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Abstract 

We have presented a variety of methods for object recognition based on the Automatic Anatomy Recognition (AAR) 
framework at previous SPIE conferences, including AAR recognition via optimal threshold on intensity, AAR 

recognition via composite information from intensity and texture, and AAR recognition with the optimal hierarchical 

structure design, and via neural networks to learn object relationships. The purpose of this paper is to introduce new 

features for the AAR-based recognition procedure and improve the performance of object localization for auto-

contouring in head and neck (H&N) radiation therapy planning, specifically for some of the most challenging objects. 

The proposed super-mask technique first registers images used for model building among themselves optimally by 

using a minimal spanning tree in the complete graph formed with images as nodes to determine the order of registering 

images. Subsequently, we build a super-mask by combining the similarly registered binary images corresponding to 

each object by taking (S1) union of all binary images, (S2) intersection among all binary images, or (S3) the voting-

based fuzzy mask created by adding the binary images. The super-mask is then used to confine search for optimum 

localization of the object in the given image. A large-scale H&N computed tomography (CT) data set with 216 subjects 
and over 2000 3D object samples were utilized in this study. The super-mask-based object localization approach 

within the AAR framework improved the recognition accuracy by 25-45% compared with the previous AAR strategy, 

especially for the most challenging H&N objects. On low quality images, the new method achieves recognition 

accuracy within 2 voxels on 50-60% of the cases. 

Key words: Automatic anatomy recognition (AAR), optimal spanning tree, texture, image quality, head and neck 

cancer, radiation therapy, computed tomography (CT) 

1. Introduction 

During the radiation therapy (RT) treatment planning process, segmentation of organs at risk (OARs) is a key step. 
Furthermore, almost all quantitative medical image analysis depends on accurate object segmentation. Automatic 

Anatomy Recognition (AAR) is a body-wide multiple object segmentation approach [1] for which segmentation is 

designed as two dichotomous steps: object recognition (or localization) and object delineation. Recognition is the 

high-level process of determining the whereabouts of an object, and delineation is the meticulous low-level process 

of precisely indicating the space occupied by an object. Object segmentation can be improved by separately improving 

recognition and delineation processes. This study focuses on improving object recognition.  

A variety of methods for object recognition based on the AAR framework have been presented at previous SPIE 

conferences, including AAR recognition via optimal threshold on intensity, texture, optimal hierarchical structure 

design [2 - 5], and AAR recognition with neural networks to learn object relationships [6]. We presented methods to 

recognize not only solid objects, but also lymph node zones which do not show intensity boundaries in images [7, 8]. 

The purpose of this paper is to introduce new features for the AAR-based recognition procedure and improve the 

performance of object localization for auto-contouring in head and neck (H&N) RT planning. Our efforts to improve 
AAR recognition (AAR-R) performance include three parts as follows: 

1) Combining texture and intensity information in AAR recognition and significantly improve recognition 

performance. 

2) Exploring strategies of integrating different image-based information including intensity, texture, and super-mask 

for object recognition. 
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3) Evaluating AAR–R performance in the context of image quality on a very large number of studies and 3D object 

samples (216 and over 2000, respectively). This is by far the largest study on real-world clinical H&N CT data 

sets that demonstrates object localization accuracy as a function of object/image quality. Instead of only a minority 

of images being used for testing, most of the images (185/216 = 86%) are used for testing in this study. The size 

of our data sets is significantly larger than the size involved in even some deep-learning approaches.  

2. Materials and Methods 

Image data 

This retrospective study was conducted following approval from the Institutional Review Board at the Hospital of the 

University of Pennsylvania along with a Health Insurance Portability and Accountability Act (HIPAA) waiver. Data 

sets from the Department of Radiation Oncology, University of Pennsylvania, are utilized in this study, which are 

planning CT studies from 216 H&N cancer patients from among existing patient cases. The ground truth contour data 

for the cases were created by dosimetrists in the process of routine RT planning of these patients. The non-serial data 

sets constitute 54 cases gathered from each of four groups: 40-59-year-old males and females (denoted GM1 and GF1, 
respectively), and 60-79-year-old males and females (denoted GM2 and GF2, respectively). We corrected contours in 

only those cases with gross deviations from our standardized definitions of H&N OARs [9]. The CT images have a 

scene size of 512×512×110-140, and a voxel size of 0.930.931.5-2 mm3 to 1.61.63 mm3. The total number of 

3D CT scans involved in this study was thus 216, and the number of 3D object samples was 2199. 

Objects and Fuzzy Model building 

The anatomic objects considered in this study are the same as those in [4, 5], including Skin outer Boundary (SB) 

which was further sub-divided into an inferior portion below the neck (SBi) and a superior portion (SBs) in the neck, 

Left and Right Parotid Glands and their union called Parotid Glands (LPG, RPG, PG), Left and Right Submandibular 

Glands and their union called Submandibular Glands (LSG, RSG, SG), Esophagus (ES), supraglottic/glottic Larynx 

(LX), Spinal Canal (SC), Mandible (MD), and Orohypopharynx constrictor muscle (OHP). We illustrate results of all 

objects although more attention is given to LPG, RPG, PG, LSG, RSG, SG, LX, and OHP since recognition of those 

objects is still very challenging for the previous approaches. 

The Fuzzy Anatomy Model of the H&N body region B for a group G, FAM(B, G) = (H, M, ρ, , ), was built from the 
binary and gray scale images following mostly the methodology in [1]. Note that H denotes a hierarchical arrangement 
of the objects; M is a set of fuzzy models with one model for each object; ρ represents the parent to offspring 

relationship in G in the hierarchy;  is a set of scale ranges one for each object;  includes a host of parameters 
representing object properties such as the range of variation of image intensity, etc. of each object. Figure 1 shows 

some samples of models constructed and used in this study, and Figure 2 shows the hierarchical structure used in this 

study, which is the optimal hierarchy, Hopt, and can be derived from the training data sets as detailed in [4, 5].  

AAR recognition  

The recognition process proceeds hierarchically following the order indicated by Hopt. The root object is first 

recognized following Ref [1]. To recognize any object Ol in the hierarchy, the fuzzy object model FM(Ol ) is first 

placed in the given image I at an initial location derived from the learned parent-child relationship with respect to the  

Figure 1. Volume-rendered 3D fuzzy object models for MD, PG 

(LPG, RPG), LSG, LX, and SC. 

SB 

SC 
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ES 
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Figure 2. The optimal hierarchy, H
opt.
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parent object. This strategy is named as one-shot recognition since it uses only prior information. Then, the model is 

adjusted for its pose p (translation, scaling, and rotation) in I to best match a binary image resulting from thresholding 

I at a threshold that is optimal for Ol. This procedure of finding the optimal pose p* can be described as follows.                                                              

𝒑∗ ∈ argmin
𝒑
(|𝐹𝑀𝑝(𝑂𝑙) − 𝐽| + |𝐽 − 𝐹𝑀𝑝(𝑂𝑙)|),                                                   (1) 

where J is a binary image resulting from thresholding I at the optimal threshold for Ol, and |.| denotes fuzzy subtraction 

operation between fuzzy model and J. The optimal threshold is found correspondingly in the image/ texture image [1, 

4, 5]. Image and/or texture property that is best suited for each object is determined, and this information is stored in 

the model FAM (B, G) in the element  and used at recognition. In this study, texture property “maximum probability 
of occurrence” derived from the co-occurrence matrix is used.  

AAR super-mask technique 

The super-mask technique makes use of the optimal atlas construction approach [10], which was designed to create 

atlases in an optimal manner by using a well-established graph theoretic approach based on a minimum spanning tree. 

The main steps include:  

1) Create an undirected complete graph for a symmetric arc cost function or a directed graph for asymmetric arc cost 

function by calculating the cost (based on mean squared difference (MSD)) between each possible pair of images in 

the training set used for model building. 

2) Calculate the minimum spanning tree (MST). 

3) Perform registration among images hierarchically following the above tree.  

Figure 3. Representative recognition results from L1, L2, and L3. The 1
st
 row and the leftmost two images 

in the 2
nd

 row are from regular AAR recognition using only intensity information. The right four images 

of the 2
nd

 row (left to right) show the ground truth and recognition results from L1, L2 and L3 for object 

OHP. The 3
rd

 and 4
th
 rows display the ground truth and recognition results from L1, L2, and L3 for LPG, 

LX, SG, and PG. 
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4) Build a super mask after the images are registered by combining the similarly registered binary images 

corresponding to each object by taking (S1) union of all binary images, (S2) intersection among all binary images, or 

(S3) the voting-based fuzzy mask created by adding the binary images.  

In this study, we use a directed graph. The super-mask created by one of the three methods S1-S3 is then used as a 

fuzzy model. After the one-shot strategy, the super-mask/model is dilated and combined with the thresholded image 

from intensity and texture for establishing the candidate binary image J in Equation (1) for determining region of 
search for optimal pose p*.  

3. Results 

We test and compare among three methods. Method L1: Previous AAR recognition with intensity only. Method L2: 

Previous AAR recognition with intensity and texture. Method L3: Super-mask method as described above with three 

strategies (S1-S3) for creating the super-mask. 

Among the 216 scans, we used 31 scans plus the associated ground truth segmentations of OARs from group GM1 for 

model building. All remaining 185 data sets were used for testing. 

 

Qualitative results 

Figure 3 shows representative recognition results from L1, L2, and L3 for some OARs. The first row and the leftmost 

two images in the second row are from regular AAR recognition using only intensity information. The right four 
images of the second row (left to right) show the ground truth and recognition results from L1, L2, and L3 for object 

OHP. The third and fourth rows display the ground truth and recognition results from L1, L2, and L3 for objects LPG, 

LX, SG, and PG. Overall, L2 and L3 have achieved similar recognition results that are better than those of L1. 

 

Quantitative results 

  

To determine which among S1, S2, and S3 would give the best results for approach L3 and the optimal amount of 
dilation needed, we used 23 data sets from group GM1. Once the best strategy and values were determined from this 

preliminary test, they were fixed and the full battery of tests was carried out on all remaining 162 data sets. Table 1 

shows recognition results achieved by using the three strategies S1-S3 in the preliminary test. All strategies used the 

same dilation parameter (Δ = 15).  Strategy (S3) achieved the best recognition results among the three strategies.  

 

Location error (LE) and scale error (SE) are used to quantitatively evaluate recognition results. LE is the distance (in 

mm) of the geometric center of the object model at recognition to the known true geometric center of the object. SE 

is the ratio of the estimated object size to its true size. The ideal values for these factors are 0 mm and 1, respectively. 

S3 achieves the best results among three strategies.  

With strategy S3, sensitivity of the dilation parameter (Δ) to recognition was tested with results presented in Table 2, 

where only the most challenging objects are listed. Recognition results of AAR super-mask (L3) using S3 with dilation 

parameter Δ varied from 5 to 40 are compared. Not surprisingly, different objects seem to need different dilation 
parameters (see the last row in Table 2) for best performance since different objects show different amount of variation 

over a population and hence lead to different amount of fuzziness. 

 

 

 

 

 Table 1. AAR recognition results by using different strategies for combining texture, intensity, and super-mask. 

    SB SBs SBi PG LPG RPG SG LSG RSG SC OHP MD ES LX All 

S1 
 

LE 6.52 2.65 4.90 10.59 11.56 11.07 11.27 10.46 11.64 10.44 13.09 5.34 7.39 11.17 9.15 

SE 1.00 0.99 0.97 1.17 1.18 1.24 1.09 1.29 1.24 0.92 1.32 1.02 0.87 1.22 1.11 

S2  
LE 6.52 2.65 4.90 9.45 10.70 8.56 8.66 7.50 7.95 10.44 15.72 5.34 7.39 12.97 8.63 

SE 1.00 0.99 0.97 1.02 1.00 1.04 0.85 0.81 0.81 0.92 0.89 1.02 0.87 0.85 0.93 

S3 
  

LE 6.52 2.65 4.90 8.65 6.99 6.47 8.06 6.87 7.12 10.44 12.18 5.34 7.39 11.19 7.48 

SE 1.00 0.99 0.97 1.03 1.18 1.22 0.87 0.88 0.92 0.92 1.30 1.02 0.87 1.15 1.02 

GT 
SG PG LX 
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AAR recognition comparison: LE and SE are reported in Table 3 to quantitatively show the recognition results from 

L1, L2, and L3 on all 162 testing data sets. Interestingly, Table 3 also shows that different recognition strategies 
perform differently for different objects, where some objects such as SB, SBs, SC, and MD have good recognition  

results with only L1 (intensity based), whereas other objects such as LX and PG had much improvement in terms of 
location error with L2 and L3. L2 achieved a 19.6% reduction in LE compared with that of L1, and L3 achieved the 

best recognition results with around 24.9 % improvement of LE compared with that of L1. If we only consider the 

most challenging objects LX, PG (LPG, RPG), and SG (LSG, RSG) as shown in Table 3, the recognition performance 

of L1 can be improved by up to 45.2% for LX and by up to 45.9% for SG by L3. Compared with L2, L3 on average 

improves the performance by around 10% on those objects. We believe that these results on these most challenging 

objects are excellent. In the segmentation literature, some objects such as LX and OHP are not dealt with at all but are 

frequently needed in RT planning. 

Recognition considering image quality: Image quality score (IQS) was introduced in segmentation evaluation in [11], 

where object quality score (OQS) was first derived from several quality factors such as streak artifacts, extent of 

pathology, intensity deviation, image noise, etc., and then OQS values were combined via a logical predicate to 

generate IQS for an image. For all 216 subjects in our cohort, images with low quality comprised 38.4% for the male 

group and 52.1% for the female group. AAR-R achieves a location error of less than 4 mm (~1.5 voxels in our studies) 
for good quality images. We observed that for the low-quality cases, 48% of object samples can still achieve an average 

location error within 5.4 mm (which is ~2 voxels) in the male group, and 60% of object samples can similarly achieve 

an average location error within 4.8 mm in the female group. We conclude that the proposed method works very well 

even on low quality clinical CT images with severe artifacts and/or pathology. 

Most of the current research on image segmentation is focused on object delineation, and without specific work on 

H&N object recognition/localization. Compared with the current literature [12-15], our study is much larger than any 

other study reported in terms of object localization, and deals with data sets that constitute the real-world heterogeneity 

that exists in clinical H&N cases. Instead of only using a minority of images for testing, most of the images (185/216 
= 86%) are used for testing in this study. Ref. [12] performed testing on 559 CT images, which only considered larger 

objects such as heart, liver kidneys in thoracic and abdominal regions and achieved location error of 5.4 voxels, and 

Ref [13-15] used less than 100 images for testing. Our performance based on a large number of testing data sets is 

comparable to or better than the results reported in those papers. More details are found in Table 4.  

Table 2. Recognition results of super-mask approach L3 (with strategy S3) with dilation parameter Δ from 5 to 40. 

Δ   PG LPG RPG SG LSG RSG OHP LX All 

5  
  

LE 8.81 8.53 8.27 7.37 8.14 6.83 14.56 13.33 9.78 

SE 1.03 1.05 1.09 0.86 0.81 0.82 1.18 0.89 0.98 

10  
  

LE 8.57 7.95 7.41 7.35 7.68 6.59 13.75 12.41 9.19 

SE 1.03 1.16 1.20 0.86 0.85 0.88 1.26 1.04 1.06 

20  
  

LE 9.05 6.87 7.24 10.69 7.02 7.27 12.05 10.08 8.51 

SE 1.03 1.18 1.23 0.86 0.89 0.94 1.32 1.18 1.11 

30  
  

LE 8.97 7.88 8.59 10.88 7.25 7.30 10.85 10.23 8.72 

SE 1.03 1.18 1.23 0.87 0.90 0.94 1.32 1.22 1.12 

40 
  

LE 8.97 7.88 8.56 10.88 7.25 7.30 10.98 10.42 8.77 

SE 1.03 1.18 1.23 0.87 0.90 0.94 1.32 1.22 1.12 

LX, OHP 30; 
 Others 15 

LE 8.65 6.99 6.47 8.06 6.87 7.12 10.85 10.23 8.17 

SE 1.03 1.18 1.22 0.87 0.88 0.92 1.32 1.22 1.11 

Table 3. Recognition results from different methods L1, L2, and L3. 

    SB SBs SBi PG LPG RPG SG LSG RSG SC OHP MD ES LX Mean 

L1 

  

LE 6.52 2.65 4.9 11.73 9.14 8.25 14.89 13.12 10.07 10.44 14.57 5.34 7.39 20.43 9.96 

SE 1.00 0.99 0.97 1.01 1.18 1.23 0.85 0.86 0.85 0.92 1.24 1.02 0.87 0.83 0.99 

L2 

  

LE 6.52 2.65 4.9 8.97 7.88 8.56 10.88 7.25 7.3 10.44 12.75 5.34 7.39 11.32 8.01 

SE 1.00 0.99 0.97 1.03 1.18 1.23 0.87 0.9 0.94 0.92 1.32 1.02 0.87 1.22 1.03 

L3 

  

LE 6.52 2.65 4.9 8.65 6.99 6.47 8.06 6.87 7.12 10.44 12.18 5.34 7.39 11.19 7.48 

SE 1.00 0.99 0.97 1.03 1.18 1.22 0.87 0.88 0.92 0.92 1.3 1.02 0.87 1.15 1.02 
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We are in the process of combining this well-localized object information with deep-learning strategies confined to 

recognized objects to significantly improve delineation accuracy for these very challenging H&N objects. 

4. Conclusions 

In this paper, we propose a new super-mask-based object localization approach within the AAR framework and 

improve recognition performance, especially for the most challenging head and neck OARs. We will further test the 

proposed approach on more H&N data sets in the future, as well as on data sets from other body regions such as thorax 

and abdomen for the RT application [4], including over 200 scans with more than 2000 3D object samples with ground 

truth and IQS and OQS.  

 

Table 4. Summary and comparison of recent work on object recognition on CT images. 

Approaches Modality No. of 

cases 

train/test 

Target 

objects 

No. of 

testing 

object 

samples 

Voxel size 

(mm3) 

Image/ Object 

quality artifacts 

Location 

error (mm) 

2D bounding 
box 

detection on 
ensemble 
learning, 

CMIG, 2012 
[12] 

Body 
torso 
 CT 

101/ 
559 

heart, liver, 
spleen, 

left/right 
kidney 

2795 0.6250.625 

0.625 

Not mentioned, 
not illustrated 

5.4 voxels 

Voxel- and 

slice-based 
deep 

learning for 
localization, 

DLMIA, 
2016 [11] 

Body CT 405/ 

49 

Right kidney 49 0.50.5 

 1.5 

Not mentioned, 

not illustrated 

7.8±9.4 

Three 
independent 

ConvNets 
for boundary 

detection, 
SPIE 

Medical 
Imaging, 
2016 [15] 

Cardiac/ 
chest/abdo

men CT 

50/50; 
50/49; 

100/100 

Left 
ventricle; 

liver; heart, 
aortic arch, 
descending 

aorta 

300-600 0.860.86  

(1.00-3.20); 

0.55  0.55 

 (0.9-2.00) 

Not mentioned, 
not illustrated 

4.9±2.8; 
19.0±10.5; 

5.3±3.2 

Single 

ConvNet 
trained to 

localize the 
2D bounding 

box, IEEE 
TMI 

2017 [14] 

Cardiac/ 

chest/abdo
minal CT 

50/50; 

50/49; 
100/100 

Left 

ventricle; 
liver; heart, 
aortic arch, 
descending 

aorta 

300-600 0.86 0.86 

 (1.00-

3.20); 

0.55  0.55 

 (0.9-2.00) 

Not mentioned, 

not illustrated 

4.5±3.4; 

16.9±11.5; 
5.3±3.7 

Improved 

AAR-
recognition 

via intensity, 
texture, 

super-mask  

H&N  

planning 
CT and 

re-
planning 

CT  

36/262 14 objects 

Head & neck 

2610 0.930.93
2 to 

1.61.63 

Only 2 images 

were   entirely 
free from streak 
artifacts; results 

are reported 
according to 
image/object 

quality 

< 4 mm (~1.5 

voxels) for 
good quality 
images; 6-12 

mm (4-5 
voxels) for low 
quality image  

 

The current study has made the following contributions: 

1) A new super-mask-based object localization approach is proposed for auto-contouring in H&N RT planning 

on CT images.  
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2) Within the AAR framework, a super-mask recognition approach is compared with previous methods and is 

shown to achieve the best results, especially for the most challenging H&N OARs. 

3) We evaluate AAR-R performance in the context of image quality on a large number of studies (216 CT 

images with ~2200 3D object samples) and demonstrate that the proposed method works well even on low 

quality images. 
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