.  
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