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Abstract

Retrospective 4D image construction from continuously acquired 2D slices is a necessary step to 

achieve high-quality 4D images. Self-gating methods, which extract breathing signals only from 

image information without any external gating technology, have much potential, such as in 

pediatric patients with thoracic insufficiency syndrome (TIS) who suffer from extreme 

malformations of the chest wall, diaphragm, and spine, leading to breathing that is very complex 

with lots of abnormal respiration cycles, including very deep or shallow cycles. Existing methods 

do not work well in this clinical scenario and most are not fully automatic, requiring some manual 

interactive operations. In this paper, we propose a fully automatic 4D dMRI construction method 

based on the concept of flux to address the 4D image construction from 2D slices of subjects with 

complex respiration. Firstly, we extract the breathing signal for each location based on the flux of 

the optical flow vector field of the body region from the image series. Then, we give a full analysis 

for all cycles and extract several normal ones and map them to one cosine respiration model for 

each location. After that, we re-sample one normal cycle from the respiration model for each 

location independently. All of these resampled normal cycles form the final constructed 4D image. 

Qualitative and quantitative evaluations on 25 subjects show that the proposed method can handle 

datasets from subjects with more complex respiration and achieves good self-consistency results 

while maintaining time and space continuity.
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1. INTRODUCTION

Respiratory organ motion analysis is important in the study of many disease processes [1]. 

In all such applications, a 4D image constituting the organ system under study needs to be 

constructed first. Compared to computed tomography (CT), magnetic resonance imaging 

(MRI) has three natural advantages: excellent soft tissue contrast, no ionizing radiation 
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exposure, and greater flexibility in selecting image plane position, orientation, and duration. 

Therefore, MRI-based 4D imaging technology is highly desirable in many clinical 

applications.

There are two main approaches to 4D image formation via MRI [2]: i) Using fast 3D MRI 

sequences to acquire real-time 3D volumetric data; and ii) Using fast 2D MRI sequences to 

continuously acquire 2D images from all respiratory phases, location by location spatially, 

then resorting these slices to form 4D images. For the real-time approach, limited by current 

hardware and software, it is difficult to achieve high spatial resolution while ensuring 

adequate temporal resolution and image quality. For the 2D approach, since the 3D structure 

is not maintained in 2D MRI sequences, some form of internal or external respiratory 

surrogate is required to restore the respiratory motion, which is the most important part of 

this approach.

However, the respiratory surrogate approaches are often subject to some drawbacks. To 

overcome these shortcomings, researchers have focused on methods of extracting motion 

signals based only on the scanned image series, which are known as self-gating methods. 

Such approaches can be grouped into 3 main categories: feature-based surrogate [2, 3, 4], 

graph-based optimization [5, 6], and manifold learning alignment [7, 8, 9, 10]. Yet, most of 

these strategies are not fully automatic or cannot deal with subjects with complex respiration 

cycles, which in the case of very sick pediatric patients becomes a major hurdle. In this 

paper, we present a fully automatic 4D dynamic MRI (dMRI) construction approach which 

by design tries to overcome the above hurdles. The approach centers around a novel concept 

we propose as a respiratory surrogate, called flux, and consists of three major steps: i) 

Respiratory signal extraction; ii) Extraction and analysis of cycles; and iii) Normal cycle 

construction and 4D image formation.

2. MATERIALS AND METHODS

2.1 Materials

In this paper, we utilize dMRI data sets from 25 pediatric subjects with no known thoracic 

anomalies. The scan data were obtained from the Children’s Hospital of Philadelphia 

(CHOP) following approval from the Institutional Review Board at CHOP and the 

University of Pennsylvania along with a Health Insurance Portability and Accountability Act 

waiver. Each subject was scanned using the same imaging protocol from the right lateral end 

to the left lateral end of thorax under breathing conditions that are natural for the subject. 

The dMRI scan protocol was as follows: 3T MRI scanner (Siemens Healthcare, Erlangen, 

Germany), true-fast imaging with steady-state precession sequence; TR/TE = 3.82/1.91 

msec; voxel size of approximately 1 × 1 × 6 mm3; 320 × 320 × 38 matrix; bandwidth = 558 

Hz; flip angle = 76°; and one signal average. For each of 30–40 sagittal plane locations 

through the thorax, slice data were obtained during 8–14 tidal breathing cycles at 

approximately 200 msec per slice; total acquisition time per subject = 40 minutes. This 

process yields over 2000–3000 slices in total for one patient and constitutes a spatio-

temporal sampling of the subject’s dynamic thorax over 240–560 respiratory cycles.
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2.2 Optical flux

Optical flow is a commonly-used method to capture motion in computer vision. We estimate 

optical flow based on the body region, which reduces the impact of background noise from 

outside the body region influencing analysis within the body region. This idea is crucial for 

capturing the motion of lungs and hemi-diaphragms precisely. Two examples of optical flow 

estimated within the body region are shown in Figure 1. In Figure 1(a), the two time-

adjacent slices are in the inspiration phase. The optical flow vector field in this case 

generally points towards the body region boundary overall, as shown in the figure. In Figure 

1(b), the two time-adjacent slices are in the expiration phase, and as such the vector field 

points towards the inside as shown. From close scrutiny of all of the data sets, we observed 

that optical flow can capture the non-rigid local movement within the body region precisely.

Optical flow estimation from two successive slices in the time dimension yields a vector 

field. Divergence at a point P in this vector field is a local measure of “outgoingness” of 

vectors at P. In other words, it denotes the amount of outward flux locally within an 

infinitesimal volume around P. The total “outgoingness” for the body region, which we will 

term optical flux, is simply an integral of divergence over the body region. The divergence 

map for the optical flow vector field is shown in the Divergence part of Figure 1. Notably, on 

the one hand, the divergence at most pixels in Figure 1(a) is positive, as indicated by the 

temperature color scale. On the other hand, the divergence of most pixels in Figure 1(b) is 

negative, as depicted by the cold color palette. As we can see, the optical flux for the 

inspiration phase in Figure 1(a) is positive and that for the expiration phase in Figure 1(b) is 

negative.

In our application area of interest, namely pediatric thoracic insufficiency syndrome (TIS) 

[11], for each of 35–40 sagittal slice locations across the chest, 80 MRI slices are acquired 

rapidly (in 200–300 msec per slice) while the patient is undergoing free breathing over 10–

12 cycles. Since all processing is done identically in this paper on the sequence of slices 

acquired for each sagittal location, we will confine our description to one fixed sagittal 

location z and represent the sequence of 80 slices acquired for z by Az = {fT1, fT2,…,fTM}. 

This constitutes a time sequence of slices. From each pair of successive time slices in the 

sequence, optical flow is estimated using the Lucas-Kanade method [12] within the body 

region inside the skin boundary. Optical flux is then derived by first performing a divergence 

operation on the flow vector field and integrating divergence within the body region. After 

estimating optical flux for each time point in Az based on adjacent time slices in the 

sequence in this manner, we derive an optical-flux curve as shown in Figure 1(c), which can 

be regarded as the respiratory signal associated with this location z. Notably, optical flux can 

represent the respiratory signal accurately.

2.3 Analysis of cycles

With the motion captured with optical flux, we perform an analysis of the respiratory cycles 

whose goal is to output one normal cycle per z location. Firstly, we detect the End-

Inspiration (EI) and End-Expiration (EE) points (Figure 2(a)) in Az and extract all 

respiratory cycles included in Az. If all respiratory cycles are near-normal as in the example 

in Figure 1(c), we can detect EI and EE points easily depending on the zero-crossings of the 
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flux curve. However, Az typically contains abnormal patterns, as in the example in Figure 2. 

To detect EI and EE points, we first find all peaks on the flux curve and then filter out peaks 

with values close to 0. The final detected peaks are shown in Figure 2, represented by 

triangles. Then, following the time sequence, we find the last time point (slice) with positive 

flux after each peak as an EI point and the first slice with negative flux before each peak as 

an EE point. The detected EI-EE points are displayed in Figure 2(a).

There are typically 10–12 cycles at each z in our MRI data. Some of the cycles are normal, 

whereas others are abnormal (meaning very shallow or briefly stopped breathing or deep 

breathing).

With the detected cycles and flux curves, we make a deeper analysis of the cycles. We define 

several measurements to represent the character of cycles, such as the volume at inspiration, 

volume at expiration, the number of peaks and valleys on the flux curve, the distance 

between the peak point and the EI point, etc. We detect and filter out the abnormal cycles 

based on these measurements. We will use only the normal cycles to build the final single 

cycle to be associated with z, as shown in Figure 2(b).

2.4 Cycle construction

To construct one cycle for each z location, we should determine the hemi-diaphragm 

position as a function of time first. The physical meaning of flux is closely related to the 

lung’s moving speed at any time point. So, we can get the relative distance of motion of the 

hemi-diaphragm depending on the amount of flux. With the diaphragm position, we can 

infer the time position (respiratory phase) of any time-slice in the normal cycle. Then we can 

align all slices of the normal cycles in Az to a normal cycle model, as shown in Figure 3(a) 

where we use a cosine model. In other words, we map on to the model the phases of all 

accepted normal cycles. The red points in the figure represent the inspiration phases and the 

yellow dots represent the expiration phases. With this normal model, we can re-sample the 

normal cycle with any desired number of time points within limits. Then, by selecting the 

same number of time points, we can guarantee that the cycles at different z locations have 

the same phase and same number of time points in the 4D construction. In practice, we 

determine the mean number of time points over all normal cycles in Az. Then we use that 

number as the number for resampling. The resampled cycle is shown in Figure 3(b) for the 

model cycle depicted in Figure 3(a). At each z location, we will thus get one re-sampled 

normal cycle. The cycles from all locations will form the final 4D constructed volume of the 

dynamic thorax.

3. EXPERIMENTS AND RESULTS

We tested our method on dMRI data sets from 25 normal subjects. To evaluate the accuracy 

of the construction results, we focus on both temporal and spatial continuity of the 

constructed 4D image.

3.1 Temporal continuity

The first test is for assessing temporal continuity. This metric defines the number of time 

instances in a cycle that are out of cyclic order as a fraction of the total number of time 
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instances in the cycle, which can be termed as Error in Temporal Order (Eto). In the 

examples shown in Figure 4, all cycles have 6 time points in the cycle, the cycles in (a) and 

(b) have all of their time intervals in the proper cyclic order, hence Eto = 0, and the cycles in 

(c) and (d) have 1 interval out of order – 6th interval in (c) and 1st interval in (d) – and thus 

Eto = 1/6 for these cycles.

Figure 5 summarizes Eto values over all data sets. The mean and standard deviation of Eto 

over all 25 data sets in our study are found to be 2.7% ± 2.3%.

3.2 Spatial continuity

This metric defines spatial smoothness in the z dimension of the constructed 4D image. For 

each time-instance of the 4D image, we select one point at the middle of the hemi-

diaphragm dome manually. These points will form a curve as a function of z. The 

smoothness of this curve reflects the spatial continuity quality along z of our 4D constructed 

image. To quantify this smoothness, we first fit a spline function to the curve and then use 

the mean of the absolute distance from the labeled points to the fitted curve as the spatial 

smoothness factor for that time point, which can be termed as Error of Spatial Smoothness 

(Ess). Two examples are shown in Figure 6 for one time-instance: (a) with Ess = 0.226, and 

(b) with Ess = 2.422 (both in pixel units). The mean and standard deviation of Ess values 

over all data sets in our study are found to be 0.50 ± 0.17 pixel units.

In addition, to evaluate the spatial continuity subjectively, we use a spatial smoothness score 

for this purpose. We manually assess the spatial smoothness by examining each spatial 3D 

volume and assigning a subjective score on a 1–5 scale (1 = poor, 5 = perfect). The score is 

determined for each time point by visualizing all z-location slices and checking the 

smoothness of both hemi-diaphragm regions, which can be termed as Error of Spatial 

Continuity (Esc). Figure 7 displays the mean of Esc values over all time instances for each 

constructed 4D image over all data sets. The mean and standard deviation of Esc values over 

all data sets in our study are found to be 4.6 ± 0.48.

We note that our approach achieves remarkable spatial and temporal continuity for all 

subjects. Over all tested data sets and cycles, temporal disorderliness is less than 0.1! The 

two smoothness scores (subjective and automatically determined) are in perfect agreement 

as seen from the red and blue curves in Figure 7. The objective smoothness factor is less 

than 1-pixel unit for all subjects! Finally, in Figure 8, we present exemplary slices from a 

constructed 4D image of a normal subject.

4. CONCLUSION

In this paper, we proposed a novel automatic 4D construction method for dynamic MRI of 

the thorax based on the concept of flux. The construction procedure is independent of the 

number of z-locations, which implies that it can be employed even when imaging is done 

with only a few sagittal locations and not the full set across the chest. The most important 

contribution of the method is that all procedures are fully automatic while not sacrificing 

robustness to other impediments such as abnormal breathing patterns. The method is 

general, i.e., not specific to the dMRI application illustrated in this work, and is independent 
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of the imaging protocol. For example, it can be readily applied to any other dMRI protocol 

and even dynamic computed tomography (CT) acquisitions without modification. With some 

changes, it can also be applied to other dynamic and moving organs such as heart, upper 

airway, and abdominal structures, amongst others.
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Figure 1: 
Two examples of optical flow within the body region: (a) Two slices in the inspiration phase. 

(b) Two slices in the expiration phase. (c) Optical flux curve derived from 80 time-slices at 

one z location.
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Figure 2: 
(a) The cycles detected based on optical-flux curve at one z location. (b) The detected 

normal cycles are shown in bold.

Hao et al. Page 8

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2020 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Cycle construction. (a) A cosine model of the respiratory cycle on to which the time slices of 

the detected normal cycles are mapped. (b) A single normal cycle resampled from the model 

and time points shown in (a).
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Figure 4: 
Examples of temporal order/ disorder. The cycles in (a) and (b) are in cyclic order. The cycle 

is out of order at 6th time interval in (c) and at 1st time interval in (d).
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Figure 5: 
Error in temporal order (Eto). Mean value of Eto over the cycles over all data sets.
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Figure 6: 
Pattern of change in the y-location of the mid-point in the right and left hemi-diaphragm 

domes: An example of a spatially smooth (a) and non-smooth (b) construction.
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Figure 7: 
Degree of spatial smoothness. Mean of Ess values (blue) and Esc values (red) over all time 

instances in the constructed 4D image over all data sets.
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Figure 8: 
A display of sagittal thoracic MRI slices selected from a constructed 4D image of a normal 

pediatric subject. Each column represents a z-location, and each row represents a time 

instance.
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