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Purpose: In an attempt to overcome several hurdles that exist in organ segmentation approaches,
the authors previously described a general automatic anatomy recognition (AAR) methodology for
segmenting all major organs in multiple body regions body-wide [J. K. Udupa et al., “Body-wide
hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med.
Image Anal. 18(5), 752–771 (2014)]. That approach utilized fuzzy modeling strategies, a hierarchical
organization of organs, and divided the segmentation task into a recognition step to localize organs
which was then followed by a delineation step to demarcate the boundary of organs. It achieved
speed and accuracy without employing image/object registration which is commonly utilized in many
reported methods, particularly atlas-based. In this paper, our aim is to study how registration may
influence performance of the AAR approach. By tightly coupling the recognition and delineation
steps, by performing registration in the hierarchical order of the organs, and through several object-
specific refinements, the authors demonstrate that improved accuracy for recognition and delineation
can be achieved by judicial use of image/object registration.
Methods: The presented approach consists of three processes: model building, hierarchical recogni-
tion, and delineation. Labeled binary images for each organ are registered and aligned into a 3D
fuzzy set representing the fuzzy shape model for the organ. The hierarchical relation and mean
location relation between different organs are captured in the model. The gray intensity distributions
of the corresponding regions of the organ in the original image are also recorded in the model.
Following the hierarchical structure and location relation, the fuzzy shape model of different organs is
registered to the given target image to achieve object recognition. A fuzzy connectedness delineation
method is then employed to obtain the final segmentation result of organs with seed points provided
by recognition. The authors assess the performance of this method for both nonsparse (compact
blob-like) and sparse (thin tubular) objects in the thorax.
Results: The results of eight thoracic organs on 30 real images are presented. Overall, the delineation
accuracy in terms of mean false positive and false negative volume fractions is 0.34% and 4.02%,
respectively, for nonsparse objects, and 0.16% and 12.6%, respectively, for sparse objects. The
two object groups achieve mean boundary distance relative to ground truth of 1.31 and 2.28 mm,
respectively.
Conclusions: The hierarchical structure and location relation integrated into the model provide
the initial pose for registration and make the recognition process efficient and robust. The 3D
fuzzy model combined with hierarchical affine registration ensures that accurate recognition can be
obtained for both nonsparse and sparse organs. Tailoring the registration process for each organ by
specialized similarity criteria and updating the organ intensity properties based on refined recognition
improve the overall segmentation process. C 2016 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4942486]

Key words: shape modeling, fuzzy models, object recognition, fuzzy connectedness, segmentation,
registration
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1. INTRODUCTION

Computerized automatic anatomy recognition (AAR) refers to
the process of identifying and delineating objects in medical
images.1 AAR becomes essential to make quantitative radi-
ology a reality in routine radiological practice. Quantitative
radiology can lead to numerous clinical advances. Due to the
imaging process, acquired images often have various short-
comings. Different organs often have overlapping image inten-
sity ranges, and significant gray value variations exist within
individual organs and among organs from different patients.
Automatic, efficient, and robust segmentation of multitudes of
objects on radiological images is challenging.

To overcome the difficulty in segmentation stemming from
the above mentioned problems, prior knowledge about indi-
vidual objects is widely used in current segmentation methods.
Anatomy recognition methods, whether or not using explicit
object models, have made use of different types of anatomic
knowledge and taken different strategies. Major and reliable
structures were segmented in Ref. 2, and a region of interest
was then determined based on their spatial relationships. A
region of interest for the heart was decided by fuzzy constraints
expressing anatomical knowledge.3 The identification of the
carina in the trachea was used to detect a set of landmarks
for initializing a shape model in Ref. 4. Ribs were detected
to initialize a shape model to segment lungs in Ref. 5. Other
methods determine the pose of an object model in the image
with the intent of subsequently delineating the object.6–9

Besides using the object model of a single organ for
segmentation,10,11 multi-object strategies have been studied to
improve segmentation, as better constraints can be imposed on
the search process by the simultaneous consideration of multi-
ple objects.12 A competition is set up among objects for delin-
eating their regions/boundaries.13,14 The inter-relationships
among objects are included in the model to influence their
localization and delineation.15,16 Multi-object strategies try to
strengthen segmentability by incorporating relevant informa-
tion in model building, object recognition/localization, and
subsequently delineation.17–23 The dual relationship between
objects is integrated in the segmentation algorithm in Ref. 24.
Methods have also been proposed that focus on locating
objects or their anatomic features in image volumes rather than
delineating them.25–27

The anatomical knowledge about the shape and spatial
layout of organs can also be expressed via labeled images,
often called an atlas, which can be subsequently registered
to a target image to locate objects in the image. This is a
commonly adopted method for organ segmentation. A hier-
archical segmentation procedure is formulated using the con-
structed multi-organ statistical hierarchical atlases.28 The
approach consists of hierarchical recursive processes of initial
region extraction using probabilistic atlases and subsequent
refinement using multi-level/multi-organ statistical shape
models. An atlas-based segmentation approach based on a
combination of multiple registration operations was presented
in Ref. 29. Labels of the atlas images are propagated to target
organ and the propagated labels are combined by spatially
varying decision fusion weights. The dependence of different

label errors is further considered.30 In Ref. 31, a general
method for multi-organ segmentation of abdominal computed
tomography (CT) scans was presented based on a hierarchical
atlas registration and weighting scheme that generates target
specific priors from an atlas database by combining aspects
from multi-atlas registration and patch-based segmentation.
The final segmentation is obtained by applying an automat-
ically learned intensity model in a graph-cuts segmentation
step, incorporating high-level spatial knowledge.31

Owing to the fact that registration cannot handle topological
changes in the organ boundaries, there is still a gap in the atlas
approaches regarding the relationship between the deformed
atlas after registration and the real objects. To overcome this
nonconformity, a selection or fusion strategy has been used,
although with an increase in the computational load of the
recognition process.29,31 Atlas-based registration and delinea-
tion processes are separated in Ref. 32, where atlas-to-subject
registration is used to roughly recognize the organ followed by
a refined process with fuzzy-connectedness (FC) delineation
in its 2D form.

Most of the focus in the literature has been on specific
organs/organ systems and not on the same general framework
operating on a multitude of organs body-wide, especially for
the strategies that determine the pose of an object. Previously,
we presented a hierarchical body-wide fuzzy object model-
ing strategy for AAR.1 It encoded object relationships in an
anatomic hierarchy of objects and demonstrated that the same
general method can be used to perform AAR in different
body regions and even in different modalities with very good
results. In this paper, we combine some of the object-oriented
ideas embodied in that approach and bring in registration in
the hierarchical setting to achieve improved recognition and
delineation. We focus on the thoracic body region. Nomen-
clature lists the nine target organs and two composite objects.
The composite objects are RS (respiratory system = left lung
+ right lung + trachea and bronchi) and IMS (internal medias-
tinum = esophagus + pericardium + arterial system + venous
system), which are a union of other basic organs considered.
The notion of composite objects is useful in combining objects
of similar characteristics at a higher level of the hierarchy,
which often makes object recognition (and delineation) more
effective. For a precise anatomic definition of these organs,
refer to Ref. 1 (the Appendix, Table A1). These objects are
grouped into a hierarchical tree-like structure,1 shown in Fig. 1.
An object is called parent organ if there is a tree/subtree that is
rooted at it. The derivate nodes of the tree are offspring organs.

F. 1. Hierarchical arrangement of the objects in the thorax considered in
this study.
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Thin tubular objects will be called sparse objects and include:
TB, E, AS, and VS. Compact, blob-like objects will be referred
to as nonsparse objects and include: skin, LPS, RPS, and PC.
TS is a hybrid between these two types of objects, as it has both
types of features.

The gray intensity similarities of different organs, espe-
cially if they happen to be adjacent organs, make a recognition
process necessary before delineation to construct a complete
segmentation process.33 In this paper, the segmentation oper-
ation is divided into recognition and delineation processes.
Following the hierarchical structure and location relation of
thoracic anatomy defined in Ref. 1, the fuzzy shape model
of different organs is registered to the given target image
to achieve object recognition. A fuzzy-connected delineation
method is then used to obtain the final segmentation result of
organs with seed points provided by recognition. An overview
of the proposed method is presented in Fig. 2.

The main contributions of the paper are as follows: The
hierarchical recognition process is implemented in the regis-
tration framework compared to our previous work1 which did
not use registration. Hierarchical registration, which provides
initial location of an offspring organ, takes advantage of the
gray grouping property of organs and achieves robustness
in recognition. The spatial relationship knowledge between
different organs, exploited in the recognition process, is easily
incorporated in the registration framework through defining
exclusion region in search. The shape of an organ varies among
different samples, and the degree of variation among different
organs is different. To make recognition more tolerant to the
variations and improve recognition performance, a similarity
measure for registration is defined between the fuzzy model
(FM) of the object and target image. Moreover, different
weight strategies are used for different organs to strengthen

F. 2. Overview of the proposed hierarchical registration based segmenta-
tion method. The three boxes show the main steps involved in the method,
namely, model generation, recognition or object localization, and delineation
of the localized objects. Note the interaction between recognition and delin-
eation steps.

recognition. Both the gray statistics of organs obtained in the
modeling process and the gray statistics of organs estimated
with the recognized result are made use of to enhance the
accuracy of delineation. A brief description of some of the
contents of this paper appeared in the SPIE Medical Imaging
conference proceedings in 2014.34 The main enhancements
in this paper over the conference paper are more detailed
and complete description of all major steps, more extensive
evaluation, additional objects considered, and improved delin-
eation results due to better parameter estimation for affinity
functions.

The rest of this paper is laid out as follows. The fuzzy
model idea1 is summarized and some refinement is presented
in Sec. 2. In Sec. 3, we delineate methods for automatically
recognizing objects in target images that employ the hierar-
chical models. We present fuzzy-connectedness object delin-
eation techniques in Sec. 4. In Sec. 5, experimental results
and evaluation of the proposed method are presented, as well
as a comparison to methods from the recent literature. Our
conclusions are summarized in Sec. 6.

2. MODEL BUILDING

The hierarchical AAR approach1 consists of the following
steps: (1) Collecting image data for a specific population group
and delineating objects for the purpose of model building.
(2) Building fuzzy anatomy model of objects over the body
region. (3) Recognizing objects in a given image I of the
thorax. (4) Delineating the recognized objects. In step (2),
we explicitly encode object size and positional relationships
into the hierarchy and subsequently exploit this information
in object recognition in step (3) and delineation in step (4).
In the new hierarchical AAR approach, steps (3) and (4) are
not separate and independent but are intertwined, with the
delineation of an organ higher up in the hierarchical order
a prerequisite for recognition of organs lower down in the
hierarchical order, as shown with dotted arrow in Fig. 2.

2.A. Collecting image data and delineating objects
for modeling

This retrospective study was conducted following approval
from the Institutional Review Board at the Hospital of the
University of Pennsylvania along with a Health Insurance
Portability and Accountability Act waiver. Our goal is to
build models of normal thoracic anatomy. Thoracic contrast-
enhanced CT images that are radiologically near normal (with
the exception of occasional minimal small clinically insignifi-
cant abnormalities) were obtained via a search of our hospital
patient image database. The nine organs in Nomenclature
(excluding RS and IMS) in training sample sets were delin-
eated by using a combination of methods including live wire,
iterative live wire,35 thresholding, and manual painting, tracing
and correction. To minimize human labor and to maximize
precision and accuracy, algorithms in terms of a proper combi-
nation of these methods and the order in which objects are
delineated are devised first, all of which operate under human
supervision and verification.

Medical Physics, Vol. 43, No. 3, March 2016
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2.B. Building fuzzy models of objects

In previous work, we proposed the concept of a fuzzy object
model (FOM).36 The FOM for a body region R and subject
group G is a quintuple, FOM(R) = [H,M,ρ,λ,η]. H here is
a hierarchy, represented as a tree, of the objects O1,. . . ,OL

in R, where L represents the number of objects which are
considered for inclusion in model building. Specifically, the
hierarchy chosen for thorax is shown in Fig. 1. M = {FM(Ol):
1 ≤ l ≤ L} is a set of FM, one model per object. ρ describes the
parent-to-offspring relationship in H over G. ρ= {ρl,k: Ol is a
parent of Ok, 1 ≤ l, k ≤ L}. λ is a set of scale factor ranges λ
= {λl = [λb

l
,λh

l
] : 1 ≤ l ≤ L} indicating the size variation of

each object Ol over G. η represents a set of measurements
pertaining to the objects in R.

To adapt this approach to the proposed registration frame-
work, the above model is modified in several ways in this
paper. In the AAR method,36 FM(Ol) is created by aligning all
samples of Ol to their mean geometric center, mean scale, and
mean orientation (inertia axes) with an exact transformation
without requiring searching or optimization, and subsequently
averaging the distance transforms and mapping the averaged
distance values to a fuzzy membership value through a sigmoid
function (see Ref. 1 for details). (In this paper, when we
refer to the location of an object, whether binary or fuzzy, it
refers to the geometric center of the object which is obtained
by averaging the coordinates of all its voxels.) Starting from
such FM(Ol), we refine the fuzzy models by seven-parameter
affine registration of each training sample to the model and
regenerating the model. Figure 3 shows one slice of the refined
fuzzy models of several organs created in this manner. At each
voxel, the gray intensity denotes the membership of belonging
to the organ. When a voxel is covered by all aligned samples,
its gray value is K , or maximum membership or gray intensity
of image. When a voxel is not covered by any aligned samples,
its grayness is zero.

Moreover, the original CT image gray value statistics (mean
mφ, standard deviationσφ, and homogeneityσψ) of each organ
are also recorded in the model. These parameters are related to

F. 3. Axial slices through different objects from the refined fuzzy model
for: respiratory system, internal mediastinum (first row), left lung, pericardial
region, and arterial system (second row). The gray intensity denotes the fuzzy
membership of belonging to the organ, where brighter intensity means a
higher membership.

object recognition (Sec. 3) and delineation (Sec. 4). The values
of these parameters are considered part of the description of
η in the FOM quintuple for thorax. When used in seed point
specification and delineation, the above mean gray intensity
associated with some organs will be estimated again or refined,
as described in Sec. 4, from the target image based on the
recognition result. Besides the hierarchical relationship from
parent to offspring in Fig. 1, some relative location relationship
between different organs is also recorded in the model. TB is
located between RPS and LPS in a left-to-right orientation.
PC is located between RPS and LPS more anteriorly in a left-
to-right orientation. These relations can be used to narrow
the search range in recognizing organs, provided that related
organs have been recognized, easily.

The fuzzy object model FOM(R) output at the end of the
model building step is used in performing AAR on any target
image I as described in Secs. 3 and 4.

3. HIERARCHICAL RECOGNITION

The goal of recognition in AAR is to output the pose
of FM(Ol), or equivalently the pose-adjusted fuzzy model
FMT(Ol), for each Ol in a given target image I. In particular,
the recognition step places the shape model of an organ, such
as shown in Fig. 3, at the proper location in the target image
after making a proper scale and rotation transformation. In
the framework of this paper, the recognition step is realized
through registration. The result can be represented as a trans-
formation T∗ with translation t, rotation θ, and scale s. The
registration optimization process is given by

T∗= argmax
{T (t,θ,s)}

�
SI
�
FMT (Ol),Idl

�	
, constrained by i(T), c(T).

(1)

Here SI denotes the similarity between the transformed fuzzy
object model, FMT(Ol), and a transformed version Idl (see
below) of the target image I. Seven-parameter affine transform
T (translation, rotation, and scale) is used for registration.
Variables i(.) and c(.) are the initial condition and constraints
for the transform variables. The algorithm of unconstrained
optimization by quadratic approximation37 is used for finding
the optimal solution. Without proper constraints and initial
condition, such a search for the solution is difficult, error-
prone, and time-consuming for a large search space and due
to the existence of many local optima. The hierarchical recog-
nition method is aimed at rapidly locating the parent organ by
making use of the gray grouping information of some organs
and to provide initial parameters for the search of the offspr-
ing organ. Also, previously recognized and delineated organs
provide constraints for the other organs by making use of the
spatial relation. In the rest of this section, the transformed
image Idl and the similarity function SI in Eq. (1) are defined
followed by the description of the hierarchical recognition
process.

3.A. Likelihood map of organ

For each organ Ol, the similarity in Eq. (1) is defined be-
tween the transformed shape model FMT(Ol) and the

Medical Physics, Vol. 43, No. 3, March 2016
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likelihood image Idl of Ol, instead of the original target image
I. By making use of the mean and standard deviation, ml

φ and
σl
φ, of Ol in the original CT image, the likelihood image Idl(x),

where x denotes a voxel, is constructed from I(x) as

Idl(x)=



K, if I(x) ∈ ml
φ−α ·σl

φ,m
l
φ+α ·σl

φ



K · e−(I (x)−m
l
φ)2/2(σl

φ)2, otherwise
, (2)

where α = 2 was used for all organs except α = 0 for E. A small
value of α is used for E to avoid the search algorithm running
into a local optimum solution. K is the maximum gray intensity
in the resulting likelihood image. The recognition step is thus
implemented by registering the fuzzy model FM(Ol) to Idl for
each organ Ol. In other words, the fuzzy model is matched to
the best evidence presented by I in terms of intensity for Ol.
Figure 4 shows one slice of a target image I and an example
of Idl for RS, IMS, LPS, PC, and AS. It can be seen that
the corresponding object region has high gray intensity in the
likelihood image. However, there is also high gray intensity
elsewhere due to gray-level overlap of different organs, which
hampers the registration process for recognition.

3.B. Similarity measure for registration

The object region of an organ has high intensity in the
likelihood image, but it does not have homogeneous gray
intensity. On the other hand, the fuzzy shape model of an object
(Fig. 3) integrates the shape of the object from many samples
in the training set. It also has inhomogeneous gray intensity.
From the modeling process, the highest intensity region in the
shape model represents the most stable shape part of the organ,
which should take greater role in recognition than other parts.
Therefore, a similarity metric for registration is defined, with
the consideration of the above observations, as the negative
weighted sum of squared difference (WSSD) between Idl and
K ,

SI
�
FMT (Ol),Idl

�
=−

x

w
�
FMT (Ol)(x)�[Idl(x)−K]2, (3)

F. 4. One axial slice of a target CT image in the thorax (first row, upper
left) and the corresponding likelihood images for respiratory system, internal
mediastinum (first row from left to right), left lung, pericardial region, and
arterial system (second row from left to right). The gray intensity denotes the
likelihood of the pixel belonging to the organ.

where the weight w chosen is a function of the transformed
(adjusted) model membership value FMT(Ol). The manner
in which w is chosen for each organ is described at the end
of this section. Note that when similarity is maximal, the
sum of weighted square of difference Idl(x)−K of all voxels
in the domain of the transformed shape model FMT(Ol) be-
comes minimum. It means that the transformed shape model
and the corresponding data likelihood region appear most
similar.

3.C. Hierarchical recognition process

A composite object can be more easily and robustly recog-
nized than the individual objects. This is because the gray value
range of the composite object is larger and this has far less gray
value overlap with other nearby structures compared to single
objects. The initial solution for the offspring organ from the
recognized result of its parent will be very near to the desired
solution sought by registration. Furthermore, the constraints
or forbidden regions from previously recognized or delineated
organs can narrow the solution space for other organs yet to be
recognized and delineated.

With the location and scale of a parent organ known in
the hierarchy, an estimation of the locations of all descendant
objects in the tree is obtained through the object relationship
stored in ρ in the hierarchical model as described in Ref. 1,

Lc
o = Lc

p+
(
Lm
o −Lm

p

)
· Sc

p/Sm
p , (4)

where Lc
p and Sc

p denote the already computed location and
scale of parent organ in the target image. Lm

p and Sm
p denote

the mean location and scale of parent organ saved in the model.
Lm
o and Lc

o are the mean location in the model and the location
to be estimated in the target image for the offspring organ.

In our hierarchical recognition process, the skin object is
first segmented by thresholding combined with a morphology
filter. With the geometric center and scale computed from
the segmented skin, an estimation of the locations of all
descendant objects is obtained through Eq. (4). Based on the
initial location estimate from skin, and orientation and scale
described below, objects RS, IMS, and TS are then recognized
and subsequently also their offspring following the hierarchy.

With the skin object segmented, the intensity of the comple-
mentary (background) region within skin in the likelihood
image Id of RS is set to 0. That is, these regions within skin
have low belongingness to RS. The initial orientation and
scale of RS are just those computed from segmented skin.
The similarity for registration of RS is the negative sum of
squared differences (SSD) defined between FMT(O) of RS and
the modified data likelihood of RS. With the above setting,
RS is recognized. IMS is then recognized with the initial
location estimated for skin and initial scale and orientation
inherited from recognized RS. The similarity for registration to
recognize IMS is negative WSSD defined in Eq. (3). It means
that only a portion of voxels in the model FMT(O) of IMS
contributes to the computation of similarity, whereas the SSD
used for RS is not appropriate for the completely different
background in likelihood image and the FM(O) of IMS.

Medical Physics, Vol. 43, No. 3, March 2016
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For the recognition of LPS and RPS, the initial location is
estimated by Eq. (4) with the recognized result of RS. The
initial scale and orientation are those inherited from RS. The
similarity is negative SSD as for RS.

Before the recognition of TB, objects LPS and RPS are
fully delineated using the method described in Sec. 4. With
the segmented result of LPS and RPS, their regions are set as
forbidden regions for TB, by setting the corresponding voxels
in Id of TB to a very high value compared to K . The simi-
larity for the registration to recognize TB is negative WSSD
[Eq. (3)]. Also, the search range is confined between LPS and
RPS, in the anatomic left-to-right direction.

PC and AS are recognized in the same way after the recog-
nition of IMS. The initial locations are estimated by Eq. (4)
with the recognized result of IMS. Their initial scales and
orientations are inherited from those of IMS. The similarity
for PC and AS is negative WSSD. The confined region that
has smaller coordinate in the anterior–posterior direction than
RS is imposed on the location search for PC.

Before the recognition of E, TB is delineated. Subsequently
a threshold is applied to the target image and a possible air
region is obtained by subtracting the union of LPS, RPS, and
TB from the thresholded image. The data values of the voxels
in the possible air region are set to K , which means highest
membership in E. The recognition of E starts from the initial
pose provided by the recognition result of IMS. The similarity
is negative WSSD.

When negative WSSD is used as the similarity function for
registration, the weight function w(.) in Eq. (3) is specified as
follows: For TB and E, w(.) is FMT(O)/K . For IMS, PC, and
AS, w(.) is FMT(O)/K , if FMT(O) is greater than K/2, and
w(.) is 0 otherwise. For TS, w(.) is FMT(O)/K , if FMT(O)
is greater than 2K/3, and w(.) is 0 otherwise. The value of
FMT(O) at any point is between 0 and 1 mathematically. But
in the implementation, its range is from 0 to K , which leads to
FMT(O)/K in [0, 1]. For all registration tasks that use negative
WSSD as similarity, there is a scale range constraint if an initial
scale is provided. This constraint confines the result of scale in
0.85–1.15 times the initial scale as used in Ref. 1. The interval
is a relative scale, multiple of the mean scale size, in which
nearly all samples fall into this range of mean scale. Even if
some organ in the target image has a scale out of this range,
it will not influence the result significantly. This is due to the
fact that based on the recognition result there are also strict
gray intensity requirements for the seed points as described
later.

From the above settings for w(.), it can be seen that the
nonzero/zero region of this weight function comes from a
threshold of FMT(Ol). It leads to only a portion of the model
contributing to the computation of the similarity and different
weights are associated with them. Thus, in the modeling pro-
cess, if the shape of one or several samples deviates from
other samples greatly, they will contribute less to the shape
model of the organ, and consequently will have less effect on
recognition. The definition of similarity has more tolerance to
the variation of organs in the target image and is used in the
recognition of some organs which have high shape variation
among different subjects. Specifically, for the highly sparse

nature of the TS object, a high threshold on FMT(O) of TS
is used to compute the weight w(.) aiming to recognize the
vertebral part of the TS object.

4. DELINEATION OF ORGANS

Once the recognition process is completed and the adjusted
model FMT(O) is output for a given image I for an organ
O, organ delineation is performed on I using the method and
object order presented below.

In our system, object delineation is carried out via an adap-
tation of the iterative relative fuzzy connectedness (IRFC)
algorithm.38 Adaptation consists of using the fuzzy model
at recognition to devise ways of automatically finding seed
voxels in the object and the background tissue components
and forming affinity functions (needed by IRFC) by taking into
account the model constraints.

The FC framework38,39 is graph-based. An ordered graph
(C, α) is associated with the given image I = (C, f ), where C
is the set of all voxels of I, f (x) is the image intensity at voxel
x, and α is an adjacency relation on C such as 6-, 18-, or 26-
adjacency of voxels. Each ordered pair (c, d) of adjacent voxels
in α is assigned an affinity value κ(c,d) which constitutes the
weight assigned to arc (c, d) in the graph. To each path π in the
graph (or equivalently in I) in the set of all possible pathsΠa,b

between two voxels a and b of C, a strength of connectedness
Q(π) is determined, which is the minimum of the affinities
along the path. The connectivity measure Q∗(a,b) between a
and b is then defined to be Q∗(a,b) =max{Q(π) : π ∈ Πa,b}.
The notion of connectivity measure can be generalized to the
case of “between a set A and voxel b” by a slight modification:
Q∗(A,b)=max{Q(π): π ∈Πa,b and a ∈ A}.

By using a fast algorithm to compute Q∗(A,b), the ma-
chinery of FC allows a variety of approaches to define and
compute “objects” in images by specifying appropriate affinity
functions and seed sets. In particular, in IRFC, two seed sets
AO and AB are indicated for an object O and its background
B, respectively. Then the object indicated by AO is separated
optimally from the background indicated by AB by an iterative
competition in connectivity measure between AO and every
voxel c ∈C and between AB and c. In IRFC, AO and AB are
specified usually with human interaction. Below, we address
the affinity function and seed specification based on the recog-
nition result from Sec. 3.

4.A. Affinity function

In this paper, affinities κO(c,d) and κB(c,d) for O and B are
designed separately. Each of κO and κB has three components.
The description below is for κO. The same applies to κB,

κO(c,d)=ω1ψO(c,d)+ω2φO(c,d)+ω3γO(c,d). (5)

Here,ψO(c,d) represents a homogeneity component of affinity,
which maps the gray intensity difference between c and d into
an affinity value in [0, 1]. It means that the more similar image
intensities f (c) and f (d) are at c and d, the greater is this
component of affinity between c and d. As commonly done
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in the FC literature, we set

ψO(c,d)= exp

−
(( f (c)− f (d))/σo

ψ

)2
/2

. (6)

φO(c,d), the object feature component, on the other hand, de-
scribes the “degree of nearness” of the intensities at c and d to
the intensity mO

φ expected for the object O under consideration.
This nearness is expressed by

φO(c,d)= exp

−
((

max{ f (c), f (d)}−mO
φ

)
/σO

φ

)2
/2

. (7)

The third component γO(c,d) incorporates fuzzy model infor-
mation into affinity depending on the distance of c or d to
the support domain of the transformed fuzzy model of the
object and the two fuzzy model membership values µO(c) and
µO(d) at c and d for the object. This component has high value
when c and d both have high membership or both have low
membership in the registration aligned object model for the
corresponding foreground tissue (far away from the edge of
the support domain of the transformed fuzzy model of object).

Usually there are several organs forming the background
for an organ. Thus, for each organ in the background, its object-
based affinity component can be computed by the mean and
standard deviation with Eq. (7). A combined single object-
based affinity for background is constructed by taking the
maximum over all background objects.

The weights for the three components in Eq. (5) are chosen
differently for each organ (they add up to 1), as described in
Sec. 5. The homogeneity parameter is set equal for object and
background

(
σO
ψ =σ

B
ψ

)
and estimated from uniform regions in

the training images (after leaving out high gradient regions), as
commonly done in the FC literature.14 The remaining param-
eters (mO

φ , σO
φ , mB

φ , σB
φ ) are estimated automatically from the

training data sets from knowledge of O and B regions for each
object. All these parameters are estimated during the model
building process and recorded in the element η of the fuzzy
object model.

4.B. Parameter estimation for affinity computation

Since significant gray value variations exist within indi-
vidual organs and amongst organs from different patients,
some parameters obtained from the training set in the modeling
process may deviate significantly from the real gray characters
of the organ in the target image, especially for organs that have
small gray intensity range. We estimate the parameters mφ and
σφ for some organs based on the recognition result.

The updated parameters m′φ and σ′φ of an organ Ol are
computed from the gray intensities in the target image on
the voxels covered by a threshold result of FMT(Ol). For
different shapes of organs, the threshold result of FMT(Ol)may
have different overlap in the expected object. Thus, different
strategies are adopted to update the gray value statistics of
organs. Specifically, for PC, the sample set of gray inten-
sities is fitted with the sum of two Gaussian distributions
and two sets of mean and standard deviation are obtained
to substitute the previous ones from training samples. Thus
two object-based affinities are computed and the maximum of
the two affinities is used as the object-based affinity κO for

PC. For AS, the sample set of gray intensities is fitted with
the sum of two Gaussian distributions. The maximum of the
means of the two distributions is used to substitute the mean
from training samples. For E, we model the sample set of
gray intensities as one Gaussian distribution and the mean of
the distribution is used to substitute the mean from training
samples.

These updated gray value statistics of organs are used in
parameter definition required to compute the object-based af-
finity in Eq. (7) as well as in seed point specification described
below.

4.C. Seed specification

Seed sets AO and AB are found by a joint criterion of a
threshold for image intensity and for model membership for
each of O and B. The threshold interval ThO for O is a small
interval around mO

φ . This will be denoted by Thl for object Ol.
The threshold interval ThB for background is a union of similar
threshold intervals for the background objects. (In principle,
all objects other than O can be considered to be background
objects of O; however, in practice, only the anatomic neighbors
of O matter.) The only new parameters are T hM

O and T hM
B used

as model thresholds for indicating AO and AB, respectively.
Thus,

AO = {v ∈C : f (v) ∈ ThO and µO(v) ∈T hM
O }, (8)

AB = {v ∈C : f (v) ∈ ThB and µB(v) ∈T hM
B }. (9)

In our implementation, T hM
O is fixed at [K/2, K] and T hM

B is
set to [0, 0]. For some organs, the definition of the seed for
background (based on gray criterion for both target image and
model) can be substituted by a threshold result on the distance
function of the support domain of the model, i.e., an erosion
result of the support domain of the model.

In summary, the main parameters needed for each object
are as follows. For recognition, besides the gray value mean
and standard deviation obtained from model building in Sec. 2,
the parameter α is needed in Eq. (2) to compute the likelihood
map of organ and the weight function w(.) is needed in Eq. (3)
to compute the similarity. For the optimization problem in
Eq. (1), the search range and step are needed to be set. For
delineation, the weights for the three components in Eq. (5)
are needed to be set and the threshold intervals for gray value
and fuzzy model in Eqs. (8) and (9) are needed. To segment
skin, threshold and scale of filter are needed, as described in
Sec. 5.

5. RESULTS

The image data sets (same as those used in Ref. 1) are
selected from our hospital patient image database by a board-
certified radiologist (Torigian). They were verified to be of
acceptable quality and radiologically normal, with exception
of minimal incidental focal abnormalities. They consist of
contrast-enhanced breath-hold chest CT studies acquired dur-
ing full inspiration from fifty subjects aged from 50 to 60 yr.
The images were of size 512× 512× 51–69 with 12 bits of
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gray-level resolution and voxel size of 0.9×0.9×5 mm3. We
have tested the proposed method on organs listed in Nomen-
clature by using 20 samples for building the models and 30 for
testing. In all data sets, any extra slices falling outside the body
region as per definition are removed manually first. Ground
truth segmentations of all organs in all images were created as
previously explained.

A composite object is recognized only to provide initial
parameters for the recognition of its offspring organs. Thus,
delineation methods described in Sec. 4 are not needed and
have not been implemented for composite objects. Since VS
has wide image intensity variation and strong overlap with
AS and TS, and since it is adjacent to the latter, acceptable
recognition could not be obtained. Hence recognition and
delineation results are not reported for VS. We are not aware
of any published paper that successfully addressed this issue
except our own recent work using a different strategy expressly
designed to handle sparse objects.40

Thorax region is considered to extend axially from 5 mm
below the base of the lungs to 15 mm above the apex of the
lungs (arms are not included in this study).1 Similarly, each
object included in the thorax is defined precisely irrespective
of whether it is open-ended, because it straddles body regions
(for example, esophagus), or closed and contained within the
thorax but is contiguous with other objects.1

The recognition result is the transformed fuzzy object
model FMT(Ol). A special threshold K/2 is used on it and
a binary image is obtained, the location and orientation of
which are used to compute the recognition error. The location
error is the distance between the centers of the above binary
object and the ground truth object, the ground truth object
obtained by the same manual method described in the section
of model building. To characterize delineation accuracy, the
following two independent measures are defined: false positive
volume fraction (FPVF) and false negative volume fraction
(FNVF). In addition, we report mean Hausdorff distance
(HD) between the true and delineated boundary surfaces. The
HD measure is defined as the mean over all test subjects
of the median of the distances of the points on the delin-
eated object boundary surface from the true object boundary
surface.

5.A. Segmentation of skin and location estimation
and recognition of its offspring organs RS, IMS,
and TS

For all target images, binarization with a threshold of 700
(over the CT image gray scale of 0–4095 or −300 when ex-
pressed in Hounsfield Units) produces the rough skin object,
shown on the left in Fig. 5. Then morphological opening with
structuring element of size 7×7 is implemented on each slice to
remove the small noisy components. A morphological closing
with a linear structuring element of length 180 pixels followed
by reconstruction is used to fill the holes in the rough skin ob-
ject. This structuring element is chosen to be comprised of the
background region of skin, and not be comprised of the region
of LPS and RPS. Subsequently morphology opening with a
disk structuring element of radius 7 pixels followed by recon-
struction is used to delete the noisy segments disconnected to
the main part in the image. The middle of Fig. 5 shows an
example of final skin object delineation where the HD distance
error is 0.43 mm. For the accuracy of segmentation for skin and
other objects on all the 30 test samples, see Table III.

With the segmented skin, its volume and location can be
obtained. In the model, the normalized volume of skin and
location relationship between the offspring organs and skin is
recorded. Thus an estimation of the locations of all descendant
objects in the hierarchy is obtained through aligning the loca-
tion of skin in the model to the segmented skin in the target
image. The resize scale is decided by the ratio of the current
segmented skin volume to the normalized volume of skin in
the model. The location and scale alignment is expressed by
Eq. (4). The mean location estimation errors at this stage
for RS, IMS, and TS over all 30 target images are shown in
Fig. 6(a), with mean being 10, 14.6, and 9.3 mm respectively,
or roughly 2–3 voxels [noting that the voxel size is limited by
its greatest dimension (5 mm) and typically errors occur in the
direction orthogonal to the slice planes].

The maximum image gray value K is usually 4095 which
is used to define the similarity in Eq. (3) and the threshold
for seed specification. To implement the optimization solu-
tion of Eq. (1) for registration, the relative search range for
the transform parameters is set to 20 voxels and the search

F. 5. One axial slice showing rough skin (left), skin results overlaid on target CT image in the thorax (middle), and an enlarged patch of the middle image
selected from its top–right portion. In the middle and right images, the ground truth is shown in red, and delineation result is shown in blue. Green color denotes
the overlapping of blue and red. Very small amount of red and blue points in the image denotes the strong agreement between ground truth and segmented result
(see color version online).
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F. 6. (a) Location error stemming from placement of objects directly relative to their parent after the parent has been recognized/delineated. (b) Final location
error.

step is 1, 1, and 0.01 for translation, rotation, and scale,
respectively. Since good initial solution is provided based
on hierarchical recognition, multi-resolution strategy is not
needed in registration, which decreases the computational cost
considerably.

The mean recognition errors over all 30 target images after
registration are shown in Fig. 6(b). It shows a distinct decrease
of location error compared to the error stemming from loca-
tions estimated from the skin object, as shown in Fig. 6(a).
Since the recognition of TS is aimed at the vertebral parts
instead of the whole TS, slightly increased recognition error
in (b) over (a) is obtained for TS. However, TS recognition is

stable and its accuracy is enough to produce object seeds for
TS and hence delineation correctly.

Figure 7 illustrates the recognition result for RS and IMS
of a sample with location error being 3.99 and 6.9 mm, respec-
tively, on two slices, where it can be seen that the offspring or-
gans of RS and IMS are placed very close to the corresponding
organ in the target image, providing excellent initial location
for their recognition. The first row of Fig. 8 illustrates sample
recognition results for TS on two slices. Note how the vertebral
positions are accurate but the ribs are not since the weight in
WSSD for recognition specified in the end of Sec. 3.C leads to
the domination of vertebral part in the recognition.

F. 7. Two axial slices of recognized results of object RS (respiratory system) (first row) and IMS (internal mediastinum) (second row) overlaid on an original
CT image.
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F. 8. Two axial slices illustrating recognition (top) and delineation (bottom) results for thoracic skeleton on CT images.

5.B. Recognition of offspring organs of RS and IMS

The mean location errors for the offspring organs of RS and
IMS over the 30 target images are shown in Fig. 6(a), with
mean being roughly 2–5 voxels. The mean location recogni-
tion error for these organs is shown in Fig. 6(b). Overall, the
mean of initial location error and final recognition error of

all listed organs over all test samples is 14.7 and 7.38 mm
(recognition error excludes TS), respectively. The first row of
Figs. 9 and 10 shows sample recognition results in two slices
overlaid on original image for LPS, RPS, TB and PC, AS, and
E, respectively.

Since E does not have any distinct shape difference along
the z-axis, it is extremely difficult to recognize its accurate

F. 9. Two axial slices showing recognition (first row) and delineation (second row) results for left lung (first two columns), right lung (middle two columns),
and trachea and bronchi (last two columns) on thoracic CT images.
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F. 10. Two axial slices showing recognition (first row) and delineation (second row) results for pericardial region (first two columns), arterial system (middle
two columns), and esophagus (last two columns) on thoracic CT images.

location and orientation. A mean recognition error of 11.7 mm
is obtained, see Fig. 6(b), which we believe is outstanding
and is due to the intricate method of making use of anatomic
information in various stages in a hierarchical manner. No
effective methods have been reported in the literature for local-
izing and delineating esophagus on CT images. When the
location error is computed only based on the error along x-
and y-axis orientation, the mean error reduces to 4.03 mm with
standard deviation 2.71 mm. Thus, the recognition result may
provide proper seeds on only part of the slices with the methods
in Sec. 4.C. In this paper, the seed specification method is
implemented only in slices within a certain interval for all test
images.

5.C. Delineation of offspring organs of RS and IMS

PC and AS are spatially contiguous and have strong over-
lap in gray value distributions and therefore it is difficult to
segment them only based on object and homogeneity based
affinity. Model based affinity brings prior information into the
delineation process after effective recognition. Specifically,
for AS, model based affinity is defined only on the estimated
region of PC from the recognition result of PC, and in this
manner, IRFC sets up a competition in terms of connectivity
strength between PC and AS. There is strong overlap of
gray intensity between E and its surrounding structures. Thus
model based affinity is also needed for E. The delineation of
other organs does not need the model component since the
hierarchical recognition itself handles effectively the recog-
nition of foreground and background tissues for effective seed
placement.

T I. Weight parameter setting for computation of affinity for different
objects.

Object Homogeneity ω1 Object ω2 Model ω3

LPS, RPS, TB, TS 0.5 0.5 0
PC 0.25 0.25 0.5
AS 0.8 (0.5) 0.2 (0) 0 (0.5)
E 0.9 0 0.1

Table I summarizes the weights for homogeneity, object,
and model based components in Eq. (5) for each organ. Two
groups of weight parameters are used for AS, with and without
model based affinity.

Table II lists the background organs for each organ. From
the gray statistics of the organs, the object based component of
affinity for object and background is computed with Eq. (7). A
prime is added to the variable for some organs to indicate that
the gray statistics for them are the updated values estimated
in Sec. 4.B. Others are from the modeling process. Thoracic
adipose tissue (TAT) is not an organ listed in Nomenclature.
However, its gray statistics are needed, and hence used, in
delineation.

The mean intensity of TB from the training set is lower than
that of LPS and RPS, although in some it is greater. There-
fore, its statistics are used in the computation of object-based
component of affinity for the background of TB to prevent
leakage into LPS or RPS. The model based affinity can also
be used to prevent leakage.

Delineation results over the tested 30 subjects in terms
of FNVF, FPVF, and HD for the eight objects are listed in
Table III.

Because of the strong intensity overlap between E and the
surrounding structures, pure intensity based affinity cannot
separate E from the background adequately. If only homo-
geneity based affinity is used, the three measures reduce to
0.10, 0.003, and 10.3 mm. Large FNVF leads to large distance
errors. Therefore, model based affinity is adopted to further
confine the object and background. Since localization along

T II. Anatomic background objects considered for different objects. TAT
denotes thoracic adipose tissue and is used only as a background object.

Object Background

LPS RPS, IMS, TS, TAT
RPS LPS, IMS, TS, TAT
TB TB, IMS, TAT
TS PC′, AS′, RS, TAT
PC AS′, RS, TAT
AS AS′, RS, TS, TAT
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T III. Mean ± standard deviation of delineation accuracy for the different
objects.

Object FNVF FPVF HD (mm)

Skin 0.00 ± 0.00 0.01 ± 0.01 0.7 ± 0.47
LPS 0.04 ± 0.02 0.00 ± 0.00 0.8 ± 0.39
RPS 0.03 ± 0.01 0.00 ± 0.00 0.85 ± 0.39
PC 0.09 ± 0.08 0.00 ± 0.00 2.89 ± 0.82
TB 0.06 ± 0.07 0.00 ± 0.00 0.85 ± 0.37
AS 0.12 ± 0.06 0.00 ± 0.00 2.88 ± 1.86
E 0.2 ± 0.07 0.00 ± 0.00 3.1 ± 0.88
TS 0.09 ± 0.06 0.01 ± 0.01 1.57 ± 0.67

z-axis is less accurate, a very small weight is used for the
model component. With the same consideration, the object and
background seed strategy in Sec. 4 is implemented only in
the middle one third slices, which is sufficient for delineation
based on the property of IRFC.

The second row of Fig. 9 shows the delineation results in
two slices overlaid on original image for LPS, RPS, and TB,
respectively. The HD error for them is 1.3, 1.1, and 0.38 mm,
respectively. The second row of Fig. 10 shows the delineation
results in two slices for PC, AS, and E, respectively. The
distance error of them is 3.36, 2.04, and 2.57 mm, respectively.
The second row of Fig. 8 shows the delineation result for TS of
distance error 1.3. The delineation results shown in the second
row of Figs. 8–10 are all corresponding to the recognition
results shown in the first row.

The computation time for the segmentation process has
been estimated on Dell precision t3600 with 4-core Intel Xeon
3.6 GHz CPU with 8 GB RAM. The mean time for one organ
over the 30 samples is reported in Table IV. The time for the
computation of data likelihood is omitted since it is insignif-
icant. It can be seen that the mean time for all organs for one
subject is less than 2 min. The delineation of skin takes most
of the time. However, if skin is not the segmentation object,
other organs can still be recognized with the same framework.
We have tested the recognition of RS and IMS without the
initial condition from skin. There is no distinct difference in
recognition accuracy and compute time. This is because the
gray intensity grouping property makes the recognition robust.

T IV. Mean computational time in seconds per subject for different
objects and organ operations.

Object Recognition Delineation

Skin — 48.40
RS 1.37 —
IMS 0.90 —
LPS 0.97 5.97
RPS 1.00 6.67
TB 0.10 6.53
PC 0.33 6.57
AS 0.97 8.30
E 0.33 8.03
TS 2.47 19.00
All 8.43 109.00

5.D. Comparison to results reported in the literature

Compared to the AAR strategy of Ref. 1 that does not use
hierarchical registration, these results are generally better for
both recognition and delineation. An overall improvement in
mean FPVF and FNVF of nonsparse organs (skin, LPS, RPS,
and PC) from 1.25% and 5.5% in Ref. 1 to 0.34% and 4.02%
and sparse organs (TB, AS, and E) from 1% and 27% in Ref. 1 to
0.16% and 12.6% has been achieved by the new strategy. Note
that these comparisons are on exactly the same data sets for the
two methods. For the sparse organs, the decrease of both FPVF
and FNVF is substantial, which led to the substantial decrease
of distance error from 4.5 to 2.28 mm. This is mainly because
of adaptive parameter estimation for the affinity computation
used for some organs and more consideration for the object-
based affinity computation and weight grouping for different
weights. There is also improvement in the computation time
for recognition by the new strategy. However, computation
time has increased for the new strategy for object delineation.
This is because of the new strategy for skin, which is time-
consuming but achieves higher accuracy. In the new strategy,
the search neighborhood in IRFC (adjacency relation in graph)
is 18-adjacency for TS and 6-adjacency for others. Thus, in
delineation TS is more time-consuming than others.

The performance of the proposed method is comparable to
other state-of-the-art organ segmentation methods.4,5,41–43 All
methods, except our previous work,1 focus on single or very
few organs. Sofka et al.4 proposed a method for shape model
initialized by using landmarks and refined using a freeform
refinement. The detection of a set of landmarks near the lung
borders is based on the pose parameters of left and right
lungs, which is predicted by a hierarchical detection network
after identifying the carina in the trachea. The method was
tested in 68 volume images. The symmetric point-to-mesh
distance of detection results and annotations for both lungs
is about 2.0 mm. Sun et al.5 developed a lung segmentation
method with a shape model and graph-cut approach. The shape
model was trained using 41 scans with segmented lungs and
initialized in a new scan with detected ribs. The method was
tested on 30 scans and a mean Dice coefficient of 0.975 was
obtained. The mean Dice coefficient for LPS and RPS on the
30 testing samples with our proposed method is 0.9737 and
0.9757, respectively.

In Ref. 41, a shape-based human airway segmentation
scheme was proposed to suppress the leakage into surrounding
areas which is based on fuzzy connectivity method. A math-
ematical shape optimization approach was embedded into the
fuzzy connectivity algorithm. The method was tested on six
real image datasets with a FNVF and FPVF of 0.1482 and
0.0119. Another method44 for airway extraction adopted other
standards such as total tree length and number of branches
since it is difficult to manually and accurately trace and mark
the 3D airway trees depicted on CT images and use these as a
reference standard for evaluation purposes.

A model based 3D level set esophagus segmentation
method initialized with a principal curve tracing algorithm is
reported in Ref. 42 to solve the esophagus centerline detec-
tion problem. The result on thoracic CT scans (resolution
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0.98×0.98×3.75 mm3) from eight subjects was reported with
a point-wise mean distance error of 2.1 mm. A multi-step
method is proposed in Ref. 43 for esophagus segmentation
which integrated a detector that is trained to learn a discrim-
inative model of the appearance, prior shape expressed using
a Markov chain model, and a nonrigid deformation to better
fit the boundary of the organ. It achieved a mean boundary
distance error of 1.80 mm. The segmentations typically ranged
from the thyroid gland down to a level below the left atrium.
Note that these methods are specially designed for esophagus
and are difficult to generalize to other organs. Our method for
esophagus is general and is within a general framework of
AAR for other major objects within the thorax.

6. CONCLUSIONS

A general recognition method and a more specific delinea-
tion method for segmentation of thoracic organs are presented
in this paper. Without loss of the core strategy, all organs are
treated in the same way with parameter tuning for different
organs. The parameters for recognition and delineation of
each organ are kept constant among all test samples. Thus
the segmentation method is automatic and general. Region
based fuzzy modeling1 is easy to implement in the optimiza-
tion process and can be adapted to varying object topology.
Hierarchical registration combined with fuzzy modeling can
achieve robust recognition of parent organs and speed up the
recognition of offspring organs. Weight differences in simi-
larity metric provide tolerance for the fuzziness in data and
emphasize the dominant parts of objects. Since there is a great
deal of variation in the manner in which objects vary over a
population and their geographic context, parameters will have
to be set up differently for different classes of objects. We have
demonstrated that still this can be achieved within a general
framework. Model based affinity in fuzzy connectedness can
regulate the delineation of contiguous objects having similar
gray intensity.

Due to the existence of strong gray overlap between some
organs and their surrounding structures, shape constraints
based on the recognition result are used as complementary
conditions to pure intensity constraints. However, due to the
shape variability of organs among different samples, espe-
cially of the sparse organs, shape constraints introduced from
the aligned fuzzy model may produce adverse side effects.
Other local image information about gray intensity or shape is
possible to be integrated into the IRFC algorithm to improve
the delineation result. A global intensity parameter is adopted
in the delineation for one organ in the target image. However,
since there is large intensity variation at different locations
of the same organ, such as in AS, such a global parameter
may be inadequate to compute the affinity for all voxels. This
observation is also desirable to be considered in the affinity
computation in IRFC.
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