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ABSTRACT 

Radiological imaging and image interpretation for clinical decision making are mostly specific to each body region such 
as head & neck, thorax, abdomen, pelvis, and extremities. For automating image analysis and consistency of results, 
standardizing definitions of body regions and the various anatomic objects, tissue regions, and zones in them becomes 
essential. Assuming that a standardized definition of body regions is available, a fundamental early step needed in 
automated image and object analytics is to automatically trim the given image stack into image volumes exactly 
satisfying the body region definition. This paper presents a solution to this problem based on the concept of virtual 
landmarks and evaluates it on whole-body positron emission tomography/computed tomography (PET/CT) scans. The 
method first selects a (set of) reference object(s), segments it (them) roughly, and identifies virtual landmarks for the 
object(s). The geometric relationship between these landmarks and the boundary locations of body regions in the cranio-
caudal direction is then learned through a neural network regressor, and the locations are predicted. Based on low-dose 
unenhanced CT images of 180 near whole-body PET/CT scans (which includes 34 whole-body PET/CT scans), the 
mean localization error for the boundaries of superior of thorax (TS) and inferior of thorax (TI), expressed as number of 
slices (slice spacing ≈ 4mm)), and using either the skeleton or the pleural spaces as reference objects, is found to be 3,2 
(using skeleton) and 3, 5 (using pleural spaces) respectively, or in mm 13, 10 mm (using skeleton) and 10.5, 20 mm 
(using pleural spaces), respectively. Improvements of this performance via optimal selection of objects and virtual 
landmarks and other object analytics applications are currently being pursued. 

and the skeleton and pleural spaces used as a reference objects 
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1. INTRODUCTION 

Radiological imaging and image interpretation and the utilization of images for clinical decision making are mostly 
specific to each body region such as head, neck, thorax, abdomen, pelvis, and extremities. Although imaging is often 
performed body-region-wise, the acquired images do not usually conform to any standardized definition of body regions. 
For automating image analysis and consistency of results, standardizing definitions of body regions and the various 
anatomic objects, tissue regions, and zones in them becomes essential [1]. Even when imaging is performed body-wide, 
like in whole-body PET/CT images, it becomes necessary to perform analysis body-region-wise in numerous 
applications, particularly those involving systemic diseases, for disease staging, treatment planning, response assessment, 
and restaging. Although methods have been reported in the literature for automatically locating regions of interest based 
on physical anatomic landmarks observable on images, the regions of interest considered have been mainly whole organs. 
We are not aware of any published papers that focused on the problem of automatically defining entire body regions. 
This paper presents a solution to this problem, employing not physical landmarks but conceptual or virtual landmarks 
that may not correspond to any physically observable anatomic feature on the image. 
 
Assuming that a standardized definition of body regions is available, one of the fundamental early steps needed in 
automated image analysis, image analytics, and object analytics is to automatically trim the given tomographic image 
stack of a body region into an image volume exactly satisfying the body region definition. If a whole-body tomographic 
image stack is given, the task is to precisely divide the stack into body regions as per the exact definition of each body 
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region. Although many approaches to automatic identification of objects, landmarks, and specific anatomic features are 
available in the literature [1-6], this important and fundamental problem does not seem to have been addressed. This 
paper presents a solution to this problem and evaluates it on whole-body or near whole-body PET/CT images. The main 
contributions of this work can be summarized as follows: (1) An automated whole-body region localization method. (2) 
The idea of a virtual landmark can take into account both object shape and intensity appearance. (3) The method can be 
generalized to other imaging modalities and reference objects easily.  

2. METHODS 

For initial demonstration, we will focus on one body region in this paper, namely the thorax, and follow its definition 
formulated in [1,2]. We define the thoracic body region as extending 5 mm superior to the lung apices to 15 mm inferior 
to the lung bases. In any given image, I, we will denote the location of the superior axial slice of the thorax by TS(I) and 
the location of the inferior axial slice of the thorax by TI(I). Locations in all images are specified with reference to some 
fixed coordinate system, such as the scanner coordinate system. Our problem is: Given any image I, find automatically 
locations TS(I) and TI(I) in I. We assume that the slices of I are organized axially and that the body region it 
encompasses properly includes the body regions to be identified in I. In this work, we deal with whole-body or near 
whole-body PET/CT imagery, and so, this condition is always met. If this is not the case, the location predicted by our 
method will extend beyond the body region covered by I, but will be in correct relationship with that data set and the 
subject in the scanner coordinate system. 

The proposed method for body-region localization works overall as follows. It uses one or more objects that can be 
easily segmented in I as reference objects and finds in them virtual landmarks. It then trains a neural network to learn the 
relationship between these landmarks and the known true locations for TS(I) and TI(I) which are obtained from a training 
set of images. Subsequently the trained network is used to predict the body region boundary locations in any given image. 
These found locations are then used to subdivide the given image into body regions. These steps are further described 
below. 

(a) Image data:We selected whole-body CT image datasets from existing PET/CT scans of subjects from our health 
system patient image database following approval from the Institutional Review Board at the Hospital of the University 
of Pennsylvania along with a Health Insurance Portability and Accountability Act waiver. The subjects whose image 
data are selected included near-normal cases and patients with different types of disease conditions. Among these, 34 
were whole-body scans (head to foot) and 180 were near whole-body (neck to foot). They all included fully the body 
region of interest, namely the thorax. In this study, we used only the low-dose unenhanced CT portion of the PET/CT 
data sets. However, our approach is applicable to just PET alone and both CT and PET used simultaneously. These 
investigations will be considered in the future. The voxel size in the CT data sets is roughly spread from 1mm×1mm×3 
to 1mm×1mm×5 mm for CT-scans of different subjects. 

(b) Reference objects:In this work, we selected the left and right pleural spaces together as one reference object and the 
skeletal structure of the entire body as another object of reference. Segmentation of the objects was performed using the 
algorithms implemented in the CAVASS software system [7]. The segmentation results are stored as binary images. The 
requirements for a reference object are: it should be fully contained within the data set, it should be easily segmented 
automatically, and it should not be clustered within some small space in the body. Thus, for the skeleton reference object, 
only 34 data sets were available, since the other data sets do not satisfy the first condition. However, for the pleural 
spaces reference object, all 180 data sets were utilized. 

(c) Extraction of virtual landmarks: A separate paper is presented at this conference that describes the concept and 
techniques underlying the idea of virtual landmarks[8]. Briefly, virtual landmarks associated with an anatomic object are 
reference points which are tethered to the object. The points may lie anywhere within the body with respect to the object 
– inside, outside, or on its boundary, and most likely they do not lie exactly on the boundary. They can be defined on the 
binary image representing the object or using both object shape and gray value appearance from an underlying image at 
voxels that belong to the object. The landmarks are obtained through a process of recursive subdivision of the object 
guided by principal component analysis (PCA). At the highest level, the geometric center of the object is the only 
landmark produced. The eigenvectors associated with the object define a principal axis system and divide the object into 
8 octants. The part of the object in each of these octants is again subjected to PCA which yields a geometric center and a 
principal axis system. At the second level, thus, 8 landmarks are generated. In the third level, continuing this process of 
subdivision, 64 landmarks are generated, and so on. The method guarantees correspondence among homologous points 
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in different samples of the object from different subjects automatically, as is clear from the process of generating the 
points. It is also clear that the method allows selecting any desired virtual landmarks and any number of them since each 
landmark has a unique identifier associated with it in the process of subdivision. In this work, we used different numbers 
of landmarks as described below. The total number of virtual landmarks generated in n levels for a 3D object is 

i n 3(i 1)

i 1
2 .

 

 For n=2, 3, and 4 levels, the number of virtual landmarks generated is 9, 73, and 585, respectively. 

(d) Labeling true locations of body region boundaries: The actual locations in the cranio-caudal direction of the 
boundaries of the body region, or the values of TS(I) and TI(I), for all images in our data sets, are obtained by a visual 
examination of each data set, identifying the slices that define the boundaries of each body region, and recording the 
physical location of the slices in the scanner coordinate system using the CAVASS software. Note that there is potential 
subjective variation in this specification by readers which is due to how the body region boundary definition is 
interpreted by each reader on a specific image. Typically this variation is within one slice.  

(e) Learning the relationship between virtual landmarks and true locations of body-region boundaries: A neural network 
is configured as a regressor by feeding virtual landmarks and true locations as input and target output data sets, 
respectively, and the relationship is learned through network training, validation, and testing procedures. Here we adopt a 
simple architecture of a multiple-layer perception with one hidden layer. The number of neurons in the input layer is the 
same as the dimension of virtual landmarks, and the number of neurons in the output layer is the same as the size of 
target locations vector. In addition, the numbers of neurons in the hidden layers are determined by the complexities of the 
nonlinear mapping function that is being approximated. The details of the neural network configuring and training will 
be presented in the next section. Then, the trained network is used to predict locations TS(I) and TI(I) for any test image I. 
Since true locations have been recorded for all data sets, we can evaluate the prediction error by comparing the predicted 
with the true locations.  

3. EXPERIMENTS AND RESULTS 

To demonstrate the geometric relationship between the reference object and its virtual landmarks, in Figures 1 and 2 we 
display the 3D surfaces of the skeleton and the pleural space derived from whole-body PET/CT datasets of two patients 
along with the set of 73 virtual landmarks derived for this object from three levels (n=3). Notice that the 73 virtual 
landmarks spread quite uniformly in and around the object. It should be noted that some landmarks fall outside the object 
in the case of the skeleton reference object.  

 

Figure 1. 3D renditions of the skeleton representing one reference object derived from two patient data sets along with the 
derived virtual landmarks are shown in different forms: The object by itself, only the landmarks, and the two together. 
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Figure 2. 3D renditions of the pleural space representing one reference object derived from two patient data sets along with 
the derived virtual landmarks are shown in different forms: The object by itself, only the landmarks, and the two together. 

The landmark data with dimension as N×D×S are set as input data to the neural network, where N represents the number 
of landmarks, D represents 3D spatial coordinates (x, y, z) of the landmark points, and S represents number of subjects. 
Thus, if all data were to be utilized, the dimensionality of input data will be 73×3×34 for the skeleton reference object 
and 73×3×180 for pleural spaces reference object. The dimensionality of the target output data is L×S, where L 
represents the number of body-region boundary locations, in our case L = 2 (it corresponds to TS and TI).  

Here, we design the dimensionality of input data in terms of the coordinates of a subset of the virtual landmarks 
generated for a given number of levels (we chose L = 3). For the skeleton reference object, due to the small number of 
data sets available, we used fewer landmarks instead of all possible landmarks generated for 3 levels. For example, to 
form a subset of 9 landmark points, we select 1 point from the first level and all 8 points from the second level. For a 
subset which contains 25 points, we select 1 point from the first level, all 8 points from the second level, and 16 points 
from the third level by choosing 16 designated octants out of the total 64 octants. In addition to varying L, we also tested 
a strategy, where, instead of using the (x,y,z) coordinates of points, only the z  coordinate is considered for determining 
the input variables.  

After configuring the input data and target data of the neural network regressor, three things such as the data dividing, 
the network architecture, and the training algorithm should be considered carefully. Thanks for the neural network 
toolbox of MATLAB (it provides a powerful framework), it is convenient to implement the above operation[9]. For both 
case of using skeleton as reference object and using pleural spaces as reference object, we choose the Bayesian 
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Regularization algorithm (BR) to implement the training process because it can prevent overfitting and provide better 
performance than the Levenberg-Marquardt algorithm. As the BR training algorithm is used, the validation set can be 
merged with the training set. So, we only need to divide the number of subjects (S) into two sets i.e. training set and 
testing set. Here, we adopt the default setting of the toolbox which means that the training set make up approximately 85% 
of the full data set, and the testing set make up 15% of the full data set. That is, the ratio of the training set and the testing 
set are 29/5 and 153/27 for the two cases.  A multilayer perception with a single hidden layer is chosen to be the neural 
network architecture, and different neuron numbers of hidden layers are selected in terms of empirical tests (which are 
listed in Table 1 for different coordinates of landmarks and dimension of input data) for the two cases. The performance 
index is mean square error (MSE) . 

Table 1 presents the localization error for TS and TI in units of Number of Slices (NoS) and millimeters (mm). The mean 
localization error in NoS for TS and TI is 3 and 2, respectively, when the skeleton is used as a reference object, and 3 and 
5, respectively, when the pleural spaces is used as a reference object. The corresponding location errors in mm are 13 and 
10, respectively, for skeleton and 10.5 and 20, respectively, for pleural spaces. Note that the total number of slices in a 
whole-body PET/CT scan is roughly 400 to 500 slices. A localization error of less than 3 in NoS is almost perfect 
keeping in mind the applications for which body region identification is automated and also considering the fact that the 
variation in human identification of the region boundary locations can be 1-2 slices. A location error of less than 5 NoS 
seems acceptable. It is noted that the localization error for thorax presented in this paper are more attractive when 
comparing to the more recent report in reference [10] with body region localization error of 47.01mm.   

Table 1. Localization error for TS and TI using skeleton and pleural spaces as reference objects.  

Reference 
object 

Coordinates 
of 

landmarks 

Dimensionality 
of input data 

Neuron 
number of 

hidden layers 

Localization error 
(NoS, mm) 

TS TI 

Skeleton 
(x,y,z) 

25×3×S 3  3, 12 1, 12 
9×3×S 2 3, 12 3, 12 

z 
25×S 1 4, 16 2, 8 
9×S 2 3, 12 2, 8 

Pleural 
spaces 

(x,y,z) 
73×3×S 10 4, 15.3 9, 34.4 
25×3×S 10 2, 7.6 5, 19.1 

z 
73×S 3 3, 11.5 4, 15.3 
25×S 8 2, 7.6 3, 11.5 

 
From Table1, we can learn several interesting aspects of the present method. Firstly, different localization accuracy can 
be obtained by employing different reference objects. The localizing performance by using the skeleton as a reference 
object is better than that by using the pleural spaces. This may be due to the higher complexity of the shape of the 
skeleton and its body-wide spatial extent, which may yield more powerful virtual landmarks. Second, the localization 
accuracy using only z coordinates seems better than that of using (x,y,z) coordinates, particularly for TI when using 
pleural spaces as the reference object. Third, a larger number of virtual landmarks does not necessarily imply higher 
accuracy in localization. Thus, finding landmarks which have higher information content may be important. 

4. CONCLUSIONS 

In this work, a new method to localize the thoracic body region from whole-body or near whole-body PET/CT scans is 
presented. The key idea is to find a nonlinear mapping relationship between the 3D virtual landmarks and the ground-
truth of body-region boundaries. By searching key points along the shape of reference objects with a multiple levels style, 
the obtained virtual landmarks can represent a large object effectively. The relationship between the virtual landmarks 
and ground-truth positions can then be learned by employing a simple neural network regressor. Experimental results 
confirm that the present method can localize body-region boundaries automatically and reliably with promising accuracy. 
It is interesting that the accuracy of localizing specific body-region boundaries seems to be dependent on the reference 
object(s) and the particular virtual landmarks employed. In the future, we will investigate the performance of virtual 
landmarks taking into account both object shape and appearance in their definition. 
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