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ABSTRACT 

Automatic Anatomy Recognition (AAR) is a recently developed approach for the automatic whole body wide organ 

segmentation. We previously tested that methodology on image cases with some pathology where the organs were not 

distorted significantly. In this paper, we present an advancement of AAR to handle organs which may have been 

modified or resected by surgical intervention. We focus on MRI of the neck in pediatric Obstructive Sleep Apnea 

Syndrome (OSAS). The proposed method consists of an AAR step followed by support vector machine techniques to 

detect the presence/absence of organs. The AAR step employs a hierarchical organization of the organs for model 

building. For each organ, a fuzzy model over a population is built. The model of the body region is then described in 

terms of the fuzzy models and a host of other descriptors which include parent to offspring relationship estimated over 

the population. Organs are recognized following the organ hierarchy by using an optimal threshold based search. The 

SVM step subsequently checks for evidence of the presence of organs. Experimental results show that AAR techniques 

can be combined with machine learning strategies within the AAR recognition framework for good performance in 

recognizing missing organs, in our case missing tonsils in post-tonsillectomy images as well as in simulating 

tonsillectomy images. The previous recognition performance is maintained achieving an organ localization accuracy of 

within 1 voxel when the organ is actually not removed. To our knowledge, no methods have been reported to date for 

handling significantly deformed or missing organs, especially in neck MRI.  

Keywords: multi-object segmentation, missing organs detection, Automatic Anatomy Recognition-AAR, Adeno-

tonsillectomy 

1. INTRODUCTION 

Childhood obesity has more than doubled in children and quadrupled in adolescents in the past 30 years [1]. Pediatric 

Obstructive Sleep Apnea Syndrome (OSAS) is one of the most detrimental effects of childhood obesity. OSAS is also 

known to introduce additional health issues in children including neurocognitive deficits, behavioral disturbances, and 

cardiometabolic derangements [2]. The most significant risk factor for moderate sleep-disordered breathing in children 

and adolescents (2-18 years of age) has been associated with obesity [3]. OSAS studies are therefore becoming 

increasingly more relevant with the epidemic of childhood obesity.  

Adeno-tonsillar hypertrophy has been recognized as an important anatomic cause of restriction of the upper airway and 

contributing to the development of OSAS in obese children. Adeno-tonsillectomy is therefore recommended as the first 

line of treatment for obese children with OSAS [4-7]. Organ segmentation, especially of tonsils, is needed in analyzing 

size changes due to surgery and studying treatment effects [8]. Modified and resected organs, such as tonsils after 

tonsillectomy, are generally a challenge for most of the current multiple organ segmentation methods [9-12].  

The Automatic Anatomy Recognition (AAR) methodology based on fuzzy object models (FOMs) we previously 

reported [13] demonstrated its ability to recognize and delineate multitudes of objects body-wide in CT and MR 

imagery. We previously tested this methodology on image cases with some pathology where the organs were not 

distorted significantly. It may be a challenge for fuzzy object models and AAR recognition to deal with the data where 

organs (tonsils) are distorted or absent due to adeno-tonsillar hypertrophy or adeno-tonsillectomy, since the fuzzy object 

models are built from normal subjects who commonly have normal tonsils and both tonsils. So it will be useful to study 

what will happen on those cases with AAR recognition and what strategy to be adopted within AAR to correctly predict 

absent tonsils. Further, if tonsil removal is correctly predicted, it's not necessary to make delineation on tonsils and AAR 
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can stop without further proceeding to delineation. In this paper, we present an advancement of AAR to handle organs 

which may have been modified or resected by surgical intervention (tonsillectomy). Here we focus on MRI of the neck 

in pediatric OSAS. To our knowledge, no methods have been reported to date for handling significantly deformed or 

missing organs, especially in neck MRI.  

2. METHODS 

The proposed method combines AAR-recognition step and support vector machine (SVM) techniques to detect the 

absence of tonsils in post-tonsillectomy images. The AAR approach consists of the following steps: data acquisition, 

object delineation on training data sets, fuzzy anatomy model building, recognition by using the models, and delineation 

by using the pose-adjusted models found at recognition. Compared with the segmentation methods based on multi-atlas 

and label fusion techniques [17], AAR method allows encoding and further exploiting whatever relationships that exist 

among objects without imposing any restrictions such as linearity or smoothness. We break up the segmentation task for 

a given image I into recognition and delineation. The goal of recognition is to determine the object’s location and 

model’s adjusted size in the image and the goal of delineation is to determine the object's spatial extent in the image and 

to mark the precise spatial occupation of the objects in I.  SVM is a commonly used classifier which can be linear or 

non-linear depending on its kernel function. It can effectively deal with binary classification and multiple classification, 

especially on small size training data sets [14]. 

The method proposed here mainly includes three steps: building hierarchical models as per AAR principles, object 

recognition/localization by the AAR methodology, and SVM detection test for objects.  

AAR model building 

 

 

 

 

 

      Figure 1. Object hierarchy. 

In the AAR approach, given input images I1,…., IN, for a body region B, in our case neck, for N subjects, and 

segmentations of objects O1,…, OL of B in I1,…., IN, the fuzzy anatomy model of B, FAM(B), is defined to be FAM(B) = 

(H, M, ρ,  , ). Here, H is a hierarchy of organs in B which can be very detailed as described in [13] or simple as 

illustrated in Figure 1 for our application of the detection of the tonsils. M = {FMℓ: 1  ℓ  L} is a set of fuzzy models; 

each fuzzy model FMℓ represents the model of object Oℓ as a fuzzy set estimated over N samples of Oℓ. ρ denotes the 

parent-to-offspring relationship in H over N subjects.   is a set of scale factor ranges   = {ℓ : 1  ℓ  L}, ℓ being a 

scale factor range for organ Oℓ over N subjects.  is a host of measurements pertaining to organs in B and the associated 

images which are used in various processes including recognition and delineation of objects as well as for describing 

quantitatively the anatomy and image information pertaining to the anatomy of B. FAM(B) handles uncertainties and 

variability in anatomy naturally and can be integrated with the fuzzy connectedness and other graph based object 

delineation frameworks naturally. In this paper, the body region neck is defined in axial extent with the superior 

boundary 6.6 mm above the superior aspect of the globes and the inferior boundary is defined by a level 6.6 mm inferior 

to the inferior aspect of the mandible. 

AAR recognition 

Given FAM(B) and a test image I, the recognition method determines the optimal pose (location, orientation, and scale 

factor) for the object’s model for each object in image I so the model falls in place as closely as possible to the actual 

organ manifestation in I. 

To determine the optimum pose for object Ok, a subset of the search space is determined based on variations observed in 

k (that is, variation in the relationship of Ok with its parent) and k. This subspace is then sampled at regular discrete 

intervals, and at each sample pose, a “recognition score” is valuated to examine the degree of match of FMk with the 

evidence available in I for Ok. The pose returning the best score is considered to be the pose recognizing object Ok. For 

the “optimum threshold” method, which is the best among the recognition strategies we have studied [13], given a 
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specific object Ok, we determine an optimum threshold interval Thk by rehearsing a recognition trial on the training 

images that yields the best recognition accuracy. Then with that threshold, we segment the test image I into a rough 

segmented binary image Jk(I). The optimal pose for Ok then is the pose with which we can achieve minimum difference 

between the transformed model FMk
p at pose p and the thresholded image Jk(I).  

            
* argmin (| ( ) ( ) | | ( ) ( ) |)p p

p k k k k kp FM O J I J I FM O                              (1) 

Here, image subtraction is done in the sense of fuzzy logic, and |x| denotes the fuzzy cardinality of x, meaning that it 

represents the sum total of the membership values in x. In searching for the best pose p, we take the model itself as 

reference for analyzing false positive and false negative portions as in (1). 

For the optimal threshold method adopted in AAR recognition, two issues related to image intensity should be 

considered. One is intensity standardization and another is non-uniformity correction. MR images usually suffer from the 

problem of intensity non-standardness which implies the lack of a tissue specific numeric intensity meaning of MR 

images even within the same MRI protocol, for the same body region, for images obtained on the same scanner, and for 

the same patient. Non-uniformity of image intensity is caused by the imperfections of the imaging device which results 

in the same tissue appearing very bright and dark in different parts of the image. For all images in our experiments, we 

first apply non-uniformity correction and then automatic intensity standardization [15, 16].  

SVM detection 

We use LIBSVM software with a Radial Basis Function kernel and initial parameters set to default values [14]. The 

output of the SVM classifier indicates whether the tonsil has been found to be absent ( value 1) or if it is present in the 

image (value 0). The feature vectors for SVM detection consist of two components corresponding to the left and right 

tonsils. Each component indicates the size (fuzzy volume) of the intersection of the fuzzy model with the optimally 

thresholded image where the pose of the fuzzy model is the optimal found at AAR recognition. SVM training is 

performed at the model building stage on the training data sets. The idea is that, at an optimal threshold and at optimal 

recognition, the above fuzzy volume of intersection will be much lower if a tonsil is actually absent than if it is left intact. 

The proper decision function to employ is determined by the training samples by SVM. 

After SVM detection, if tonsils are found to be present, the AAR approach will proceed to delineation of the target 

object in the given image I. Delineation of objects is performed on I in the hierarchical order as in recognition. The root 

object, such as skin, is first delineated and then delineation proceeds in the breadth-first order to other off-spring objects 

until all the objects are delineated. AAR delineation is based on Iterative relative fuzzy connectedness (IRFC) with 

affinity calculation taking into account object homogeneity, intensity feature, and the model membership at recognition 

[13]. 

3. RESULTS 

Institutional Review Board approval was obtained for this prospective study. The following three data sets are employed 

in our experiments: DS1: images of 15 OSAS subjects with all tonsils intact; DS2: image data simulating tonsil removal 

performed on images of DS1; DS3: real pre- and post-tonsillectomy data sets from 11 subjects. All tonsillectomy 

subjects are female with age in the range 8-17 yrs.  

Simulated tonsillectomy data set DS2 consists of the original 15 unmodified data sets, plus additional 15 data sets for 

each of the three cases of tonsil removal – left only, right only, and both, yielding a total of 60 image data sets. Tonsil 

removal is simulated by replacing the standardized MR image intensity values in the region of the tonsil to be removed 

by intensities which follow a Gaussian distribution whose mean and standard deviation are estimated from the region in 

the vicinity of the tonsil in that image.  

The MR images are all of size 400 x 400 x 35-50 with a voxel size of 0.5 x 0.5 x 3.3 mm3 and axial T2 weighted from a 

Philips Achieva 3T scanner with TR/TE=8274.3/82.6 msec for DS1 and TR/TE=11929/100 msec for DS3. Fuzzy object 

models were created from DS1. Leave-one-out cross evaluation is performed for SVM detection on each data set group. 
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AAR recognition results from simulated and real tonsillectomy data are displayed in Figures 2 and 3 where tonsils are 

fully removed. Upper airway cross sectional area seems to have increased in the real post-operative image. More 

quantitative results on the effects of tonsillectomy on OSAS can be found in previous work [8], where the segmentation 

was done manually.  

 

 

 

 

 

 

 
Quantitative results of AAR-Recognition and SVM detection are presented in Tables 1-3. Table 1 shows results for data 

set DS1 where location error denotes the distance between the centers of ground truth objects and the fuzzy model at 

optimal recognition. Scale error denotes the ratio of the estimated size to true size. Perfect recognition results would 

yield location and size errors of 0 and 1, respectively. Since the voxel size is 0.5x0.5x3.3 mm3, the location error 

Table 1. AAR-Recognition results. 

 
Neck Skin Right Tonsil Left Tonsil Mean 

Location Error (mm) 3 2.9 2.3 2.73 

Standard deviation (mm) 1.2 2.2 2.1 1.83 

Size error 1 0.92 0.90 0.94 

Standard deviation 0.01 0.11 0.12 0.08 

Figure 3. Recognition results from a real patient data set in DS3. Left to right: pre-operative 
image with the boundaries of the tonsils marked, post-operative image with tonsils removed, 
recognition result overlaid (in yellow) on pre-op and post-op images (no tonsils detected). 

Figure 2. Recognition results from a simulated data set in DS2.  
Top row: A slice of a simulated tonsillectomy data set before 
surgery (left), and after removing right tonsil (middle) and left 
tonsil (right). The boundaries of the tonsils are marked in the 
first image. Bottom row: Recognition results where the cross 
section of the fuzzy model is overlaid in yellow on the image. 
Left to right: no removal, left tonsil removed, right tonsil 
removed. 

Proc. of SPIE Vol. 9414  94140Z-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/24/2015 Terms of Use: http://spiedl.org/terms



I

expressed in voxel units is within one voxel. SVM detection performance on data sets DS2 and DS3 is shown in Tables 

2 and 3. The tables also list the results for each sub-group. For both data sets, True positive (TP) rate is around 95% and 

false positive (FP) rate is close to zero. An interesting observation for one special case in real tonsillectomy data is 

shown in Figure 4, where tonsils are largely removed but AAR still seems to be able to catch the small remains of tonsils 

as shown in Figure 4. 

 

 

 

 

 

 

 

 

4. CONCLUSIONS 

The previous AAR methodology [13] is extended by combining hierarchical modeling and recognition strategies with machine 

learning techniques to handle post-surgery situations where objects have been resected or modified surgically. The ability of the AAR 

approach to detect missing organs is demonstrated on simulated and real post-tonsillectomy MRI image data of the neck. 

Experimental results show that AAR-Recognition techniques can be combined with machine learning strategies within the AAR 

recognition framework for good performance in recognizing missing organs, in our case tonsils. The previous recognition 

performance is maintained achieving an organ localization accuracy of within 1 voxel when the organ is actually not removed. Since 

new additions are within the computationally very efficient AAR framework, there is no significant additional computational burden.  

 

One limitation of our study is the small number of data sets employed in experiments. However, the data provided preliminary results 

for a novel way of analyzing tonsillectomy image data in OSAS within the AAR framework. Image quality is improved via automatic 

non-uniformity correction and intensity standardization approaches in this paper, which may be further improved with the novel 

interactive non-uniformity correction and intensity standardization approached as shown in [19] and then benefit the proposed 

predicting approach, perhaps even more. 
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