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a b s t r a c t 

Fully annotated data sets play important roles in medical image segmentation and evaluation. Expense 

and imprecision are the two main issues in generating ground truth (GT) segmentations. In this paper, in 

an attempt to overcome these two issues jointly, we propose a method, named SparseGT, which exploit 

variability among human segmenters to maximally save manual workload in GT generation for evaluat- 

ing actual segmentations by algorithms. Pseudo ground truth (p-GT) segmentations are created by only a 

small fraction of workload and with human-level perfection/imperfection, and they can be used in prac- 

tice as a substitute for fully manual GT in evaluating segmentation algorithms at the same precision. 

p-GT segmentations are generated by first selecting slices sparsely, where manual contouring is con- 

ducted only on these sparse slices, and subsequently filling segmentations on other slices automatically. 

By creating p-GT with different levels of sparseness, we determine the largest workload reduction achiev- 

able for each considered object, where the variability of the generated p-GT is statistically indistinguish- 

able from inter-segmenter differences in full manual GT segmentations for that object. Furthermore, we 

investigate the segmentation evaluation errors introduced by variability in manual GT by applying p-GT 

in evaluation of actual segmentations by an algorithm. 

Experiments are conducted on ∼500 computed tomography (CT) studies involving six objects in two 

body regions, Head & Neck and Thorax, where optimal sparseness and corresponding evaluation errors 

are determined for each object and each strategy. Our results indicate that creating p-GT by the con- 

catenated strategy of uniformly selecting sparse slices and filling segmentations via deep-learning (DL) 

network show highest manual workload reduction by ∼80-96% without sacrificing evaluation accuracy 

compared to fully manual GT. Nevertheless, other strategies also have obvious contributions in differ- 

ent situations. A non-uniform strategy for slice selection shows its advantage for objects with irregular 

shape change from slice to slice. An interpolation strategy for filling segmentations can achieve ∼60-90% 

of workload reduction in simulating human-level GT without the need of an actual training stage and 

shows potential in enlarging data sets for training p-GT generation networks. We conclude that not only 

over 90% reduction in workload is feasible without sacrificing evaluation accuracy but also the suitable 

strategy and the optimal sparseness level achievable for creating p-GT are object- and application-specific. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Background 

Numerous 3D anatomy segmentation methods have emerged 

ince the advent of tomographic imaging modalities in the 1970s. 

arly methods were based purely on the information available in 
∗ Corresponding author: Medical Image Processing Group, Department of Radiol- 

gy, 3710 Hamilton Walk, 6th Floor, Rm 602W, Philadelphia PA 19104, United States. 
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he image to be segmented ( Herman et al., 1979 ; Liu, 1977 ). Since

hey did not harvest information available via anatomic priors, they 

eeded ground truth (or reference) segmentations only for seg- 

entation evaluation. Although such approaches continue to seek 

ew frontiers, methods that exploit priors in various forms have 

merged during the past 2-3 decades and have shown significant 

ain in segmentation robustness and accuracy. These later methods 

ay be generically referred to as model-based since they employ 

ome form of model to encode prior information. Such models in- 

lude shape and geographic models ( Cootes et al., 1995 ; Pizer et al.,

003 ; Shen et al., 2011 ; Staib and Duncan, 1992 ; Udupa et al.,

https://doi.org/10.1016/j.media.2021.101980
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014 ), atlases ( Ashburner and Friston, 2009 ; Christensen et al., 

994 ; Chu et al., 2013 ; Gee et al., 1993 ; Shi et al., 2017 ), and deep

eural network models ( Agn et al., 2019 ; Cerrolaza et al., 2019 ;

rozdzal et al., 2018 ; Moeskops et al., 2016 ; Wang et al., 2019a ).

owever, for these methods, fully annotated ground truth (GT) seg- 

entations that capture the very variability over a human popula- 

ion of focus they purport to encode is of fundamental importance, 

ome of them requiring a large number of such data sets for robust 

odel building alone, not to mention for evaluation as well. 

There are two main issues with generating GT segmentations: 

xpense and imprecision. GT reference is most typically provided 

y manual (human expert) contouring of anatomical objects in 

edical imaging. Thus, generating large fully manual GT sets be- 

omes impractical and expensive ( Schipaanboord et al., 2018 ). Un- 

upervised and semi-supervised methods may be utilized that 

o not require fully annotated data sets which can ease some- 

hat the expense issue. However, accuracy and convergence in 

earning are superior with supervised learning than with semi- 

upervised or unsupervised methods ( Park et al., 2019 ). Crowd- 

ourced non-expert annotation can be another solution to the ex- 

ense issue. However, the second issue – imprecision – that nat- 

rally and commonly exists among expert annotations becomes 

ore pronounced when non-expert annotations are employed. 

everal factors ( Joskowicz et al., 2019 ) lead to imprecision in man- 

ally annotated GT segmentations including image quality issues, 

ack of standard ways of defining objects or variations in the 

nterpretation of (pseudo) standards (when they exist), human 

ubjectivity in interpreting boundaries in images, and institution- 

nd application-specific vagaries in clinical contouring culture. The 

agnitude of these imprecisions is object-specific and application- 

pecific. Small, non-compact, and sparse objects entail larger de- 

rees of imprecision inversely proportionate to their size com- 

ared to large, well-defined, and compact objects. The Expectation- 

aximization-based STAPLE ( Warfield et al., 2004 ) framework and 

ts extensions are a series of methods commonly used to gener- 

te consensus GT from multiple manual segmentations. However, 

nsupervised/semi-supervised methods and generating consensus 

egmentations deal with only one of the two key issues and not 

oth simultaneously. 

.2. Related work 

Numerous works have investigated solutions to the issues of 

xpense and imprecision in generating GT segmentations. Bound- 

ng box ( Rajchl et al., 2016 ) or partial annotation via partial 

lices or scribble strategies ( Can et al., 2018 ; Çiçek et al., 2016 ;

och et al., 2017 ) are used in semi-supervised learning based algo- 

ithms in medical image segmentation, while it has been pointed 

ut that unsupervised and semi-supervised methods cannot sur- 

ass the accuracy of fully supervised methods ( Rajchl et al., 2016 ; 

apandreou et al., 2015 ; Wang et al., 2019b ). Cost-effective annota- 

ion methods deal with the expense issue by active learning or in- 

eractive segmentation to iteratively improve performance of seg- 

entation models ( Tajbakhsh et al., 2020 ), where active learning 

ethods select most representative and uncertain samples to gen- 

rate as few GT segmentations as possible ( Yang et al, 2017 ), and

nteractive segmentation methods modify the auto-segmentation 

anually and fine-tune the model in a sample-specific manner 

 Wang et al., 2018 ). They are not suitable to generate a large GT

et which is needed in evaluation. 

Machine learning and deep learning methods have been uti- 

ized to conduct segmentation evaluation and estimate evaluation 

etrics without ground truth. A SVM regressor ( Kohlberger et al., 

012 ) trained by a space of shape and appearance features or 

egression neural networks trained directly from binary and in- 

ensity images ( Robinson et al., 2018 ) or the difference im- 
2 
ges of intensity images reconstructed from binary segmentations 

 Zhou et al., 2020 ) are utilized to yield metrics without knowing 

T delineation. Reverse testing ( Bhaskaruni et al., 2018 ) also con- 

ributed to segmentation evaluation without GT in medical images. 

 Valindria et al., 2017 ) introduce a reverse classification accuracy 

RCA) framework which took predicted segmentations on test sam- 

les as pseudo ground truth and train a classifier to reversely test 

n labeled training samples. The predicted segmentations are con- 

idered as of good quality if the trained classifier works well on at 

east part of the training samples. Extensions of RCA are also uti- 

ized to estimate Dice evaluation metric values in cardiac magnetic 

esonance (MR) images in ( Robinson et al., 2017 , 2018 , 2019 ). In-

tead of directly generating metrics for a single method or a single 

egmentation, there are also unsupervised methods to compare ef- 

ectiveness of different segmentation algorithms by computational 

tatistical measures ( Chabrier et al., 2006 ) or region-correlation 

atrix ( Sikka and Deserno, 2010 ). 

Besides the expense issue, the imprecision issue also naturally 

nd commonly exists in the human-drawn ground truth segmen- 

ations ( Joskowicz et al., 2019 ; Park et al., 2019 ; Sharp et al., 2014;

ang et al., 2018 ) and will lead to different segmentation results 

nd metric values when the samples are evaluated on ground truth 

enerated by different algorithms ( Lampert et al., 2016 ) or an- 

otated by segmenters different from those employed for train- 

ng samples ( Shwartzman et al., 2019 ). ( Heller et al., 2018 ) inves-

igated the influence the errors in labels may have on the seg- 

entation quality. ( Bø et al., 2017 ) demonstrated that even for 

adiologists, intra-segmenter differences still exist depending on 

heir familiarity with the segmentation tool. To minimize inter- 

egmenter disagreements and generate more precise consensus 

round truth, segmentations from multiple human segmenters are 

tilized by averaging ( Cheplygina and Pluim, 2018 ), majority vot- 

ng ( Nowak and Rüger, 2010 ; O’Neil et al., 2017 ), maximizing 

opological agreements ( Yang and Choe, 2011 ), and Expectation- 

aximization-based STAPLE ( Warfield et al., 2004 ) method and its 

xtensions ( Gordon et al., 2009 ; Li et al., 2011 ; Schlesinger et al.,

017 ; Shwartzman et al., 2019 ). Since generating expert-level high 

uality annotations is a time-consuming and expensive task, meth- 

ds have been investigated to evaluate the quality of crowd- 

ourced non-expert annotations and fuse crowd-sourced labels 

 Gurari et al., 2015 ). ( Cheplygina and Pluim, 2018 ) observed that 

lthough the agreement from crowd-sourced annotations is best 

hen utilized in medical image analysis, the disagreement of seg- 

enters is also informative. Inter-segmenter differences provide 

ood reference for algorithm evaluation ( Joskowicz et al., 2019 ; 

ark et al., 2019 ; Popovi ́c and Thomas, 2017 ) and also can be uti-

ized to estimate regions with variability ( Zhou et al., 2020 ) or un-

ertainty ( Jungo et al., 2018 ) for helping in making clinical deci- 

ions. 

Expense is purely a labor/cost issue. Imprecision , however, raises 

everal conceptual issues. Although great strides have been made 

n examining these dual issues in the literature separately as delin- 

ated above, they have not been examined jointly or one as a func- 

ion of the other. This area calls for a lot more attention in view of

he promises suggested by deep neural network models. Most im- 

ortantly, the practical question of the savings that ensue in cost 

s a function of the imprecision in GT data as a result of its “spar-

ification” has not been examined so far. In other words, is it fea- 

ible to simulate full GT segmentations from sparse GT data such 

hat the simulated GT is as perfect/ imperfect as, but not worse 

han, the GT generated by human experts? The cost saving then 

ill directly depend on the degree of sparsity affordable f or the 

parse GT data and will be tied with the second issue of impreci- 

ion. In this work, keeping the expense issue in mind and recog- 

izing the fact that perfect ground truth does not exist, we take 

nter-segmenter variability as reference to create segmentations as 
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Fig. 1. A schematic representation of the SparseGT method. 
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erfect/imperfect as those produced by expert segmenters with the 

ttendant reduction of manual workload via proper strategies for 

parse slice selection and segmentation filling. The created seg- 

entations should be able to replace full manual GT in segmen- 

ation evaluation. There is no work in the published literature to 

ddress this important and very practical issue. 

.3. Outline of approach 

In this paper, we propose a method, named SparseGT , to deal 

ith the expense and imprecision issues jointly by exploiting 

atural variability existing among human segmenters, generating 

seudo ground truth (p-GT for short) from sparse manual seg- 

entations, and utilizing p-GT in actual segmentation evaluation. 

he method is fully described in Section 2 and is schematically 

resented in Fig. 1 . p-GT segmentation is generated in two se- 

uential steps: selecting slices sparsely to conduct manual an- 

otation and filling segmentations for other slices. Each of the 

wo steps is investigated by two strategies, including equal in- 

erval based uniform strategy and shape change function based 

on-uniform strategy for slice selection, and shape-based interpo- 

ation strategy ( Raya and Udupa, 1990 ) and object-specific 2D U- 

et ( Ronneberger et al., 2015 ) based deep learning strategy for seg- 

entation filling. The largest sparseness levels where p-GT seg- 

entations for the object under consideration are statistically in- 

istinguishable from the full manual GT, taking into account the 

ariability existing among a group of expert segmenters, are con- 

idered as the object-specific optimal sparseness to determine the 

ost saving that is feasible for the SparseGT method. The created 

-GT can generate accurate metric values as full manual GT did in 

egmentation evaluation. 

In Section 3 , we describe the experimental set up, anatomic ob- 

ects and data sets utilized, results, and their analysis. Experiments 

re conducted on the four possible combinations of strategies for 

parse slice selection and segmentation filling. The optimal sparse- 

ess factors are object-, strategy- and application-specific, and the 

ptimal combinations of strategies are determined by examining 

he yielded actual workload reduction and their actual availability 

n practice. Our conclusions, gaps remaining in this work, and av- 

nues for potential improvements are discussed in Section 4. 

. Method 

Our description will follow the schematic in Fig. 1 . 

Notation: 

B: Body region of interest. 

O: Anatomic object of interest in B. 
3 
I = { I 1 , …, I N }: Image data sets of B for which complete GT de-

ineations for O are available. 

Ib = { I 1, b , …, I N , b }: Binary images representing complete GT de- 

ineations of O in I . 

J b = { J 1, b , …, J N , b }: Binary images representing complete seg- 

entations of O in I by a segmentation algorithm A. 

Pb = { P 1, b , …, P N , b }: Optimally generated p-GT corresponding to 

b . 

Abbreviations and acronyms commonly used in this paper are 

isted in Table 1 for ease of reference. 

.0. Determining slice range for object O 

Let N O be the number of slices covering an object O (such as 

he mandible) in a patient image that includes O. The coverage 

f O should be decided by expert segmenters to guarantee that a 

roper and consistent anatomic definition of O is adhered to. With- 

ut loss of generality, we assume that the slices are transaxial with 

espect to B and denote the cranio-caudal direction orthogonal to 

he slice plane by z. 

.1. Sparse slice selection 

One of the main aims of the SparseGT method is to reduce 

anual workload needed in creating expert-quality p-GT for seg- 

entation algorithm evaluation, where only a few out of all slices 

re selected to conduct manual annotation and segmentations 

n other slices are automatically created via segmentation filling 

trategies. Two strategies are investigated to determine sparse slice 

ositions, as illustrated in Fig. 2 . Along the z axis, slices of object 

 are sparsely selected in a uniform or non-uniform manner. 

(1) Uniform strategy for selecting sparse slices 

We use a parameter t to represent the degree of uniform 

parseness, where one slice is selected every ( t + 1) slices within 

he range of N O slices occupied by the object sample, i.e., t slices 

re skipped without performing manual annotation between two 

djacent selected sparse slices. An ideal t with least workload 

ould be t 3 = � ( N O – 3)/2 � , where the middle slice and two end

lices are selected and all slices in between are divided into two 

kipped blocks with t 3 slices. More generally, if we set 1 ≤ t n ≤ t 3 ,

 S = � ( N O – 1)/( t n + 1) � + 1 slices are selected with uniform spac-

ng. Fig. 2 (a) demonstrates an example for uniform sparse slice 

election, where the object sample occupies N O = 23 slices and 

 = 4 is determined as the sparseness factor, and only N S = � (23–

)/(4 + 1) � + 1 = 5 slices are selected to conduct manual annotation.

(2) Non-uniform strategy for selecting sparse slices 
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Table 1 

Abbreviations used in the paper. 

Abbreviation Full Name Abbreviation Full Name 

CtEs Cervical esophagus GT Ground truth 

Mnd Mandible p-GT Pseudo ground truth 

OHPh Orohypopharynx constrictor muscle Tr Training data set 

Hrt Heart Te Testing data set 

TB Trachea & proximal Bronchi VOI Volume of interest 

RLg Right lung ROI Region of interest 

DC Dice coefficient SI Shape-based interpolation 

JI Jaccard index DL Deep learning 

ASD Average symmetric surface distance U Uniform slice selection 

EOR Exclusive or N Non-uniform slice selection 

PCC Pearson correlation coefficient 

Fig. 2. Illustration of the process of selecting positions of sparse slices for the given GT data. (a) Uniform strategy. Manual contouring is performed on every ( t + 1) th slice. In 

the figure, t = 4, and bold vertical lines indicate the selected sparse slices. (b) Non-uniform strategy. The four positions with local extrema in shape-change function constitute 

anchor slices for the object. These positions together with the two end slices constitute 6 anchor slices selected for manual contouring. 
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In the uniform strategy, we selected sparse slices along z in- 

ependent of the variation of object shape along z. In the non- 

niform strategy, our idea is to select slices strategically – more 

ensely where shape changes more rapidly from slice to slice and 

ore sparsely where this change is small. This is accomplished by 

rst selecting anchor slices at locations (z positions) where a shape- 

hange function shows local extrema, and subsequently selecting 

 ≥ 0 slices uniformly positioned between every pair of succes- 

ive anchor slices, as illustrated in Fig. 2 (b). In the figure, 4 such

ocal extrema are depicted. Together with the two end slices of 

he object sample, there will be 6 anchor slices in this case. Pa- 

ameter k is used to represent the degree of non-uniform sparse- 

ess, where k = 0 if only anchor slices are selected as sparse slices. 

lthough the selected k positions are evenly distributed between 

ach pair of successive anchor slices, since anchors themselves 

re non-uniformly distributed along the z axis, the sparse slices 

elected will be non-uniformly distributed guided by the shape 

hange. In order to systematize the selection of anchor slices in- 

ependent of the individual samples of O, we map the z range of 

ach sample of O to a normalized range [0, 1], denote the position 

n this normalized range by ̄z , and determine an average shape- 

hange function δS ( z ) for O based on a population S of the GT sam-

les of O. The steps involved in selecting the non-uniformly dis- 

ributed slices are as follows. 

tep 1. Estimate a shape change measure M SC (s i ) for each slice po-

ition. 

Let s i denote a slice through object O in a GT binary image I in

 b at position z i . To estimate the change in shape of O in I at s i ,

 neighborhood is first defined around s to measure local shape 
i 

4 
hange at s i . A factor R is used to define this neighborhood, where

 n = max ( � N O / R � , 1) slices previous and next to s i are considered

n defining M SC (s i ). The shape change is measured by two metrics: 

xclusive or (EOR) and Jaccard index (JI). M SC (s i ) is calculated as a 

eighted average of shape changes between s i and each slice in its 

eighborhood, where the weight factor is determined based on the 

istance of the neighboring slices from s i , as shown in (1) : 

 SC ( s i ) = 

∑ 

j∈{ i −N n ,...,i −1 ,i +1 ,...,i + N n } 
( N n + 1 − | i − j | ) × m ( s i , s j ) 

∑ 

j∈{ i −N n ,...,i −1 ,i +1 ,...,i + N n } 
( N n + 1 − | i − j | ) , (1) 

here m (s i , s j ) stands for the shape change measured by one of

he metrics (EOR or JI) between slices s i and s j at locations z i and

 j , and the nearer neighboring slices are assigned larger weights. 

tep 2. Normalize slice positions and M SC (s i ) both to range [0, 1]. 

Since different object samples are likely to contain different 

umbers of slices and different magnitudes for M SC (s i ), to devise 

 standardized shape-change function that avoids interpolation of 

mages, the slice positions of different object samples are normal- 

zed to a fixed slice range and the magnitudes of M SC (s i ) are also

ormalized. A sufficiently large parameter N R is determined such 

hat N R > N O for all considered object samples, and the normal- 

zed range [0, 1] is discretized into N R positions with N R – 1 in- 

ervals. Then, all slices of the object samples are assigned with 

roportional discrete positions, where only the slice positions are 

nterpolated into a unified range and the actual image slices are 

ot changed. We denote the normalized positions by the vari- 

ble ̄z . Besides slice positions, M SC (s i ) also shows different magni- 

ude ranges in different object samples irrespective of whether the 
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1 Many software tools allow manually-driven automatic delineation for GT draw- 

ing. Such tools introduce their own variability in addition to the variability due to 

subjective human input. 
hape change is measured based on EOR or JI. To facilitate deriving 

he mean shape-change function δS ( z ) , we also normalize M SC (s i ) 

y min-max normalization: 

 SCn ( s i ) = ( M SC ( s i ) − M min ) / ( M max − M min ) , (2) 

here M max and M min denote the maximum and minimum shape 

hange of each object sample. 

tep 3. Estimate standardized mean shape-change function δS ( z ) . 

The value of the shape-change function δS ( z ) at each discrete 

osition z̄ for each object sample in a population of object samples 

 is estimated as in (3) . The mean shape-change function δS ( z ) is

hen derived by averaging δS ( z ) over the population S. It is pos- 

ible that some of the positions on the whole range of z̄ are not 

ccounted for by data from any of the subjects, so values at those 

ositions are set as null. This will not influence the modeling of 

he average shape-change function δS ( z ) . 

¯
 i = � i/ ( N O − 1) × ( N R − 1) � / ( N R − 1) , i = 0 , ... N O − 1 , 

s ( ̄z i ) = M SCn ( s i ) . 
(3) 

.2. Segmentation filling on non-selected slices 

Two segmentation filling approaches are investigated in this 

ork: one is a straight-forward strategy of shape-based interpo- 

ation (SI) and the other is a deep-learning (DL) based strategy. 

(1) Shape-based interpolation (SI) strategy 

Given two adjacent sparse slices l 1 and l 2 with manual an- 

otations, the segmentation on a slice l i at any position in be- 

ween is estimated by using the shape-based interpolation ap- 

roach ( Raya and Udupa, 1990 ) by following the slice-to-slice 

hape of the object. Signed (2D) distance transform is first applied 

o l 1 and l 2 with the convention that distances from the object 

oundary are positive for pixels inside the object and negative for 

utside pixels. Then, the distance map for l i is estimated by lin- 

arly interpolating the distance maps for l 1 and l 2 , and the binary 

ask is finally determined by pixels with positive distance values 

n slice l i . 

(2) Deep-learning (DL) based strategy 

The deep-learning based approach is developed using the 2D 

-net architecture ( Ronneberger et al., 2015 ), where the input 

nd output images are designed in different manners for the two 

parse slice selection strategies. For the t -based uniform selec- 

ion strategy, as shown in Fig. 3 (a), the range of continuous four 

parsely selected slices contains a total of 3 t + 4 slice positions 

ith four selected sparse slices and three blocks of non-selected 

lices in between. The intensity image slices and binary slices are 

ombined into 2 × (3 t + 4) = 6 t + 8 channel images as the input to

he network, where only the selected sparse slices contain anno- 

ated segmentations while the binary image slices on non-selected 

ositions are all empty or with 0 value. The training target is to 

stimate GT segmentations for the central block of non-selected t 

lices, and the loss is calculated between predicted GT results and 

ctual GT on the central block of slices. The other two blocks are 

or giving contextual information. 

For the k -based non-uniform strategy, we will follow the above 

pirit of including information from four consecutive selected 

parse slices to design a 10-channel input as illustrated in Fig. 3 (b) 

nd (c). M a , M b , M c , and M d are four consecutive sparse slice po-

itions. When filling segmentations in the skipped block between 

lices at positions M b and M c , intensity and binary images on M a ,

 b , F 1 , M c , and M d compose the 10-channel input at first, where F 1 
enotes the first skipped slice position next to M b . Subsequently, 

fter the slice at F 1 is filled with segmentation predicted by the 

etwork in Fig. 3 (b), the input to the network is updated with the

omposition of images at positions M a , F , F , M c , and M , where F 
1 2 d 2 

5 
s the target slice next to F 1 . The second slice position is always the

lice previous to the target slice with manual or predicted binary 

ask. This process continues iteratively until all skipped slices in 

his block are filled with segmentations. 

The networks are composed of convolutional layers with 3 × 3 

ernels followed by Batch Normalization and ReLU nonlinear acti- 

ation, and the output layers are activated by a sigmoid function. 

own-sampling is achieved by convolutional layers with stride 2 

hile others are with stride 1. Adam optimizer is used to mini- 

ize the cross-entropy loss function in training the networks. 

.3. Determining optimal sparseness factor based on GT variability 

Individual differences among human expert segmenters em- 

loyed to create ground truth will always exist naturally and can 

ever be eliminated owing to the variabilities in their clinical 

nowledge, perceived boundaries in the image, annotation expe- 

ience, definitions adopted for the objects, and the software used 

or GT segmentations 1 . Fig. 4 presents two examples of GT delin- 

ations by four dosimetrists in our health system of objects in two 

ifferent body regions and with different segmentation difficulties: 

i) Heart: a relatively large blob-like non-sparse object in the tho- 

acic body region with well-defined boundary contrast; and (ii) 

ervical esophagus: a thin tube-like sparse object with low bound- 

ry contrast in the head & neck body region. Variables e 1 and e 2 
ere denote two dosimetrists (experts) who segmented the heart 

n the same image, and e 3 and e 4 denote two other dosimetrists 

egmenting the esophagus. 

The SparseGT method aims to generate pseudo GT that is as 

ood as the actual GT data generated by expert human segmenters 

ith all of their imperfections. This is really the central tenet of 

ur method. Three metrics are employed to demonstrate our ap- 

roach including two region-based metrics – Dice coefficient (DC) 

nd Jaccard index (JI) – and a boundary-based metric – average 

ymmetric surface distance (ASD). For each object O whose seg- 

entations output by some algorithm A are to be evaluated, we 

btain the variability of these metric values among a group G 

f expert segmenters by having them create GT segmentations 

f O on a given set V of images. Typically, V required for the 

parseGT approach in deriving inter-segmenter variability informa- 

ion is much smaller than the size of the data sets required for 

raining model-based segmentation algorithms, as well as the po- 

ential data sets which will be created in clinical practice and seg- 

ented by algorithm A. More importantly, this variability needs 

o be established only once for each fixed O and for each kind of 

linical application. In this paper, we employ segmentations from 

 dosimetrists to establish this variability for demonstration pur- 

oses, although the object samples for a given O are segmented by 

wo experts, see further explanation later in this section. For each 

etric M, we describe its variability by a pair ( μM 

, σ M 

), where 

M 

denotes the mean value and σ M 

denotes the standard devia- 

ion of M over all samples of V among all combinations of expert 

egmenters in G taken two at a time, where one is taken as the 

eference segmentation with respect to which the other expert’s 

egmentations are evaluated via M. 

Analogously, we determine the variability ( μMp , σ Mp ) of the p- 

T generated by SparseGT from a separate training data set Tr by 

aking experts in G as reference GT for assessing M, where μMp 

enotes the mean value of M and σ Mp is the standard deviation 

f M over all experts in G considered as reference. In this paper, 

or demonstration purposes and clinical reasons as stated below, 

e have considered only one expert in G for each patient sample. 



J. Li, J.K. Udupa, Y. Tong et al. Medical Image Analysis 69 (2021) 101980 

Fig. 3. Illustration of deep-learning-based segmentation filling strategies. The networks are constructed based on U-net. (a) Filling segmentations between uniformly selected 

sparse slices, for the case of t = 4 in this example. (b) Segmentations at slice positions in between non-uniformly selected sparse slices are filled one at a time. Four annotated 

slices at sparsely selected positions with a blank slice corresponding to the first slice at F 1 to be filled in compose the ten-channel input to the network. (c) The manner of 

updating the second slice at position F 2 to be filled in. 

Fig. 4. Illustration of imprecision in GT delineations. Top row: Segmentations (by 

two dosimetrists e 1 and e 2 ) of heart – a relatively large blob-like non-sparse object 

in the thoracic body region. Bottom row: Segmentations (by two additional experts 

e 3 and e 4 ) of esophagus – a thin tube-like sparse object with low boundary con- 

trast in the head & neck body region. Substantial differences can be seen between 

the two segmentations, where white regions represent inter-segmenter agreements, 

and orange and blue regions denote inter-segmenter differences. 
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e then determine the optimal sparseness factor t O in the uniform 

trategy and k O in the non-uniform strategy as the largest value of 

 , or the smallest value of k , where the deviation ( μMp , σ Mp ) of

he p-GT becomes statistically indistinguishable from the variabil- 

ty ( μM 

, σ M 

) among experts in the actual full GT. Note that t O ∈
0, t 3 ], where t 3 = � ( N OP – 3)/2 � , and N OP represents a reasonably

mall number such that N OP ≤ N O for most patient images cov- 

ring O over a population of patient images I, and k O ∈ [0, k max ],

here k max represents the case wherein all slices are selected. 

We then assess the applicability of the determined t O and k O 
y using a separate (testing) set of image data Te which is disjoint 

rom Tr. In practice, when realistic GT data are available because 

ontouring of objects is done for clinical reasons, such as for radi- 

tion therapy (RT) planning as in our application, it is impossible 

o guarantee that the same expert contoured all samples of all ob- 

ects or even all samples of the same object in Tr and Te since

t is quite common for dosimetrists employed in radiation therapy 

lanning departments to share workload depending on clinical de- 

and. For the same reasons, it is impossible to guarantee that any 

xperts in G employed for estimating ( μ , σ ) would have per- 
M M 

6 
ormed GT contouring of the naturally available data sets. This sce- 

ario is more realistic, practical, and sound than a situation where 

ne expert in G or all experts in G performed GT contouring of 

he data sets in Tr and Te. In our SparseGT method, 4 dosimetrists 

ere involved for establishing inter-segmenter variability and sev- 

ral experts were involved for creating one GT segmentation for 

ach of other samples in the data set in this manner. 

.4. Estimating parameters of the SparseGT method 

There are two parameters in the whole method – N R and R . 

hey both relate to the non-uniform sparse slice selection strate- 

ies and are for deciding the proportional positions of anchor 

lices. N R represents the number of discrete positions defined in 

he unified slice range, and the ratio factor R is used in defining the 

eighborhood in calculating shape change measure. As indicated 

n Table 4 in the next section, among the 6 objects we have con- 

idered for demonstration of the SparseGT method in 498 images, 

ost object samples occupy less than 100 slices and the largest 

ample occupies less than 200 slices, so we set N R = 201; i.e., 200 

ntervals are defined on the unified range [0, 1] with increments 

f 0.05. Also, we take {5, 10, 20, 100} as candidate values for R ,

here the neighborhood is defined as N n = max ( � N O / R � , 1) slices

eighboring the considered slice on each side. Intuitively, differ- 

nt values of R define different windows for smoothing the shape 

hange measure. R = 5 represents a coarse neighborhood window 

ontaining ∼0.4 N O slices and draws the most general pattern of the 

hape change function, while R = 100 represents a fine neighbor- 

ood window with only 3 slices and the determined shape change 

unction will be sensitive to local changes. 

The difference in sensitivity of different R can be verified by in- 

estigating the Pearson correlation coefficient (PCC) in metric δs ( z ) 

or different choices of R . For illustration of the method of select- 

ng R , we take typical objects with differing shapes CtEs, Hrt, and 

nd (see Table 4 for object definitions) as examples, and exclusive 

r (EOR) as the shape change measure. Behavior for other objects 

nd metrics was similar and hence not presented here. To deter- 

ine the proper R for forming shape change functions, we inves- 

igate PCC among δs ( z ) generated by four candidate R values on the 

raining set. These correlations are listed in the first three rows of 

able 2 . As an example of object CtEs depicted in Fig. 5 , the shape
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Table 2 

Pearson correlation coefficient between δs ( z ) generated by different choices for R for the training samples (first three rows) and by the training and 

testing samples (last row). 

CtEs Hrt Mnd 

R = 5 R = 10 R = 20 R = 100 R = 5 R = 10 R = 20 R = 100 R = 5 R = 10 R = 20 R = 100 

PCC in 

δs ( z ) within 

Tr 

R = 10 0.973 0.982 0.982 

R = 20 0.938 0.98 0.956 0.988 0.958 0.992 

R = 100 0.867 0.909 0.952 0.924 0.963 0.989 0.936 0.974 0.99 

PCC in δs ( z ) between Tr and Te 0.91 0.851 0.772 0.612 0.965 0.946 0.916 0.874 0.989 0.98 0.965 0.937 

Fig. 5. Illustration of the average shape change function resulting from choosing 

different values for R for CtEs. The average shape change functions with smaller R 

are sharper but blurred with larger R . 
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6

hange functions δs ( z ) with smaller R show more general patterns 

nd δs ( z ) are sharper, whereas functions δs ( z ) with larger R are 

lurred because of the sensitivity of δs ( z ) to local changes. In most 

ases in the first three rows, δs ( z ) with R = 10 or 20 shows more

alanced correlation to functions with other R values, which means 

his value is a balanced choice representing both general pattern 

nd local details. To verify how good a choice for R is, we check 

he PCC between δs ( z ) generated for the same value of R by the

raining and test sets Tr and Te. These PCC values are listed in the 

ast row of Table 2 . From the PCC values in the last row of Table 2 ,

e observe that δs ( z ) values with smaller R are more general and 

ield PCC relatively close to 1, and those with larger R are more 

ensitive to local changes. Therefore, we empirically set R = 10 for 

ll experiments related to non-uniform sparse selection strategies. 

.5. Evaluating the performance of SparseGT 

We will denote the four strategies investigated for creating p-GT 

n SparseGT by S U-SI , S N-SI , S U-DL , and S N-DL , where U and N denote

niform and non-uniform sparse slice selection and SI and DL rep- 

esent shape-based interpolation and deep learning filling strate- 

ies, respectively. The optimal sparseness factors are determined 

y using the training set Tr. The SI strategy does not need train- 

ng, while for DL we employ 2-fold cross validation. The number 

f sparse slices, N S , selected for optimal outcome for each object 

ay be different for each of the four strategies. The strategy that 

an achieve maximum sparseness is determined by the real reduc- 

ion in workload. The workload itself is given by the ratio N S / N O . 

We will utilize two measures to evaluate the strategies investi- 

ated in the SparseGT method as described below. The first mea- 

ure is used for determining the optimal sparseness that can be 

chieved by each strategy for each object and the second assesses 
7 
he difference in the evaluations carried out by GT and p-GT of an 

ctual segmentation output by an algorithm by each strategy for 

ach object. 

(i) For a given metric α (one of DC, JI, and ASD), object O, and 

parseness factor x (x = t or x = k ), consider the metric values α( I ib ,

 ib , O, x), i = 1, …, N , where the metric is evaluated to assess the

eviation (from real GT) of the p-GT obtained corresponding to the 

parseness level specified by x. Let μα and σα denote the mean 

nd standard deviation, respectively, of the α( I ib , P ib , O, x) values

btained over i = 1, …, N . 

(ii) For a given metric α (one of DC, JI, and ASD), object O, 

nd segmentation algorithm A, let ε( α, O, A) denote the root mean 

quared error between the metric values in using the optimal p-GT 

b = { P 1, b , …, P N , b } and the true GT Ib = { I 1, b , …, I N , b } in evaluat-

ng the output J b = { J 1, b , …, J N , b } of A corresponding to the input

mage set I = { I 1 , …, I N }: 

ε(α, O, A ) = √ 

1 

N 

( [ α( I 1 b , J 1 b ) −α( P 1 b , J 1 b ) ] 
2 + , ..., + [ α( I Nb , J Nb ) − α( P Nb , J Nb ) ] 

2 
) .

(5)

For demonstration purposes, the segmentation algorithm A we 

valuated is the method reported in ( Wu et al., 2019 ). 

. Experiments, results, and discussion 

.1. Data sets and experiments 

This study was conducted following approval from the Institu- 

ional Review Board at the Hospital of the University of Pennsyl- 

ania along with a Health Insurance Portability and Accountabil- 

ty Act waiver. Experiments are conducted on computed tomogra- 

hy (CT) images of two body regions, Head & Neck and Thorax, 

ith three objects in each body region – cervical esophagus (CtEs), 

andible (Mnd), and orohypopharynx constrictor muscle (OHPh) 

n the Head & Neck body region, and heart (Hrt), trachea & prox- 

mal bronchi (TB), and right lung (RLg) in the Thorax body re- 

ion. The objects are chosen to represent different shape and size 

haracteristics and different degrees of challenges for segmentation 

RLg and Mnd: least challenging, Hrt and TB: moderately challeng- 

ng, CtEs and OHPh: most challenging). Our set I of images con- 

ists of 498 3D images – 298 in Head & Neck region and 200 

n Thorax region. For the above 6 objects, GT data are available 

o us which constitute real clinical data as contoured by several 

osimetrists (as explained in the previous section) for the routine 

T planning of patients with Head & Neck or Thoracic cancer. For 

1 of the Head & Neck studies, each of two dosimetrists contoured 

he above 3 objects separately. Similarly, another two dosimetrists 

ontoured the 3 Thoracic objects separately on 87 Thoracic studies. 

hese data sets constitute the training set we denoted by V previ- 

usly and were utilized for estimating ( μM 

, σ M 

). 

We note that not every study in the cohort I necessarily has all 

 objects contoured since the actual objects contoured in clinical 
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Table 3 

The relationship of data sets V, Tr and Te to the full cohort I and their roles in different stages of parameter estimation. 

Type of parameters Division of data sets 

Inter-segmenter variability ( μM , 

σ M ) 

Training set: V (V ⊂I) 

Determining R in δs ( z ) Training set: Tr 

Verifying set: Te ( I = Tr + Te) 

Variability ( μMp , σ Mp ) 

between p-GT and manual GT 

Determining t O and k O on Tr S U-SI and S N-SI : No training is 

needed. 

S U-DL and S N-DL : 2-fold cross 

validation on Tr. 

Verifying t O and k O on Te S U-SI and S N-SI : No training is 

needed. 

S U-DL and S N-DL : DL networks are 

trained on Tr and tested on Te. 

Table 4 

Number of object samples and object sizes in the Head & Neck and Thorax data sets. 

Objects 

Number of 

samples(total/ Tr/ Te) Object sizes(in voxels) DL-input size(in pixels) 

CtEs 283/ 225/ 58 45 × 77 × (18 ∼71) 64 × 96 

Mnd 292/ 232/ 60 139 × 126 × (17 ∼86) 160 × 144 

OHPh 266/ 211/ 55 64 × 55 × (27 ∼113) 80 × 80 

Hrt 199/ 160/ 39 181 × 169 × (20 ∼70) 208 × 192 

TB 197/ 157/ 40 155 × 130 × (36 ∼109) 176 × 160 

RLg 189/ 152/ 37 167 × 241 × (56 ∼159) 192 × 272 

Table 5 

Proportional anchor positions found for the different objects from δs ( z ) curves. 

Object 

Number of anchor 

positions Anchor positions 

CtEs 3 0, 0.69, 1 

Mnd 6 0, 0.215, 0.395, 0.64, 

0.83, 1 

OHPh 7 0, 0.21, 0.39, 0.625, 

0.77, 0.93, 1 

Hrt 5 0, 0.1, 0.42, 0.825, 1 

TB 5 0, 0.22, 0.51, 0.83, 1 

RLg 5 0, 0.2, 0.665, 0.845, 1 
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ractice for RT planning depend on the location and size of the tu- 

or in each study. The data sets in the two body regions are sepa-

ately divided into disjoint sets of training and test samples, where 

bout 20% samples are randomly selected to compose the test set 

e, and the remaining samples compose the training set Tr to de- 

ermine optimal sparseness factors t O and k O , which are verified on 

e to check if the test set can also yield indistinguishable deviation 

ith respect to expert variability. The voxel size in our data sets 

aries from 0.93 × 0.93 × 1.5 mm 

3 to 1.6 × 1.6 × 3 mm 

3 . The object

izes are also variable among subjects, where object samples of 

ifferent subjects occupy varying numbers of slices. The bounding 

ox size is determined for each object based on the largest occu- 

ied range among its samples. To fit the input size to the DL net- 

ork, the 2D region of interest (ROI) of object samples is set with 

ize in multiples of 8, since there are three convolutional layers 

ith stride 2 in both of the designed U-net based networks. The 

plitting of data sets and their roles in different stages of SparseGT 

re listed in Table 3 for clarity, and key information about data sets 

s summarized in Table 4 for ready reference. 

.2. Results and discussion 

(1) Shape change function and anchors 

The proportional anchors found on the average shape change 

unctions δs ( z ) with R = 10 are listed in Table 5 , where numbers

nd positions of anchors are object-specific. 
8 
(2) Optimal sparseness 

In Fig. 6 , we display mean values of α( I ib , P ib , O, x) as a func-

ion of t for the uniform strategies for O = Hrt and as a function

f k for the non-uniform strategies for O = CtEs, where μM 

and 

M 

are also marked as well as t or k values which show devi- 

tion of p-GT from GT that is statistically insignificant (marked 

y a cross). Optimal values of t and k are determined on the 

raining set and are verified on the test set (marked by triangles) 

o check if the test set can also yield indistinguishable deviation 

ith respect to GT variability. In Table 6 , we list μα and σα for 

ll considered objects at t O and k O (optimal values of t and k , 

espectively). 

Image examples are illustrated in Fig. 7 for all six considered 

bjects including GT from four expert segmenters e 1 , e 2 , e 3 , and

 4 (all are dosimetrists), and optimal p-GT created by the four 

trategies. Binary masks of GT/p-GT are overlaid on CT images and 

verlaid also by the reference contours from e 1 or e 3 . The cor- 

esponding surface renditions are shown as well. Among our ob- 

ects, CtEs and OHPh have poor contrast; Hrt and TB have confus- 

ng boundaries; Mnd has sharp shape changes; and RLg is affected 

y lesions in the chest wall near the object boundary. Small, non- 

ompact, and sparse objects entail larger degrees of imprecision in- 

ersely proportional to their size compared to large, well-defined, 

nd compact objects. The degree of segmentation challenge is also 

n influencing factor in producing optimal p-GT; for example, TB 

s a sparse object; however, it poses moderate segmentation chal- 

enge due to its rather well-defined boundaries. Its level of impre- 

ision compared to another similarly sparse object, CtEs, is smaller, 

hile CtEs poses great segmentation challenges due to its sparse- 

ess and poor boundary contrast. 

Among all considered objects, OHPh has the highest impreci- 

ion due to the fact that it is an object with extreme sparse- 

ess, low contrast, multiple intensity ranges within the object, and 

iven the variability that may exist in object interpretation. Low 

M 

and large σ M 

values lead to optimal factors denoting greater 

parseness. The created p-GT in such cases may sometimes have 

nacceptable deviations, as shown in surface renditions for S U-SI 

nd S N-SI of OHPh. Although we have utilized the most common 

egion-based and boundary-based metrics to describe similarity 

r dissimilarity among segmentations, none of them is able to 
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Fig. 6. Mean of metric values α( I ib , P ib , O, x) as a function of t for the uniform strategies for O = Hrt and as a function of k for the non-uniform strategies for O = CtEs and 

for SI and DL filling strategies. GT mean and standard deviation μM and σ M are also marked. The optimal sparseness factor t O or k O is determined on the training set by the 

largest t or smallest k which does not demonstrate statistically significant difference compared to ( μM , σ M ) and is verified on the test set where deviation on the generated 

p-GT is also demonstrated without significant difference compared to ( μM , σ M ) . 
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erfectly describe the great inter-segmenter difference prevailing 

or this extremely sparse and low-contrast object. 

There are open-source tools with functions for automatic and 

emiautomatic segmentation such as our own CAVASS platform 

2 

nd 3D Slicer 3 , both of which contain functions for filling segmen- 

ations between slices. The interpolation algorithm in 3D Slicer is 

ased on ( Albu et al., 2008 ), and the shape-based interpolation 

SI) strategy used in this paper is available in CAVASS and was in- 

roduced to the literature by us in 1990. However, those tools do 

ot provide any guidance on how to determine the variability that 

aturally exists in human-provided GT, how to analyze this in an 

bject-specific manner, and how to exploit the variability optimally 

o determine the number and locations of the key sparse slices to 

e selected. The SI based results shown in this paper can be re- 

eated in CAVASS. Since the 3D Slicer does not use SI, the optimal 

actors may not be exactly the same as what we found but should 

e very similar since the same type of algorithm is applied. Al- 

hough we did not do detailed analysis on which factors will be 

ptimal in 3D Slicer, the optimal sparseness factor we found for 

 U-SI is able to generate acceptable p-GT in 3D Slicer as illustrated 

y an example shown in Fig. 8 . The SparseGT methodology is gen- 

ral and hence any software system can be used in the proposed 

ramework to determine optimal factors to save maximum work- 

oad based on the segmentation filling algorithms available in the 

oftware system. 
2 http://www.mipg.upenn.edu/Vnews/mipg _ software.html . 
3 https://www.slicer.org/ . 
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(3) Evaluation of actual segmentations by optimal pseudo ground 

ruth 

Segmentations created by the Automatic Anatomy Recognition- 

adiation Therapy (AAR-RT) method ( Wu et al., 2019 ) are utilized 

o demonstrate the effectiveness of the SparseGT method in prac- 

ical segmentation evaluation. Table 7 summarizes the ε( α, O, A) 

alues for all considered objects and metrics under all four strate- 

ies. 

We observe from the quantitative results that p-GT created by 

he DL strategies shows best capability to replace manual ground 

ruth in that it generates least error in evaluation measures com- 

ared to the SI strategies. 

The ε( α, O, A) values associated with a p-GT strategy also show 

he influence the inter-segmenter difference may have on segmen- 

ation evaluation. Specific to practical usage, if the data set for 

raining or model building and the test data set are contoured by 

ifferent GT segmenters, taking DC as an example, there will be an 

rror of about 0.03, 0.02, 0.05, 0.01, 0.015, and 0.007 for CtEs, Mnd, 

HPh, Hrt, TB, and RLg, respectively. This error may be blamed on 

nter-segmenter differences but not on the real capability of the 

rained model or the algorithm. 

Inter-segmenter differences show object-dependent upper 

ounds for how accurate the automatic segmentation algorithms 

an become. Beyond those bounds it is doubtful, if directly verified 

n other sources of data sets, that the algorithms will be able to 

ield segmentations with as good evaluation measures as with the 

raining data sets. With the explosive development of deep learn- 

ng architectures, we believe that there are several algorithms that 

re able to reach or surpass this upper bound for objects like Mnd 

http://www.mipg.upenn.edu/Vnews/mipg_software.html
https://www.slicer.org/


J. Li, J.K. Udupa, Y. Tong et al. Medical Image Analysis 69 (2021) 101980 

Table 6 

Mean and standard deviation μα and σα of α( I ib , P ib , O, x) are listed for all objects for all 4 strategies for both training (Tr) and test (Te) data sets. 

Object Metric μM, σ M 

Strategies 

S U-SI S U-DL S N-SI S N-DL 

Tr Te Tr Te Tr Te Tr Te 

CtEs Optimal 

sparseness 

t O = 5 t O = 14 k O = 2 k O = 1 

DC 0.878 

0.042 

0.894 

0.046 

0.884 

0.051 

0.877 

0.028 

0.875 

0.038 

0.887 

0.042 

0.881 

0.046 

0.885 

0.03 

0.879 

0.041 

JI 0.785 

0.063 

0.811 

0.07 

0.796 

0.077 

0.781 

0.043 

0.78 

0.057 

0.799 

0.066 

0.79 

0.072 

0.795 

0.047 

0.787 

0.061 

ASD 

(mm) 

0.379 

0.277 

0.293 

0.112 

0.308 

0.118 

0.396 

0.141 

0.393 

0.196 

0.342 

0.146 

0.342 

0.152 

0.381 

0.135 

0.376 

0.138 

Mnd Optimal 

sparseness 

t O = 2 t O = 16 k O = 2 k O = 0 

DC 0.909 

0.019 

0.939 

0.019 

0.942 

0.017 

0.934 

0.019 

0.934 

0.022 

0.951 

0.013 

0.947 

0.013 

0.945 

0.019 

0.943 

0.019 

JI 0.834 

0.033 

0.886 

0.033 

0.891 

0.03 

0.877 

0.032 

0.877 

0.037 

0.907 

0.023 

0.9 

0.024 

0.896 

0.033 

0.893 

0.034 

ASD 

(mm) 

0.354 

0.109 

0.259 

0.091 

0.236 

0.079 

0.285 

0.121 

0.263 

0.1 

0.204 

0.077 

0.215 

0.07 

0.226 

0.12 

0.232 

0.107 

OHPh Optimal 

sparseness 

t O = 14 t O = 24 k O = 0 k O = 0 

DC 0.654 

0.062 

0.712 

0.123 

0.704 

0.136 

0.771 

0.05 

0.78 

0.06 

0.805 

0.062 

0.807 

0.07 

0.819 

0.041 

0.808 

0.046 

JI 0.488 

0.067 

0.565 

0.14 

0.559 

0.153 

0.63 

0.065 

0.643 

0.077 

0.678 

0.085 

0.681 

0.094 

0.695 

0.058 

0.681 

0.063 

ASD 

(mm) 

0.813 

0.258 

0.841 

0.569 

0.965 

0.838 

0.623 

0.193 

0.566 

0.171 

0.465 

0.173 

0.486 

0.22 

0.465 

0.134 

0.518 

0.137 

Hrt Optimal 

sparseness 

t O = 6 t O = 12 k O = 1 k O = 0 

DC 0.96 

0.012 

0.963 

0.012 

0.96 

0.014 

0.97 

0.009 

0.963 

0.01 

0.979 

0.008 

0.977 

0.009 

0.968 

0.009 

0.967 

0.01 

JI 0.923 

0.021 

0.929 

0.022 

0.923 

0.026 

0.941 

0.017 

0.929 

0.019 

0.959 

0.015 

0.956 

0.017 

0.938 

0.017 

0.937 

0.019 

ASD 

(mm) 

0.775 

0.334 

0.697 

0.318 

0.843 

0.401 

0.512 

0.217 

0.71 

0.251 

0.319 

0.176 

0.374 

0.193 

0.569 

0.237 

0.617 

0.272 

TB Optimal 

sparseness 

t O = 1 t O = 4 k O = 4 k O = 2 

DC 0.938 

0.018 

0.949 

0.01 

0.951 

0.01 

0.935 

0.013 

0.937 

0.013 

0.934 

0.015 

0.934 

0.016 

0.941 

0.012 

0.949 

0.012 

JI 0.883 

0.031 

0.903 

0.018 

0.906 

0.017 

0.879 

0.023 

0.882 

0.024 

0.876 

0.026 

0.877 

0.028 

0.889 

0.021 

0.903 

0.021 

ASD 

(mm) 

0.389 

0.255 

0.139 

0.041 

0.133 

0.036 

0.251 

0.229 

0.213 

0.112 

0.225 

0.104 

0.231 

0.13 

0.213 

0.093 

0.184 

0.102 

RLg Optimal 

sparseness 

t O = 5 t O = 32 k O = 3 k O = 0 

DC 0.974 

0.044 

0.972 

0.007 

0.972 

0.005 

0.974 

0.012 

0.973 

0.012 

0.976 

0.005 

0.976 

0.004 

0.979 

0.011 

0.98 

0.01 

JI 0.953 

0.077 

0.945 

0.012 

0.946 

0.01 

0.949 

0.022 

0.948 

0.021 

0.952 

0.009 

0.953 

0.008 

0.959 

0.02 

0.961 

0.019 

ASD 

(mm) 

0.831 

1.478 

0.679 

0.183 

0.653 

0.147 

0.653 

0.396 

0.638 

0.381 

0.557 

0.137 

0.55 

0.148 

0.604 

0.421 

0.545 

0.345 
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nd RLg, while there is still considerable room for improvement 

or sparse and challenging objects like CtEs ( Chan et al., 2019 ; 

ong et al., 2019 ). 

(4) Workload reduction 

The primary goal of this work is to reduce the manual work- 

oad needed for creating GT segmentations. The ratio N S / N O ex- 

resses the fraction of the full workload needed for the optimal 

parseness achieved by the strategies in the SparseGT method or 

1 – ( N S / N O )] × 100 describes the % reduction achieved in work- 

oad. In Table 8 , we summarize the mean and standard devia- 

ion of N S and N S / N O as well as the associated optimal sparse-

ess factors t O and k O for achieved the four strategies for each 

bject. Note that N S = � ( N O – 1)/( t O + 1) + 1 � for the uniform strat-

gy and N S = k a + k O × ( k a – 1) for the non-uniform strategy where

 a denotes the number of anchors derived from δs ( z ) and N S = k a 
hen k O = 0. Thus, N S / N O has larger standard deviation in the non-

niform strategies than in uniform strategies. 
10 
We observe that the uniform strategies yield larger workload 

avings in most cases, except for TB with SI strategies. Observe that 

he optimal sparseness factors for SI strategies show how regular 

he object is along the axis orthogonal to the scanning plane. For 

B, its shape changes greatly from slice to slice with t O = 1 and

 O = 4. Instead of sampling the shape change by uniformly select- 

ng slices, the non-uniform strategy formulates shape change func- 

ions and points out the important proportional positions with lo- 

al maximum or minimum shape changes as the anchors which 

ontain more shape change information compared to other random 

niform positions. However, an imperfection in the current non- 

niform strategy is that, with increasing k values, N S changes more 

apidly compared to uniform strategies with large t values. So, for 

egular objects, the uniform strategies need less sparse slices but 

he variability is greater in S U-SI compared to S N-SI for Mnd, OHPh, 

nd Hrt. TB presents with the most shape change from slice to slice 

ith t O = 1, and the advantage of the non-uniform strategy shows 
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Fig. 7. Image examples for all six considered objects. GT samples for each object are generated by two expert segmenters – e 1 and e 2 for Head & Neck objects, and e 3 and 

e 4 for Thorax objects. p-GT samples are generated from sparse GT by e 1 or e 3 and the optimal t O and k O via SI and DL strategies, respectively. 2D binary masks are overlaid 

on the CT intensity images and overlaid by e 1 or e 3 contours, and the corresponding surface models are presented as well. 
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ere that, following anchors, the workload reduction improves by 

10%. 

The strength of the DL strategies is demonstrated in 

able 8 where it is shown that p-GT with human-level accu- 

acy can be created with less than 20% (less than 10% for regular 

nd non-sparse objects) of the workload needed in creating full 

anual GT. The sparseness for all objects, except TB, approaches 

he ideal value with the slices selected just on the two ends and 

n the middle of the object. 

We conducted two further experiments to explore whether the 

orkload for creating p-GT can be further reduced: 

(E1) S U-SI-DL : Utilizing p-GT created via S U-SI to enlarge the 

raining data for S U-DL . Although DL strategies can reach maximum 

orkload reduction, they still need a proper set of samples for net- 

ork training, while SI strategies do not need a training stage to 

reate p-GT segmentations. Instead of fully manually annotating 
11 
he whole training set necessary for DL strategies, GT segmenta- 

ions on part of the training samples can be semi-automatically 

reated by SI strategies. Specific to our experiments, first, we cre- 

te p-GT for all samples in Tr, except for the samples with annota- 

ions from two expert segmenters which we assume as irreplace- 

ble samples to derive natural imprecision measures among hu- 

an segmenters (these samples constituted our set V mentioned 

arlier), based on the optimal sparseness factor for S U-SI (denoted 

y t U-SI ). Then, sparse slice selection is conducted, with the optimal 

parseness factor for S U-DL (denoted by t U-DL ), and the DL network 

s trained on the mixed set of samples with manual GT segmenta- 

ions or S U-SI -created p-GT segmentations. Finally, sparse slice se- 

ection and manual contouring are conducted on the test set with 

 U-DL and the skipped slices are filled with pseudo segmentations 

y the p-GT-trained network. Experiments are conducted for all six 

onsidered objects, and, from the verification purpose, the network 
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Fig. 8. Generating p-GT for Mnd with 3D Slicer following t O = 2 in S U-SI . (a1) Manual annotation on a selected slice; (a2) - (a4) sparse GT shown in 3D and two other 2D 

views. (b1) Filled segmentation on a non-selected slice (one slice next to (a1)); (b2) - (b4) p-GT in the three views. 

Table 7 

Root mean squared errors ε( α, O, A) of evaluation metric values measured by p-GT in comparison with GT in assessing an actual segmentation algorithm 

AAR-RT for different objects and strategies. For each object and each metric, the smallest error achieved over all strategies for training and testing data sets is 

shown in bold. 

Object Metric 

Strategies 

S U-SI S U-DL S N-SI S N-DL 

Tr Te Tr Te Tr Te Tr Te 

CtEs Optimal 

sparseness 

t O = 5 t O = 14 k O = 2 k O = 1 

DC 0.033 0.04 0.025 0.028 0.031 0.033 0.028 0.024 

JI 0.032 0.04 0.023 0.024 0.029 0.032 0.025 0.021 

ASD 0.576 0.477 0.386 0.46 0.309 0.256 0.328 0.346 

Mnd Optimal 

sparseness 

t O = 2 t O = 16 k O = 2 k O = 0 

DC 0.022 0.017 0.019 0.018 0.015 0.018 0.018 0.021 

JI 0.031 0.023 0.027 0.025 0.022 0.025 0.026 0.029 

ASD 0.22 0.185 0.177 0.145 0.167 0.197 0.145 0.169 

OHPh Optimal 

sparseness 

t O = 14 t O = 24 k O = 0 k O = 0 

DC 0.088 0.084 0.051 0.056 0.047 0.049 0.042 0.052 

JI 0.07 0.065 0.045 0.05 0.037 0.037 0.038 0.047 

ASD 1.307 0.886 0.485 0.267 0.412 0.493 0.233 0.264 

Hrt Optimal 

sparseness 

t O = 6 t O = 12 k O = 1 k O = 0 

DC 0.028 0.022 0.008 0.01 0.008 0.01 0.01 0.008 

JI 0.038 0.031 0.01 0.014 0.01 0.014 0.014 0.012 

ASD 1.169 1.717 0.401 0.362 0.381 0.47 0.375 0.321 

TB Optimal 

sparseness 

t O = 1 t O = 4 k O = 4 k O = 2 

DC 0.021 0.023 0.015 0.013 0.02 0.021 0.014 0.008 

JI 0.026 0.027 0.018 0.015 0.024 0.025 0.019 0.01 

ASD 0.802 0.784 0.773 0.742 0.892 0.73 0.604 0.353 

RLg Optimal 

sparseness 

t O = 5 t O = 32 k O = 3 k O = 0 

DC 0.007 0.006 0.009 0.005 0.007 0.007 0.008 0.005 

JI 0.011 0.011 0.015 0.008 0.012 0.01 0.013 0.008 

ASD 0.369 0.288 0.491 0.459 0.328 0.253 0.524 0.372 

i  

σ
g

σ  

c
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w

o
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s

c
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w

o
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s

d

s trained on the whole Tr and tested on Te. We verified that ( μα ,

α) of S U-SI-DL created p-GT in all cases is lower or insignificantly 

reater, with p-value > 0.05, than inter-segmenter difference ( μM 

, 

M 

) as presented in Table 9 . We also compare ( μα , σα) of p-GT

reated by S U-SI-DL and S U-DL to explore the coupled error of devi- 

tions in S U-SI -created p-GT with systematic errors of the DL net- 

ork. ( μα , σα) in most comparisons are with p-value > 0.05, while 

ne exception is Mnd where the DL strategy is powerful enough to 

earn the delineation manner from the training set and the error of 

 U-SI -created p-GT becomes significantly degraded. In spite of pos- 
12 
ible degradation, we can still infer the potential ability of S U-SI - 

reated p-GT to partially replace manual GT in model training and 

urther reduce manual workload. 

(E2) S VOI-DL : Pseudo ground truth creation by the DL strategy 

ith only annotated volume (3D region) of interest (VOI). Most 

bjects have achieved or approached the ideal sparseness defined 

n this work with the strength of DL strategies. During the pro- 

ess of manual contouring on the selected sparse slices in any 

trategies considered in this work, the VOI is actually implicitly 

efined by the rough 3D region occupied by the sparse GT seg- 
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Table 8 

Actual number of selected sparse slices ( N S ) and its ratio to the number of slices occupied by the target object ( N S / N O ) under different strategies with their optimal 

sparseness factors. Mean and standard deviation values are listed. The S U-DL strategy shows maximum workload reduction. For each object, N S and N S / N O values for the 

strategies that achieved the maximum workload are shown in bold. 

Object 

Strategies 

S U-SI S U-DL S N-SI S N-DL 

t O N S N S / N O t O N S N S / N O k O N S N S / N O k O N S N S / N O 

CtEs 5 7.141 

1.343 

0.202 

0.012 

14 3.316 

0.566 

0.082 

0.007 

2 7 0.207 

0.047 

1 5 0.132 

0.019 

Mnd 2 14.216 

2.612 

0.36 

0.01 

16 3.101 

0.343 

0.074 

0.007 

2 16 0.42 

0.091 

0 6 0.144 

0.018 

OHPh 14 4.917 

0.797 

0.093 

0.008 

24 3.058 

0.281 

0.052 

0.004 

0 7 0.136 

0.03 

0 7 0.136 

0.03 

Hrt 6 5.573 

0.727 

0.185 

0.011 

12 3.036 

0.265 

0.098 

0.009 

1 9 0.304 

0.041 

0 5 0.162 

0.017 

TB 1 26.249 

3.603 

0.515 

0.005 

4 10.569 

1.471 

0.207 

0.006 

4 21 0.418 

0.048 

2 13 0.259 

0.03 

RLg 5 13.799 

1.846 

0.184 

0.004 

32 3.045 

0.236 

0.039 

0.003 

3 17 0.23 

0.027 

0 5 0.065 

0.006 

Table 9 

Mean and standard deviation values of α( I ib , P ib , O, t O ) and ε( α, O, A) for strategies with further increasing sparseness. Mean and standard deviation values on 

the test set are listed. Strategies with best metric values or least evaluation error are marked in bold. 

Object Metric t O μM , σ M 

Strategies 

S U-DL S U-SI-DL S VOI-DL 

α(.) ε(.) α(.) ε(.) α(.) ε(.) 

CtEs DC t U-SI = 5 

t U-DL = 14 

0.878 

0.042 

0.875 

0.038 

0.028 0.876 

0.039 

0.028 0.858 

0.051 

0.033 

JI 0.785 

0.063 

0.78 

0.057 

0.024 0.782 

0.059 

0.025 0.755 

0.074 

0.03 

ASD 

(mm) 

0.379 

0.277 

0.393 

0.196 

0.46 0.384 

0.222 

0.49 0.425 

0.186 

0.502 

Mnd DC t U-SI = 2 

t U-DL = 16 

0.909 

0.019 

0.934 

0.022 

0.018 0.924 

0.024 

0.019 0.934 

0.025 

0.022 

JI 0.834 

0.033 

0.877 

0.037 

0.025 0.859 

0.04 

0.027 0.876 

0.043 

0.03 

ASD 

(mm) 

0.354 

0.109 

0.263 

0.1 

0.145 0.345 

0.146 

0.311 0.32 

0.2 

0.198 

OHPh DC t U-SI = 14 

t U-DL = 24 

0.654 

0.062 

0.78 

0.06 

0.056 0.767 

0.083 

0.062 0.737 

0.068 

0.049 

JI 0.488 

0.067 

0.643 

0.077 

0.05 0.628 

0.101 

0.055 0.588 

0.081 

0.044 

ASD 

(mm) 

0.813 

0.258 

0.566 

0.171 

0.267 0.64 

0.274 

0.353 0.772 

0.336 

0.561 

Hrt DC t U-SI = 6 

t U-DL = 12 

0.96 

0.012 

0.963 

0.01 

0.01 0.962 

0.01 

0.013 0.948 

0.027 

0.03 

JI 0.923 

0.021 

0.929 

0.019 

0.014 0.926 

0.019 

0.018 0.902 

0.046 

0.044 

ASD 

(mm) 

0.775 

0.334 

0.71 

0.251 

0.362 0.767 

0.273 

0.517 1.383 

0.963 

1.473 

TB DC t U-SI = 1 

t U-DL = 4 

0.938 

0.018 

0.937 

0.013 

0.013 0.937 

0.014 

0.017 0.904 

0.025 

0.048 

JI 0.883 

0.031 

0.882 

0.024 

0.015 0.882 

0.024 

0.02 0.825 

0.041 

0.058 

ASD 

(mm) 

0.389 

0.255 

0.213 

0.112 

0.742 0.223 

0.156 

0.835 0.545 

0.476 

1.434 

RLg DC t U-SI = 5 

t U-DL = 32 

0.974 

0.044 

0.973 

0.012 

0.005 0.97 

0.009 

0.004 0.982 

0.009 

0.012 

JI 0.953 

0.077 

0.948 

0.021 

0.008 0.942 

0.017 

0.006 0.965 

0.017 

0.011 

ASD 

(mm) 

0.831 

1.478 

0.638 

0.381 

0.459 0.718 

0.274 

0.313 0.584 

0.568 

0.384 

m
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entations. An interesting question is whether the manual work- 

oad can be further reduced by only annotating the proper region 

VOI) of the target object without actually contouring segmenta- 

ions on any slices. This is equivalent to providing only manual 

ecognition information without the detailed delineations in spec- 

fying GT. Experimental results, shown in Table 9 , indicate that, 

mong the four objects (Mnd, OHPh, Hrt, and RLg) which reached 

xtreme sparseness with S U-DL , only results for Hrt show signifi- 

antly greater variability ( μα , σα) than inter-segmenter difference 
13 
 μM 

, σ M 

) with p-value < 0.05. However, although it seems that 

nly VOI is enough to yield human-level segmentations for some 

bjects, the standard deviations, especially of boundary-based met- 

ic ASD, are obviously larger in most cases. That means, with- 

ut proper definition of the segmenter’s behavior of contouring, 

he quality of created segmentations is unstable. Furthermore, ( μα , 

α) is greater with S VOI-DL compared to that from S U-DL in many 

ases. In this sense, this experiment suggests that not only the hu- 

an recognition act but also defining the contouring behavior is 



J. Li, J.K. Udupa, Y. Tong et al. Medical Image Analysis 69 (2021) 101980 

Table 10 

A summary of the manual help required by the different strategies of the SparseGT method. 

Training Evaluation 

End- 

slices Full GT 

Sparse 

GT VOI 

Pseudo 

GT 

End- 

slices Full GT 

Sparse 

GT VOI 

Pseudo 

GT 

S U-SI Y Y N N N Y N Y N N 

S U-DL Y Y N N N Y N Y N N 

S N-SI Y Y N N N Y N Y N N 

S N-DL Y Y N N N Y N Y N N 

S U-SI-DL Y N Y N N Y N Y N N 

S VOI-DL Y Y N Y N Y N N Y N 
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f fundamental importance in creating human-level pseudo ground 

ruth! 

(5) Comparison with other methods 

The lack of large sample sets with fully annotated GT and the 

ssociated inter-segmenter differences in manual contouring are 

wo common difficulties faced by anatomy segmentation and eval- 

ation algorithms. Several algorithms have been proposed to avoid 

evade) such challenges, where, as has been stated in Section 1.2 , 

emi- and un-supervised learning based segmentation methods 

nd methods of evaluation without ground truth are proposed to 

eal with the lack of GT, and the STAPLE algorithm and its ex- 

ensions have been proposed to estimate the implicit GT from 

ultiple manual contours in an attempt to eliminate the inter- 

egmenter differences. Different from such methods, to deal with 

he lack of absolute GT for segmentation evaluation, we propose 

he SparseGT method to exploit the ubiquitous inter-segmenter dif- 

erences intelligently, instead of trying to eliminate them, as ref- 

rence of possible errors and deviations in the imperfect GT, and 

imulate GT in a semi-automatic manner by first conducting man- 

al contouring on selected sparse slices and then automatically fill- 

ng segmentations on other skipped slices. To our knowledge, no 

uch work exists in the literature. Although ( Valindria et al., 2017 ) 

entions pseudo GT, that work just represents algorithm-created 

egmentations and does not guarantee human-level accuracy. Thus, 

heir meaning of pseudo GT is totally different from the sense im- 

lied in our work. The SparseGT created pseudo GT segmentations 

re object-dependent, guaranteed to reach human-level accuracy, 

nd can greatly reduce manual workload. They can be used in 

ractice as substitutes for fully manual GT in evaluating segmen- 

ations via actual algorithms. 

(6) Practical usage 

The practical use of the SparseGT method involves two stages 

a training stage and a p-GT generation stage for evaluation. The 

raining stage has to be conducted first for each object of inter- 

st to determine the strategy that is optimum for that object to 

chieve maximum workload reduction without compromising GT 

ccuracy. The amount of manual help needed for the two stages 

or that object will then depend on the object itself and the opti- 

um strategy for it. Table 10 summarizes the manual help needed 

or the six strategies examined in this paper for both stages. Esti- 

ation of the natural variability ( μM 

, σ M 

) that exists in GT is an

ssential step for all strategies and not listed in the table. This re- 

uires full GT on a much smaller data set than what is needed for 

he training stage for a DL strategy. Note that end-slices need to 

e specified manually in both stages for all strategies. Some strate- 

ies do not need full GT for training although all of them require 

T on the selected sparse slices. When needed, VOI is determined 

utomatically in the training stage (see Table 4 ). 

Computational considerations: SparseGT was implemented on a 

omputer with the following specifications: 6-core Intel i7-7800X 

PU 3.5GHz with 64 GB RAM, NVIDIA TITAN XP GPU with 12 GB 

f memory and GeForce GTX 1070 GPU with 8 GB of memory, and 

unning the Linux operating system. Generating p-GT for an ob- 

ect sample by S U-DL or S N-DL costs less than 2 s. In the network 
14 
raining stage, S U-DL is trained in the unit of block while S N-DL is 

rained slice by slice, so S U-DL generally takes more time than S N-DL 

or training. The size of ROI is another factor influencing training 

ime. Typically, CtEs with the smallest ROI requires ∼21 min in 

 U-DL training and ∼1 h in S N-DL training. RLg with the largest ROI 

equires ∼3 h in S U-DL and ∼4 h in S N-DL . The computational ef- 

ciency for the SI strategies depends on strategies of sparse slice 

election, optimal sparseness factors, and the numbers of slices oc- 

upied by the target objects, where, generally, objects with smaller 

umber of slices and optimal factors of greater sparseness require 

ess time to generate p-GT segmentations. S U-SI is more efficient 

equiring ∼1.6 s for Hrt to ∼8 s for TB than S N-SI which requires

3.3 s for Hrt to ∼8.5 s for TB in generating p-GT for an object

ample. No actual training stage is needed for the SI strategies. 

. Concluding remarks 

In this paper, our goal was to address a gap that currently ex- 

sts in segmentation evaluation, namely, to seek an answer to the 

uestion “Is it possible to create machine-generated ground truth 

GT) from sparse human annotated data sets such that the gener- 

ted pseudo GT (p-GT) is just as good as full manual GT?” We in- 

estigated a novel method named SparseGT, which provides guid- 

nce on how to exploit inter-segmenter differences derived from 

atural imprecision in human-drawn GT as reference and create p- 

T vastly more efficiently for segmentation evaluation than the full 

anual GT. We have shown that the created optimal p-GT is sta- 

istically indistinguishable from the real full GT and works at least 

s well as the full GT in terms of evaluation accuracy, but requiring 

nly a fraction of the manual workload needed for creating full GT. 

o such work currently exists. 

p-GT data are created in two steps, sparse slice selection to con- 

uct manual annotation and segmentation filling between sparse 

lices, each of which is investigated by two strategies, includ- 

ng uniform and non-uniform slice selection, and shape-based- 

nterpolation and deep-learning based segmentation filling. Differ- 

nt strategy combinations are evaluated by the actual workload re- 

uction and the evaluation accuracy achieved by p-GT compared to 

ull manual GT. Experiments are conducted utilizing ∼500 CT stud- 

es of the Head & Neck and Thorax involving 6 objects of different 

egmentation challenges, and actual algorithmic segmentations for 

esting the SparseGT method are generated by the AAR-RT method 

n the literature. 

We summarize our conclusions as follows. (i) Overall, the com- 

ined strategy S U-DL of uniform sparse slice selection coupled with 

L-based segmentation filling is able to yield the highest manual 

orkload reduction ( ∼80-96%!) compared to other strategies for all 

ix objects and all three segmentation evaluation metrics consid- 

red. (ii) The root mean squared errors in segmentation evaluation 

etric values ε( α, O, A) show a potential practical insight offered 

y the SparseGT method: If evaluated by manual GT created by 

ifferent segmenters, there may be some errors emanating from 

nter-segmenter differences which may be confused as arising due 

o the actual segmentation algorithm A. (iii) For both DL and SI 
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lling strategies, uniform sparse slice selection outperforms non- 

niform selection in most cases. Nonetheless, non-uniform selec- 

ion shows its advantages for irregular objects (e.g., TB) with sharp 

hanges from slice to slice when utilizing the SI strategy to cre- 

te p-GT. (iv) Although the SI strategy generally supports a lower 

evel of sparseness in slice selection compared to DL, it is a straight 

orward strategy without the need for a training stage in creating 

-GT. We have preliminarily demonstrated (under S U-SI-DL ) that it 

hows potential to enlarge the training data sets for DL when only 

 small cohort of fully annotated data sets is available. (v) Experi- 

ental results show that if further reduction in manual workload 

y annotating only a 3D region of interest is attempted (S VOI-DL ), 

he accuracy of the generated p-GT becomes unstable. This sug- 

ests that the intricate behavior associated with delineation of the 

T is essential for accurate p-GT generation and just object recog- 

ition help alone is insufficient. 

We note that, although we investigate variability of manual seg- 

entation in RT planning and a few strategies for sparse slice se- 

ection and segmentation filling, other clinical practice and read- 

ly available strategies can take their places and determine object-, 

trategy- and application- specific optimal sparseness to generate 

T for segmentation evaluation following the framework shown in 

ig. 1 . 

There are several gaps and further challenges to be addressed in 

his investigation. Firstly, although the metrics utilized in this pa- 

er are the most commonly used, they are incapable of expressing 

ubtle and local deviations between segmentations. For example, 

onsider OHPh, which is a sparse object with subtle thickness, low 

ontrast, and implicit variability in object interpretation. Its inter- 

egmenter differences measured by currently-used metrics are dis- 

roportionately greater than the meaning expressed by the met- 

ics. Thus, in conjunction with the question raised in this study, 

he deficiencies associated with the metrics also need to be over- 

ome ( Li et al., 2020 ) and considered. 

Second, the shape change function designed for non-uniform 

parse selection can potentially be improved. The current approach 

reats all anchors and the intervals between anchors with equal 

mportance. The k parameter can be potentially made to vary with 

he degree of shape change with larger values chosen where shape 

hange is more rapid. This approach may then show improvement 

ver uniform selection. 

Third, the non-uniform strategy has shown its strength on Tra- 

hea and Bronchi which has up to three levels of branches. This 

trategy can potentially handle more general tree-like objects such 

s airway trees or pulmonary arteries and veins with greater 

hange in topology in the z-direction. Such objects generally show 

uch greater variation in ground truth than non-tree-like struc- 

ures. For such objects, the shape-change function can be modi- 

ed to include an additional variable to indicate the branch-points, 

hich should be treated as anchors, and additional sparse posi- 

ions may be selected according to the shape variation in each 

on-branching segment. We surmise that one anchor selected be- 

ween each pair of branch-point anchors should suffice to handle 

ree-like objects. This clearly requires further work. 

Forth, the current slice selection strategies in the SparseGT 

ethod are strongly slice-oriented and depend on the z-axis which 

s chosen to be the cranio-caudal direction. From the goal of work- 

oad reduction, there may be an object-specific optimal axis. This 

s worth exploring, notwithstanding the fact that this may raise 

ther issues such as interpolation and the associated errors. The 

ctual segmentation itself can be carried out in the native slices 

hile optimal slice orientations can be used just for segmentation 

valuation only. 

Finally, in this paper we demonstrated the potential of the 

parseGT method, but its real applicability in routine segmenta- 

ion evaluation needs to be independently established. This can 
15 
e accomplished by conducting large-scale evaluations involving 

ultiple body regions and image modalities and numerous objects 

here p-GT and GT evaluations are compared. For use in real clin- 

cal applications, we may also employ reader studies to determine 

he degree of acceptability of the segmentation for the application 

s described in ( Li et al., 2020 ). If p-GT and GT evaluations both

uggest the same acceptability, then the validity of p-GT is estab- 

ished for that application. We are working toward this direction 

or the practical use of the SparseGT method. 
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