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Abstract: A general body-wide automatic anatomy recognition (AAR) methodology was proposed in our previous work 
based on hierarchical fuzzy models of multitudes of objects which was not tied to any specific organ system, body 
region, or image modality. That work revealed the challenges encountered in modeling, recognizing, and delineating 
sparse objects throughout the body (compared to their non-sparse counterparts) if the models are based on the object’s 
exact geometric representations. The challenges stem mainly from the variation in sparse objects in their shape, 
topology, geographic layout, and relationship to other objects. That led to the idea of modeling sparse objects not from 
the precise geometric representations of their samples but by using a properly designed optimal super form. This paper 
presents the underlying improved methodology which includes 5 steps: (a) Collecting image data from a specific 
population group G and body region Β and delineating in these images the objects in Β to be modeled; (b) Building a 
super form, S-form, for each object O in Β; (c) Refining the S-form of O to construct an optimal (minimal) super form, 
S*-form, which constitutes the (fuzzy) model of O; (d) Recognizing objects in Β using the S*-form; (e) Defining 
confounding and background objects in each S*-form for each object and performing optimal delineation. Our 
evaluations based on 50 3D computed tomography (CT) image sets in the thorax on four sparse objects indicate that 
substantially improved performance (FPVF~2%, FNVF~10%, and success where the previous approach failed) can be 
achieved using the new approach. 
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1. INTRODUCTION 

Image segmentation in radiology is the analytic underpinning of all efforts that seek quantitative information from 
medical images. It is required in all image analysis processes, including research efforts in other related disciplines such 
as image registration, interpolation, filtering, and artifact suppression, and clinical applications such as the study, 
diagnosis, prognosis, radiomics, image-based therapy planning, and response assessment of diseases. Most past 
developments in image segmentation focused on specific objects and organ systems that were tailored to specific 
imaging modalities and protocols and hence are difficult to generalize to a different object, organ system, or different 
modalities. Demonstrated segmentation methods that are independent of objects, body-region, and imaging modality and 
protocol are at present rare. With body-wide imaging becoming common in many systemic diseases, increasing need for 
body-region-wide and body-wide quantitative information, and emerging trends in and their implications to medicine of 
Big Data to Knowledge programs, segmentation methods that generalize to the whole body and different imaging 
modalities are needed at present. 
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Motivated by the above needs, we have been developing a general computerized body-wide automatic anatomy 
recognition (AAR) methodology [1-4] based on hierarchical fuzzy models of multitudes of objects in several body 
regions. The goal was to build a general AAR system that is not tied to any specific organ system, body region, or image 
modality. Our work revealed that, while our AAR methodology was effective in segmenting spatially compact blob-like 
objects, which we refer to as non-sparse objects, thin, tubular, less space-filling objects, called sparse objects, posed 
special challenges in effective model building, and therefore in recognition and delineation. The main difficulty arose 
from the fact that if we built an object model based on the object’s exact geometric representation, then the sparse nature 
of the object caused very little spatial overlap among its different samples used for model building. The difficulty stems 
mainly from the variation in sparse objects (compared to their non-sparse counterparts) in their shape, topology, 
geographic layout, and relationship to other objects. For example, the descending portion of the thoracic aorta is often 
straight and directed vertically inferiorly while in some subjects it may be oblique oriented, curved, or even tortuous, 
whereas other portions of the thoracic aorta, especially the aortic arch, do not vary much. While many segmentation 
methods have been reported in the literature specific to each sparse object, such as the main arterial trunks in the thorax, 
abdomen, and pelvis, esophagus, spinal cord, and ribs [5-9], they are not generalizable in the above spirit of the AAR 
system. 

The above observation of the variations in sparse objects led us to the idea of modeling sparse objects not from the 
precise geometric representations of their samples but through use of properly designed optimal super forms. This paper 
presents the underlying concepts and demonstrates the significant improvement afforded by the new strategy to localize 
or recognize these objects and subsequently delineate them within the AAR fuzzy modeling framework. 

2. METHODS 

The proposed AAR approach for sparse objects consists of the following steps:  

(a) Collecting image data from a specific population group G and body region Β and delineating in these images the 
objects in Β to be modeled.  

(b) Building a super form, S-form, for each object O in Β.  

(c) Refining the S-form to construct an optimal super form S*-form for each object, from which a hierarchical model of 
the object assembly is built.  

(d) Recognizing objects in Β by using their models in a hierarchical order.  

(e) Defining confounding and background objects in each S*-form for each object and performing optimal delineation. 

These steps are described below. 

(a) Collecting image data and delineating objects  

We will follow the notations defined in [4]. G: the population group under consideration. Β: the body region of focus. 
O1, …, OL : L objects considered in Β.  Ι = {I1, …, IN}: the set of images of Β for G from N subjects used for model 
building and training the parameters of the AAR algorithms. In,l : the binary image representing the delineation of object 
Ol in the image In ∈ Ι. The image set Ι is obtained from our patient image database by searching for images that are 
radiologically near normal in Β. Fifty contrast-enhanced breath-hold CT image data sets of the thorax from 50 male 
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patients in the age range of 50-60 were utilized. These were collected from our hospital patient image database and all 
images were verified to be of acceptable quality and radiologically near normal with exception of minimal incidental 
focal abnormalities. Images were of routine clinical resolution with a voxel size of 0.7 mm x 0.7 mm x 5 mm. One half 
of the data set was used for model building and the remaining 25 image data sets were used for testing the methods. This 
retrospective study was conducted following approval from the Institutional Review Board at the Hospital of the 
University of Pennsylvania along with a Health Insurance Portability and Accountability Act (HIPAA). 

We utilize the data sets created in the work of [4] and follow the definitions given in [4] for each body region and object. 
That is, the images for the body region and each object were consistently created following the definitions in Table A1 in 
[4]. In this paper, we focus on the thorax and the following sparse objects in that body region: thoracic skeleton (TSk), 
arterial system (AS), venous system (VS), and esophagus (E). The remaining (non-sparse and sparse) objects are as in 
our earlier work: Tskn – thoracic skin, LPS & RPS – left & right pleural spaces, TB – trachea and bronchi as a single 
object, RS – respiratory system (= LPS+RPS+TB), PC – pericardial region, IMS – internal mediastinum (= 
E+PC+AS+VS). The delineations were carefully created for all data sets with expert supervision and verification as 
explained in [4]. 

(b) Building a rough super form, S-form, for each object 

As in our previous AAR work [4], we define the Fuzzy Anatomy Model FAM(Β) of the body region Β (for G) to be a 
quintuple FAM(Β) = (H, M, ρ, λ, η). H here is a hierarchy, represented as a tree, of the objects in Β. We use the same 
hierarchy as in [4] with about 10 objects in Thorax. M = {FMl : 1≤ l ≤ L} is a set of fuzzy models, one model per object 
in Β. ρ describes the parent-to-offspring relationship in H over G. λ is a set of scale factor ranges indicating the size 
variation of each object Ol over G. η  represents a set of measurements pertaining to the objects in Β. The hierarchy for 
thoracic objects is depicted in Figure 1. 

Figure 1. Hierarchy used for building the fuzzy anatomy model of the objects of the thorax. 

The models for the non-sparse objects are built in the same manner as in [4]. Briefly, the process involves first aligning 
all binary images In,l  representing samples of object Ol to the mean geometric center of all samples, then scaling each 
binary image to the mean scale factor, and finally estimating a fuzzy membership value at each voxel based on distance 
transform and a sigmoid function to convert averaged distance values to fuzzy membership values as explained in [4].  

The models of sparse objects are created differently as described below. First, all N samples In,l of Ol are aligned as for 
non-sparse objects and a union of the aligned binary volumes is formed. This is followed by morphological closing 
operations to create a volume with minimal small inconsequential 3D cavities. The result is called the S-form of object 
Ol. 

Proc. of SPIE Vol. 9413  94133N-3

Downloaded From: http://spiedigitallibrary.org/ on 03/23/2015 Terms of Use: http://spiedl.org/terms



 

 

In this step, for each object Ol, its optimal super form, denoted S*-form, is created from its S-form by applying an erosion 
operation t times to the S-form, where t is determined by minimizing the sum FPVF2+FNVF2 over all training samples of 
Ol. Here FPVF and FNVF denote the false positive and false negative volume fractions, respectively, over all training 
samples yielded by the eroded S-form with respect to the aligned true delineations In,l of Ol. The underlying idea is that 
the S-form is generally too large as a super form, and for employing it as a model, its most compact version is preferable. 
The resulting S*-form is taken to be the fuzzy model FMl  of Ol. For estimating all other parameters of the Fuzzy 
Anatomy Model FAM(Β), namely M, ρ, λ, and η, the S*-form is used, following the methods described in [4] for fuzzy 
models. 

(d) Recognizing objects in Β  

To localize an object in a given test image, we employ the optimal threshold-based strategy of [4] with a modification. 
This strategy involves finding an optimal threshold interval Thl for object Ol by rehearsing a recognition trial over the 
training images in Ι. The trial consists of finding a single threshold interval which when applied to the training images 
yields the smallest sum FPVF+FNVF with respect to the model FMl over all training images. In the case of a sparse 
object, we take its S*-form to be its fuzzy model FMl. (This training step is actually part of the model building process 
itself.) To actually recognize a sparse object in a given test image, the learned optimal threshold Thl is applied to the test 
image and the optimal pose for FMl that minimizes FPVF+FNVF is found. The recognition process proceeds 
hierarchically making essential use of the relationship ρ and the size range λ to make the search process accurate and 
very efficient [4]. 

(e) Defining co-objects and performing optimal delineation: The recognized objects are finally delineated by using the 
Iterative Relative Fuzzy Connectedness (IRFC) algorithm [10-13]. From knowledge of the co-objects for each object 
(this is anatomic knowledge that is also part of FAM(Β)), the models associated with the object and its co-objects, and 
the intensity characteristics of the objects, we automatically determine the seeds needed for the object and its co-objects 
within the mask indicated by the object model (S*-form). Again using the intensity characteristics of the object and its 
co-objects, optimal delineation of the object is performed via the IRFC mechanism. 

3. RESULTS 
 

 

 

 

 

 

 

 

 

(c) Constructing an optimal super form, S -form, for each object  
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Figure 2. Objects (L to R): AS, E, TSk, and VS. 1st row shows the S-form before morphological closing. 2nd row shows the resulting 

S-form. 3rd row indicates the S-form (partially shown) at recognition superimposed on a true object to indicate coverage by the model. 

4th row similarly shows the S*-form. 

Figure 2 displays for the four sparse objects considered (AS, E, TSk, and VS) 3D renditions of their S-form and S*-form. 
Here, the recognition process is also illustrated in the figure for both forms. We can see that the recognized objects are 
inside both super forms. For reference, the true objects are depicted to demonstrate their coverage by the super form 
models.  

Figure 3. Delineation results. Objects from left to right are: AS, E, TSk, and VS. 
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Figure 3 shows some sample slices of the 3D segmentation result for the four sparse objects. We note that the 
segmentation of E, VS, and AS in these images is extremely challenging. 

Some quantitative results of evaluation are listed in Table 1 for the four sparse objects where the delineation errors are 
expressed as FPVF and FNVF with respect to true object delineations. The mean and standard deviation of FPVF and 
FNVF over the 25 test cases are listed in the table. For comparison, the table also lists the two measures obtained for the 
same objects on the same test cases by using the previous non-sparse modeling technique of [4]. Note from the table that 
the delineation results have improved for all objects, in some cases significantly, compared to the previous AAR method 
which modeled the sparse and non-sparse objects in the same manner using exact object forms in the training set. The 
earlier method had failed at the recognition stage for VS (see [4] for details), and hence there was no delineation result 
for VS which is indicated by a “-” in the table. The new approach however was successful for VS with very good 
delineation results. The delineation of esophagus was quite poor in the previous method with nearly 50% FNVF. Sparse 
modeling however helped to bring this to under 10%. 

 Method AS E TSk VS 

FPVF 
Sparse AAR 0.016 

0.005 
0.018, 
0.003 

0.017 
0.014 

0.034 
0.006 

Prev AAR 0.01 
0 

0  
0 

0.19 
0.05 - 

FNVF 
Sparse AAR 0.114 

0.065 
0.098 
0.037 

0.098 
0.088 

0.126 
0.05 

Prev AAR 0.17 
0.17 

0.49 
0.19 

0.13 
0.07 - 

Table 1. FPVF and FNVF (mean and SD) over the 25 test image sets. For reference, these values for the previous AAR method [4] are 
also shown. The entry “-” means the delineation of the object (VS) was not tested by the previous method in [4] due to the fact that the 
object’s recognition results were not acceptable. 

4. CONCLUDING REMARKS 

(a) The previous AAR approach [4] was a large effort to establish body-wide object recognition and delineation 
independent of body region, image modality, and organ system. This paper further advances that technology by 
devising new methods of modeling, recognizing, and delineating sparse objects. Sparse objects have posed 
challenges to the AAR methodology as well as to other modeling and atlas approaches to object segmentation in 
the literature. 

(b) The idea that sparse objects should not be modeled by their precise geometric specification but by an optimal 
super form is novel. It fits well within the fuzzy modeling framework and provides a tangible solution to this 
difficult problem of segmenting thin, subtle, and often poorly defined objects. This is a general concept which 
we demonstrated in this paper via fuzzy modeling techniques. The principle however may be applicable to other 
sparse (and non-sparse) objects not considered in this paper. The idea may be applicable also to other object 
modeling approaches. 

(c) The idea of defining confounding objects in the delineation process, encoding that information within the model, 
and exploiting that information within the IRFC framework for optimal delineation is another novel component 

of this paper. This idea follows naturally from the super form idea. The super form will naturally contain other 
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objects than the sparse object it attempts to represent. By studying the anatomy closely, however, all 
confounding objects can be enumerated and this information can be exploited in the proper delineation of the 
sparse object. 

(d) Optimal super form is an effective concept for modeling sparse anatomic objects. However, there may be other 
more effective ways of defining the optimality criterion instead of the function FPVF2+FNVF2 used in this 
paper, including criteria that consider image intensity. 

(e) The embodiment of this idea presented in this paper as S*-form yields very good object recognition and 
delineation results in our preliminary tests for some sparse objects in the thorax, with a mean FPVF of 2% and 
FNVF of 10% over all objects. Also, where the previous method failed for some objects, the new method was 
successful. 

(f) The new method fits naturally within the previous AAR framework retaining its high computational efficiency. 
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