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ABSTRACT  

Contouring of the organs at risk is a vital part of routine radiation therapy planning. For the head and neck (H&N) region, 

this is more challenging due to the complexity of anatomy, the presence of streak artifacts, and the variations of object 

appearance. In this paper, we describe the latest advances in our Automatic Anatomy Recognition (AAR) approach, 

which aims to automatically contour multiple objects in the head and neck region on planning CT images. Our method 

has three major steps: model building, object recognition, and object delineation. First, the better-quality images from 

our cohort of H&N CT studies are used to build fuzzy models and find the optimal hierarchy for arranging objects based 

on the relationship between objects. Then, the object recognition step exploits the rich prior anatomic information 

encoded in the hierarchy to derive the location and pose for each object, which leads to generalizable and robust methods 

and mitigation of object localization challenges. Finally, the delineation algorithms employ local features to contour the 

boundary based on object recognition results. We make several improvements within the AAR framework, including 

finding recognition-error-driven optimal hierarchy, modeling boundary relationships, combining texture and intensity, 

and evaluating object quality. Experiments were conducted on the largest ensemble of clinical data sets reported to date, 

including 216 planning CT studies and over 2,600 object samples. The preliminary results show that on data sets with 

minimal (<4 slices) streak artifacts and other deviations, overall recognition accuracy reaches 2 voxels, with overall 

delineation Dice coefficient close to 0.8 and Hausdorff Distance within 1 voxel.  

Keywords: Auto-contouring, CT segmentation, automatic anatomy recognition, organs at risk, radiation therapy. 

 

  1. INTRODUCTION 

Planning radiation therapy (RT) for the treatment of head and neck (H&N) cancer requires precise delineation of the 

organs at risk (OARs) in this body region on planning computed tomography (CT) images. In clinical practice, this 

delineation is done mostly manually by dosimetrists and radiation oncologists, which is time-consuming and suffers 

from intra- and inter- observer variations as well as protocol variability [1] from center to center. As an alternative, auto-

contouring is a useful tool that could bring substantial time reduction even if post hoc manual editing is required [2].  

Various auto-contouring methods have been proposed for the H&N OARs. Atlas-based methods seem to be quite 

popular in this application due to their robustness and requirement of small training samples [3-4]. Recent research using 

neural networks shows promising accuracy with longer training time [5] and often much larger training sample sizes. In 
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this paper, a different method is proposed that inspects the geographic relationship among objects to locate each object, 

followed by a low-level process to contour the boundaries. This research is an extension of our Automatic Anatomy 

Recognition (AAR) framework [6], which has been successfully applied to different modalities and body regions. In this 

adaptation of AAR to H&N CT images, we made several improvements to the basic methodology itself: 1) A data-driven 

optimal hierarchy algorithm directly formulated to reduce recognition error is employed instead of the previous one 

defined by prior knowledge; 2) The boundary information is incorporated to refine recognized location; 3) Texture 

information combined with intensity information is utilized in the recognition and delineation processes; And 4) A 

voxel-classification approach is proposed for delineation and finally an optimal boundary fit from the fuzzy model is 

performed to output the final delineation.  

 

2. METHODS 

Object Definition, Data Collection, and Quality Evaluation 

This retrospective study was conducted following approval from the Institutional Review Board at the Hospital of the 

University of Pennsylvania along with a Health Insurance Portability and Accountability Act (HIPAA) waiver. We 

analyzed image and contour data sets for 216 H&N cancer patients from the Department of Radiation Oncology, 

University of Pennsylvania. The voxel size ranges from 0.93×0.93×1.5 mm3 to 1.6×1.6×3 mm3. The contour data for the 

cases were previously created by the dosimetrists in the process of routine RT planning of these patients. Following 

published guidelines [1, 7] for H&N anatomic object definitions, we formulated detailed and precise computational 

definitions for specifying each object and for delineating its boundaries on axial CT slices and mended the contours to fit 

these strict definitions as much as possible. 

Image quality typically attained in a body region plays an important role in the performance of any auto-contouring 

method. To investigate its influence on the performance, we developed a method [9] to derive an object quality score 

(OQS) to the image appearance of each object in each image and an image quality score (IQS) for each image based on a 

set of 9 criteria: neck posture deviation, mouth position, other types of body posture deviations, image noise, beam 

hardening (streak) artifacts, shape distortion, presence of pathology, object intensity deviation, and object contrast. Based 

on the quality scores, we found that about 17% (36 cases - 20 male and 16 female) of the cases are model worthy 

(meaning that these studies had contours for all OARs considered and the OARs were all near normal with good quality) 

within the cohort of 216 cases gathered, which are then used for building the AAR fuzzy models. Object samples derived 

from 5 of these data sets are shown in Figure 1. Streak artifacts arising from tooth fillings are ubiquitous in H&N CT 

images, which pose the greatest challenge to auto-contouring methods in H&N. Object samples were divided into good-

quality and poor-quality groups, where objects in the “good” groups had OQS in the upper end of the score scale and did 

not have more than 3 slices containing streak artifacts or other major deviations.  

 

     

Figure 1. An illustration of five object samples from 5 model-worthy data sets for each of 9 objects: Male (left), Female 

(right). Different colors indicate 45 different object samples in each panel. 

Building Population Fuzzy Anatomy Models 

In our research, the anatomic objects (i.e., OARs) considered were: skin outer boundary (SB), left and right parotid 

glands (LPG, RPG), left and right submandibular glands (LSG, RSG), cervical esophagus (ES), supraglottic and glottic 

larynx (LX), cervical spinal canal (SC), mandible (MD), and orohypopharynx constrictor muscle (OHP). We further 
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subdivided object SB into an inferior portion below the neck (SBi) and a superior portion (SBs) in the neck. The reason 

was that SBs has far less subject-to-subject variation than SBi due to the different extent to which the upper extremities 

were included/excluded in different subjects in their CT images.  

The Fuzzy Anatomy Model of the H&N body region B  for a group G , ( , ) ( , , , , )FAM B G H M    was then built 

from the binary and gray images following mostly the methodology in [6] except for changes as described below. Note 

that H denotes a hierarchical arrangement of the objects; M is a set of fuzzy models with one model for each object; 

 represents the parent to offspring spatial relationship;   is a set of scale ranges; and   includes a host of parameters 

representing object properties such as the range of variation of size, image intensity, etc. of each object. We created two 

anatomy models ( , )MFAM B G and ( , )FFAM B G  for the male and female group, respectively, by using the model-

worthy data sets mentioned above. The tree structure for H  is determined by finding an optimal hierarchy using a novel 

strategy which is more advanced than the one described in [6]. In this strategy, we first run recognition for each pair of 

objects, e.g., object
iO  and object

jO  in the target OARs, following a mini hierarchy as shown in Figure 2(a). Then the 

corresponding location error ( )i jLE O  of the recognized 
jO  from its ground-truth is calculated as its cost 

ijc  from 

parent 
iO , which is arranged as the corresponding element in the cost matrix nC for all the n  objects. We set SB as the 

root object 
rO for initial recognition. If we regard the cost matrix nC  as a weighted complete connected graph with n  

nodes where every node is connected to every other node, then the optimal hierarchy arrangement Ĥ can be derived by 

calculating the optimal spanning tree with SB as the starting point: 

1 1

arg min (= ( ))ˆ
i

nn

H

i j

i j
LE OH

 

                                                       (1) 

where in  is the number of children for the object iO  in H . The optimal hierarchy Ĥ  ensures the minimum global cost 

when each object is recognized by this order.  The derived optimal hierarchy is shown in Figure 2(b). The same 

hierarchy is used for building the model for the female group. 

 

                           

(a)                                                  (b) 

Figure 2. An illustration of the optimal hierarchy structure. (a) Mini-hierarchy for training. (b) The learned optimal 

hierarchy for the head and neck region.                                                                        

 

Object recognition/ localization and delineation  

The object at the root of the tree H  is localized first. Other objects are then recognized following the tree, making use of 

the parent-to-child relationship encoded in ( , )FAM B G . A fine-tuning around the initial location is conducted by scaling 

and translation of the fuzzy model M .  As an improvement on [6], we combined the intensity with texture calculated by 
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Gray-level Co-occurrence Matrix (GLCM) to derive a binary template for fine-tuning, and the recognition is finished 

when the false positive and false negative between the fuzzy model M and binary template are minimized. Furthermore, 

we added a refinement step after recognition, in which the distance between the boundaries of all objects is modeled by a 

Bayesian Network, and the prior knowledge from anatomy definition is adopted for initializing. When each object is 

recognized, the boundaries for all related objects are predicted, which is then fused with their recognized boundaries to 

rescale the fuzzy model. We describe some aspects of the recognition algorithm in [7].  

The recognition step aims to use the high-level information to overlay the fuzzy model on the object, while delineation 

relies on the low-level information to obtain the clear boundary proceeding from the recognition result. We use two 

delineation methods for different objects, which is different from [6]. For skin, we use Iterative Relative Fuzzy 

Connectedness (IRFC) [10]. For all other objects, we initially use a k-NN voxel-wise classifier to find the foreground 

voxels by the intensity and texture features, and then we fit optimally the fuzzy model to the foreground by finding the 

best iso-membership surface derived from the fuzzy model. Sample recognition and delineation results are demonstrated 

in Figure 3 for different OARs. 

 

                      

 

Figure 3. Sample results for different objects on representative H&N CT images. Rows 1: Original CT image. Row 2: Overlay with 

recognition result. Rows 3: Overlay with delineation result.  

 

3. RESULTS 

As preliminary result, we demonstrate our experiment on five objects for the male group, the results are shown in Table 

1. The recognition performance is evaluated by location error (LE, mm), and delineation by Dice coefficient (DC) and 

Hausdorff distance (HD). We conducted experiments on the good-quality and poor-quality datasets separately. 

As mentioned earlier, streak artifacts pose serious challenges to H&N object recognition and delineation. Overall, the 

accuracy of recognition (object localization) for good-quality groups in these experiments, is about 2 voxels, and the 

accuracy in delineation is close to 0.8 for Dice coefficient and around 1 voxel for Hausdorff distance. The results on 

SB LX LPG, RPG MD OHP 
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poor-quality group shows that when the objects have significant artifacts, the results are much worse, around 5 voxels for 

recognition, 0.6 for Dice coefficient and around 2 voxels for Hausdorff distance.  

We also compare our results with related research works. The statistical results will be influenced by multiple factors, 

such as patient group, image quality, image resolution, object definition, manual ground-truth quality, etc., so a fair 

comparison is hard to achieve but could still give a rough idea about the performances. We listed our results on the good-

quality group for a fair comparison. In the literature we did not find mention of artifacts or even their illustration 

qualitatively as to how they affect results. Furthermore, the number of studies and object samples on which results are 

illustrated is substantially lower than the number of samples we used. Also, train-test data set division ratio used in the 

literature is much higher that what we have employed. 

 

Table 1. Location error in mm (LE) for recognition, Dice Coefficient (DC) and Hausdorff Distance (HD) for delineation in 

experiments E1-E4. Mean and SD values over tested samples are listed. 

 

Object SB LX LPG RPG MD OHP All 

Good 
Image 

Quality 

LE 
4.86 

0.82 

3.23 

2.04 

4.27 

1.73 

4.24 

1.62 

4.47 

1.03 

3.79 

1.36 

4.14 

1.43 

DC 
0.98 

0.01 

0.75 

0.04 

0.77 

0.05 

0.76 

0.06 

0.89 

0.03 

0.58 

0.04 

0.79 

0.04 

HD 
1.81 

0.33 

4.47 

0.71 

3.25 

0.55 

3.23 

0.52 

1.61 

0.26 

2.57 

0.32 

2.82 

0.45 

Poor 
Image 

Quality 

LE 
9.25 

3.07 

16.93 

8.05 

18.25 

10.16 

14.44 

5.22 

9.90 

2.95 

14.80 

7.28 

13.93 

6.12 

DC 
0.96 

0.03 

0.49 

0.13 

0.46 

0.16 

0.54 

0.12 

0.79 

0.07 

0.42 

0.12 

0.61 

0.11 

HD 
2.98 

1.33 

7.71 

2.59 

7.06 

2.96 

5.68 

1.71 

2.32 

0.55 

4.43 

2.02 

5.03 

1.86 

 

For MD, the following results are reported in literature (DC and HD are listed by range or mean value, if available): 

0.86-0.94 and 1.3-3.8mm [11], 0.77-0.96 and 3.1-5.6mm [12], 0.75-0.93 and 1.8-5.6mm [13], 0.92-0.94 and 0.9-2.6mm 

[14], 0.9-0.96 and 1.3-2.9mm [15] and 0.89 [5]. Our proposed methods reach an average DC of 0.89 and HD of 1.6 mm 

on much more realistic and larger data cohort. 

For LPG and RPG, reported results are: 0.74-0.84 and 3.8-8.8mm [11], 0.56-0.79 and 5-10.7mm [12], 0.73-0.88 and 3.1-

8.7mm [13], 0.74-0.89 and 2.8-8.5mm [14], 0.68-0.85 and 3.2-9.4mm [15], 0.77 [5], 0.74-0.83 and 1.6-3.3mm [16], 0.65 

and 4.5mm [18]. Our method got 0.74 and 3.2mm on LPG, and 0.75 and 3.2mm on LPG on much more realistic and 

larger data cohort.  

For LX, reported results are 0.86 [5], 0.5-0.62 and 2.0-6.0mm [16], 0.73 [17]. Our results are 0.74 and 4.0mm. The 

definition of LX could be quite variable, regarding whether to include the central trachea region and other components. 

Therefore, the reported performance on different dataset is quite different. This emphasizes the importance of a 

consistent and standardized OAR definition.  

For OHP, reported results are 0.4-0.6 and 1-1.25mm [16], 0.64 [17] and our results are 0.58 and 2.6mm. This object is 

very challenging due to lack of contrast with surrounding muscles. Our results are much more realistic in actual clinical 

setting because of larger cohort and consideration of object quality dependent variations etc. 

One advantage of our method is its steadiness.  Indeed, on every object the performance is above average standard in the 

scope of comparing references, which implies the robustness of the proposed method on the variation of different size, 

shape and appearance. This is mainly because of the recognition step which could overlay the fuzzy model to the object 

within a location error of 2 voxels. Surprisingly in many instances, even when the image/object quality is poor, 

recognition was accurate. However, in these instances delineation may go awry due to artifacts and misleading intensity 

information. 
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4. CONCLUSIONS  

1. When data sets are nearly streak-artifact-free (<4 slices), our methods yield recognition accuracy within 2 voxels and 

delineation boundary distance HD around 1 voxel. This is within the variability observed among dosimetrists in manual 

contouring (result not shown here). Tooth fillings and dental implants cast streak artifacts that are much brighter or much 

darker than the actual tissue intensity on CT images and affect almost all H&N structures, which in turn seriously 

influence accuracy. To make an impact on H&N RT planning by way of improving contouring efficiency, productivity 

for handling cases, and accuracy needed for adaptive RT planning, the challenge of streak artifacts must be addressed.  

2. Understanding object and image quality and how they influence performance is crucial for devising effective object 

recognition and delineation algorithms. This becomes eminently important for comparing methods in a meaningful 

manner. The recognition operation is much more robust than delineation. We often observed that even when the models 

were placed very close (within 2 voxels) to the actual object with strong streak artifacts, delineation failed to retain that 

accuracy. 

3. Individual object quality expressed by OQS seems to be much more important than the overall image quality 

expressed by IQS in determining accuracy.   
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