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a b s t r a c t 

Purpose: Since real-time 4D dynamic magnetic resonance imaging (dMRI) methods with adequate spa- 

tial and temporal resolution for imaging the pediatric thorax are currently not available, free-breathing 

slice acquisitions followed by appropriate 4D construction methods are currently employed. Self-gating 

methods, which extract breathing signals only from image information without any external gating tech- 

nology, have much potential for this purpose, such as for use in studying pediatric thoracic insufficiency 

syndrome (TIS). Patients with TIS frequently suffer from extreme malformations of the chest wall, di- 

aphragm, and spine, leading to breathing that is very complex, including deep or shallow respiratory 

cycles. Existing 4D construction methods cannot perform satisfactorily in this scenario, and most are not 

fully automatic, requiring manual interactive operations. In this paper, we propose a novel fully automatic 

4D image construction method based on an image-derived concept called flux to address these challenges. 

Methods: We utilized 25 dMRI data sets from 25 pediatric subjects with no known thoracic anomalies 

and 58 dMRI data sets from 29 patients with TIS where each patient had a dMRI scan before and after 

surgery. A time sequence of 80 slices are acquired at each sagittal location continuously at a rate of 

~480 ms per slice under free-breathing conditions, with 30–40 sagittal locations across the chest for each 

subject depending on the thoracic size. In our approach, we first extract the breathing signal for each 

sagittal location based on the flux of the optical flow vector field of the body region from the image time 

series. Here, for each time point of respiratory phase, the net flux of the body region can be regarded 

as the flux going into or out of the body region, which we term Optical Flux (OFx). OFx provides a 

very robust representation of the real breathing motion of the thorax. OFx allows us to perform a full 

analysis of all respiratory cycles, extract only normal cycles in a robust manner, and map all extracted 

normal cycles on to one cosine respiration model for each sagittal location. Subsequently, we re-sample 

one normal cycle from the respiration model for each location independently. The normal cycle models 

associated with the different sagittal locations are finally composited to form the final constructed 4D 

image. 

Results: We employ several metrics to evaluate the quality of the 4D construction results: E ie – error in 

locating time instants corresponding to end inspiration and end expiration; E to – deviation from correct 

temporal order in each detected normal cycle; E ss – deviation in spatial smoothness; and E sc – deviation 

from spatial continuity as scored by a reader. The means and standard deviations of these metrics for 

normal subjects and TIS patients are found to be, respectively: E ie : 0.25 ± 0.05 and 0.38 ± 0.16 in units 

of time instance (ideal value = 0); E to : 2.7% ± 2.3% and 1.8% ± 2% (ideal value = 0%); E ss : 0.5 ± 0.17 

and 0.54 ± 0.25 in pixel units (ideal value = 0); E sc : 4.6 ± 0.48 and 4.56 ± 0.98 (score range: best = 5, 
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Respiratory organ motion analysis is important in the study of 

any disease processes ( Crompton, 2006 ). In all such applications, 

 4D image constituting the organ system under study over one 

espiratory cycle needs to be constructed first. Since the patient 

ooperation needed by gating or tracking techniques is often hard 

o achieve, such as in the case of pediatric patients or for pa- 

ients who are mentally impaired or have severe malformations 

f the chest wall, diaphragm, and spine ( Campbell Jr. et al., 2003 ;

ampbell Jr. and Smith, 2007 ), high-quality, highly automated 4D 

maging technology under free-breathing image acquisitions is be- 

oming increasingly important in clinical applications. Compared 

o computed tomography (CT), magnetic resonance imaging (MRI) 

as three natural advantages: excellent soft tissue contrast, no ion- 

zing radiation exposure, and greater flexibility in selecting image 

lane position, orientation, and duration. Therefore, MRI-based 4D 

maging technology is highly desirable in many clinical applica- 

ions. 

There are two main approaches to 4D image formation via MRI 

 Cai et al., 2011 ): (i) Using fast 3D MRI sequences to acquire real-

ime 3D volumetric data. (ii) Using fast 2D MRI sequences to con- 

inuously acquire 2D images from all respiratory phases, location 

y location spatially, then sifting these slices to select an optimal 

ubset to form 4D images. For the real-time 3D approach, limited 

y current hardware and software, it is difficult to achieve high 

patial resolution while ensuring adequate temporal resolution and 

mage quality. Therefore, the 2 nd retrospective approach has be- 

ome the focus of current 4D MRI imaging research. In the past 

ew decades, several approaches have been proposed to recover 4D 

nformation from the original 2D MRI sequences. 

In the retrospective approach, 2D slices of a 3D volume are 

canned separately during a number of breathing cycles. Slices 

rom these 2D sequences are retrospectively stacked into 3D im- 

ges ( von Siebenthal et al., 2007 ). Since the 3D structure is not

aintained in 2D MRI sequences, some form of internal or ex- 

ernal respiratory surrogate is required to restore the respira- 

ory motion, which is the most important part of these ap- 

roaches. Consequently, these approaches inherit some drawbacks. 

xternal respiration devices, like respiratory belts, often have low 

orrelation with the actual organ respiratory motion. Further- 

ore, external devices can affect the scanning process itself and 

re sometimes not suitable for patients with certain diseases 

 Remmert et al., 2007 ). Internal surrogates, like the 1D navigator 

cho in ( von Siebenthal et al., 2007 ) and ( Karani et al., 2019 ), can

ncrease the scanning time and compromise the temporal resolu- 

ion to some extent. To overcome these shortcomings, researchers 
2 
that the OFx method achieves excellent spatial and temporal continuity

g that it successfully performed 4D construction on every data set tested.

hed method, OFx is fully automatic requiring about 5 min of computa-

rom acquired dMRI scans. The method achieves high temporal and spatial

 data sets that include many abnormal respiratory cycles. 

construction method based on the concept of optical flux is presented

ery robust in deriving respiratory signals purely from dynamic image se-

ith complex breathing patterns due to severe disease conditions like TIS.

acy is comparable to the variations found in manual annotations. An im-

ethod is that it is independent of the number of sagittal locations used

ich suggests that it is applicable to imaging techniques where data are

locations instead of the full width of the thorax. The method is not tied

y, as demonstrated in this paper on not just dMRI but dynamic computed

© 2021 Elsevier B.V. All rights reserved. 

ave increasingly focused on extracting motion signals based only 

n the scanned image time series, which is often referred to as 

elf-gating or self-navigator approach. 

The basic idea of self-gating approaches is to derive motion sig- 

al from the image based on some features extracted from the im- 

ge. Many methods have been proposed recently, which can be 

rouped into 3 main categories: feature-based surrogate, graph- 

ased optimization, and manifold learning alignment. 

Some studies use area of the body region in the MR images 

s an internal respiratory surrogate to extract the breathing sig- 

al ( Cai et al., 2011 ; Liu et al., 2014 ; Yang et al., 2014 ). The suc-

ess of such an approach depends on the accuracy of body region 

egmentation. Moreover, since only a portion of the body region 

s selected as a reference for the motion signal, these approaches 

equire manual interaction for this selection which affects their ef- 

ciency and accuracy. 

Tong et al. proposed a novel graph-based optimization approach 

 Tong et al., 2017 ), which formulates the 4D construction problem 

s an optimal path searching problem in a weighted graph where 

he acquired slices constitute vertices and arc weight is determined 

ased on local spatial and temporal contiguity of slices. Based on 

his graph method, Romaguera et al. proposed a modified method 

hat introduces the continuity of time into the graph weights to 

dentify respiratory end phases automatically ( Vázquez Romaguera 

t al., 2019 ). This method uses the vertical component median 

alue of optical flow estimated around the diaphragm as a res- 

iratory agent. Shortcomings of this method are that it does not 

onsider chest wall motion, and a region of interest (ROI) is se- 

ected for the process based on some knowledge, which reduce its 

enerality for some abnormal slices. 

Manifold learning is another kind of self-gating approach for 

D MRI construction which embeds all acquired slices into one 

lobal low-dimensional space according to the respiration phase. 

eorg et al. used the Isomap technique with some alignment steps 

o determine respiratory phase from axial CT data ( Georg et al., 

008 ). Wachinger et al. achieved gating with Laplacian Eigenmaps 

or both ultrasound and MR images, with a requirement that the 

ung region should be cropped first before manifold learning is 

erformed ( Wachinger et al., 2012 ). Baumgartner et al. proposed 

 novel method based on simultaneous group-wise embedding of 

ata sets to increase the alignment robustness of manifold learning 

 Baumgartner et al., 2013 ). Clough et al. proposed an adapted ver- 

ion of Wave Kernel Signature (WKS) as the graph descriptor for 

anifold Alignment where both image intensity and motion field 

re used to build the manifold ( Clough et al., 2018 ). Additional 

anifold learning based methods for 4D MRI construction are 

emonstrated in ( Baumgartner et al., 2015 , 2014 ; Uh et al., 2016 ).
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ethods focusing on radial k-space ( Chen et al., 2017 ; Deng et al.,

016 ; Liu et al., 2015 ) have also been reported. Their major benefit

s relative insensitivity to motion artifacts. 

Although many of the above reviewed approaches provide an 

ffective 4D MRI construction solution, they all share one or more 

f 3 key shortcomings. (i) They cannot handle the complex respi- 

atory patterns associated with very sick, especially pediatric, pa- 

ients whose data sets may contain several abnormal breathing cy- 

les. (ii) They require some form of user input like an ROI or la- 

els for end inspiration and end expiration phases ( Tong et al., 

017 ), making them not completely automatic. This interferes with 

 production-mode operation where a large number of data sets 

re to be processed routinely. (iii) Most importantly, instead of 

canning the complete thorax across the chest, it is often of inter- 

st to acquire dynamic data sets at selected spatial slice locations, 

or example, to cover just one or both of the hemi-diaphragms 

ith just a few sparsely located slices. Some of the above meth- 

ds run into difficulty because of their dependence on full data 

ets with closely positioned neighboring slices to recover 3D infor- 

ation, which are lacking in sparsely located slices. 

In this paper, we present a fully automatic 4D dynamic MRI 

dMRI) construction approach which by design tries to overcome 

he above hurdles. The approach centers around a novel concept 

e propose as a respiratory surrogate, called optical flux , and con- 

ists of three major steps. Flux is a physical quantity used to de- 

cribe the properties of a region in a vector field, such as a mag- 

etic field or an electric field. It represents the total “outgoingness”

f the region with respect to the vectors in the region. In our set 

p, for each sagittal slice position through the thorax, a time se- 

ies of slices is acquired and 4D construction is performed in three 

teps. Step 1 : F or each sagittal position, we use an optical flow 

lgorithm to estimate the motion vector field within the thoracic 

ody region from successive slices in the time dimension. If a slice 

n the time series is in the inspiration phase, the vectors in the 

ptical flow vector field will mostly point toward the body region 

oundary and the optical flux will be positive. Conversely, for a 

lice in the expiration phase, the flux will be negative. This step 

etects and outputs respiratory cycles via the mechanism of op- 

ical flux. Step 2 : In this step, abnormal cycles are detected and 

ltered out based on features extracted from the detected cycles. 

tep 3 : In this step, a 4D image is constructed representing the 

reathing 3D thorax over one respiratory cycle. For each sagittal 

osition, one canonical cycle is created via a cosine model from the 

etected normal cycles. Subsequently, the cycles from the different 

agittal positions are assembled together to form a 4D image. 

We utilize dMRI data sets from 25 normal pediatric subjects 

nd 58 pediatric patients with Thoracic Insufficiency Syndrome 

TIS) as described in Section 2. Our complete flux-based 4D con- 

truction approach is described in Section 3. In Section 4, we 

resent evaluation strategies and an analysis of the robustness of 

he key steps in the 4D construction method. In Section 5, we 

resent the results and analyze them. In Section 6, we state our 

oncluding remarks. 

aterials 

In this paper, we utilize dMRI data sets from 25 pediatric sub- 

ects with no known thoracic anomalies and 58 dMRI data sets 

rom 29 patients with TIS where each patient had a dMRI scan be- 

ore and after surgery. The scan data were obtained from the Chil- 

ren’s Hospital of Philadelphia (CHOP) following approval from the 

nstitutional Review Board at CHOP and the University of Pennsyl- 

ania along with a Health Insurance Portability and Accountabil- 

ty Act waiver. Each subject was scanned in the sagittal plane us- 

ng the same imaging protocol from right lateral end to left lat- 

ral end under breathing conditions that are natural for the sub- 
3 
ect. There are several advantages of sagittal plane scanning for 

ur application. (i) It allows us to capture slices during complete 

reathing cycles with minimal out-of-plane motion. (ii) The sagit- 

al slice orientation requires a small field of view in the slice plane 

nd therefore leads to fast 2D acquisition for the same spatial res- 

lution ( von Siebenthal et al., 2007 ). More importantly, it requires 

 fewer number of slices to cover the whole chest and specifically 

ach hemi-thorax. (iii) The hemi-diaphragms, among the most im- 

ortant structures in our study, are digitized optimally relative to 

heir 3D shape. 

The dMRI scan protocol was as follows: 3T MRI scanner 

Siemens Healthcare, Erlangen, Germany), true-fast imaging with 

teady-state precession sequence; TR/TE = 3.82/1.91 msec; voxel 

ize, approximately 1 × 1 × 6 mm 

3 ; 320 × 320 matrix; band- 

idth = 558 Hz; flip angle = 76 °; and one signal average. For each

f 30–40 sagittal plane locations through the thorax, slice data 

ere obtained during 8–14 tidal breathing cycles at approximately 

80 msec per slice amounting to about 80 time samples; total 

cquisition time per subject = 40 min. This process yields over 

0 0 0–30 0 0 slices in total for one patient and constitutes a spatio-

emporal sampling of the subject’s dynamic thorax over 240–560 

espiratory cycles. 

The 83 dMRI scans employed in our study constitute a realis- 

ic mix of conditions that are commonly encountered in our appli- 

ation. Specifically, although the breathing rate was generally less 

apid in normal subjects than in patients, surprisingly their scans 

ore frequently contained abnormal breathing cycles due to shal- 

ow breathing or deep inhalation, etc., than the patient scans. In 

he TIS application, since our overall goal is to study thoracic dy- 

amics under normal or tidal breathing conditions and the change 

n dynamics from pre- to post-operative condition ( Tong et al., 

019 ), cycles constituting only tidal breathing among the data ac- 

uired over 240–560 cycles are relevant. Thus, our 4D construction 

ethod named OFx (symbolizing Optical Flux ) should be able to 

utomatically discard abnormal cycles in the acquired scan data. To 

ive a preview of the data sets, we present a statistical portrayal of 

he length of the cycles for each of the 25 normal subjects and 58 

atient scans in Fig. 1 , where the subjects are sorted and arranged 

n the increasing order of their median cycle length from left to 

ight. The continuous line represents the median length. For each 

ubject, the lower and upper boundaries of the box represent the 

5 th and 75 th percentiles of the respiratory period over all breath- 

ng cycles, and the upper and lower limits of the black line indi- 

ate the maximum and minimum lengths of tidal cycles that do 

ot constitute outliers. The “+ ” mark represents outliers. As can 

e seen, the distribution of the cycle length is not uniform and 

here are many outliers. Some outliers with longer lengths repre- 

ent cycles with deep breathing or cycles with a period of hold- 

ng breath or very shallow breathing. Some outliers with shorter 

engths may represent cycles with sharp and rapid breathing. Any 

obust 4D construction method should be able to cope with these 

utlier cycles automatically. 

ethods 

We propose a novel approach for 4D construction in this sec- 

ion. The goal of the 4D construction task is to recover the 4D in- 

ormation from uncoordinated spatio-temporal sampling of the 4D 

pace via 2D slices. The most important requirement for this task is 

o preserve temporal and spatial continuity in the 4D constructed 

mage. Temporal continuity is naturally obtained in the acquired 

ata set but spatial continuity is broken due to the sampling pro- 

ess. Our construction method must restore the spatial continuity 

s much as possible under the premise of preserving temporal con- 

inuity. This is the most important strategy of our approach, which 

ets it apart from other methods. Another consideration is that if 
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Fig. 1. Cycle length statistics for (a) normal subjects and (b) TIS patients. The continuous curve depicts the median value for each subject; the box plot ends denote 25 th 

and 75 th percentile values. “+ ” denotes outliers. 

Optical flux function

2. Analysis of Cycles 
    - Extraction of cycles 
    - Measurements from cycles 
    - Filtering cycles 

3. 4D Image Formation 
    - Alignment of cycles 
    - Resampling cycles 

Time sequence of slices Az for each z

Normal cycles

One constructed cycle for each z, and a 4D image

1. Respiratory Signal Extraction 
    - Body region identification 
    - Optical flow estimation 
    - Optical flux derivation 
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Fig. 2. The framework of the optical-flux-based 4D construction approach OFx. 
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he breathing cycles constructed from every sagittal location are 

ormal and synchronized, then eventually the final constructed 4D 

mage will have good spatial continuity. The strategy of the whole 

ethod can be summed up simply as follows: Each sagittal lo- 

ation proposes a constructed synchronous normal cycle indepen- 

ently, all of which together will constitute the final constructed 

D volume. 

The overall 4D image construction approach, depicted schemat- 

cally in Fig. 2 , consists of three main steps: (i) Respiratory sig- 

al extraction; (ii) Cycle analysis; and (iii) 4D image formation. In 

he first step, we derive optical flux information, which can be re- 

arded as a respiratory surrogate, from the time-series of slices as- 

ociated with each sagittal location and extract all potential cycles. 

n the second step, we conduct a full analysis of these cycles at 

ach location based on the flux data and extract all near-normal 

ycles. In the third step, we align all near-normal cycles to one 

anonical respiration model and propose one cycle for each lo- 

ation independently. These proposed cycles are finally combined 

rom all locations to form the final 4D image volume. We will ex- 

mine these steps in detail in the rest of this section. 
4 
.1. Respiratory signal extraction 

We assume that there is a time varying anatomic body re- 

ion B ( t ) (in our case, it is the entire region interior to the outer

kin boundary) whose domain is contained in a rectangular re- 

ion � = X × Y × Z mm 

3 . For each subject, � is defined and 

xed by the imaging device xyz coordinate system. In practice, 

 × Y is the imaging field of view of the acquired 2D slices. 

ur dMRI free-breathing scanning method produces a sequence of 

lices A = { f z 1 ,t 1 , f z 1 ,t 2 , ..., f z 1 ,t M , f z 2 ,t M+1 
, ..., f z 2 ,t 2 M , ..., f z N ,t N×M 

} repre-

enting a spatio-temporal sampling of � over a total scanning time 

nterval of [0, τ ] within which 240–560 cycles are covered. Each 

lice f z i ,t j is acquired within a short time (~480 ms ), when B ( t ) can

e assumed to be frozen in time/motion, such that z i ∈ Z and t j 
 [0, τ ]. Note that in our protocol the z -axis is orthogonal to the

agittal plane, typically N (the number of sagittal or z locations) 

s 30 to 40, meaning that slices are acquired for N sagittal slice 

ocations, and the number of time points M for each sagittal loca- 

ion is usually 80. The + y direction is caudo-cranial, + x direction 

s postero-anterior, and the + z direction is right to left. For con- 

enience, we will denote the sequence of slices associated with a 

pecific z -location by A z = { f T 1 , f T 2 , ..., f T M } , z = z 1 , z 2 , …, z N , and

 1 , …, T M 

denote the time instances associated with the slices in 

 z . Since there is no time coordination among slices in A , it con-

titutes an uncoordinated spatio-temporal sampling of � over the 

ime interval [0, τ ]. In other words, the respiratory phases of the 

lices in the two time sequences A z i and A z j associated with any 

wo distinct z -locations z i and z j are not synchronized. Our ap- 

roach actually constructs one cycle for each z -location such that 

he constructed cycles for any z i and z j are in synchrony. 

In this step of the approach, processing of the time series A z is 

one independently for each z to output a respiratory signal de- 

icting all potential cycles in each A z . There are three sub-steps 

mployed in this part: body region identification, optical flow esti- 

ation, and optical flux derivation, as described below. 

.1.1. Body region identification 

Our goal is to infer the pseudo-periodic motion of the tissues 

ue to respiration within the body region B ( t ) from the sequence 

f slices A z at each specific z -location. To avoid background noise 

utside the body region in the images influencing the estimation of 

ux, we first roughly segment the body region in the given image 

equence A z , as illustrated in Fig. 3 . For the body region in a slice

f T i of A z as shown in Fig. 3 (a), we will denote the segmented body 

egion by R i as illustrated in Fig. 3 (c). All subsequent operations 

ill be confined to the segmented body region R . 
i 
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Fig. 3. Illustration of body region segmentation via thresholding. (a) An original MRI slice from A z . (b) Binary image after thresholding the image in (a). Binary image after 

opening followed by closing operations. 
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It is rather straightforward to segment the body region via 

hresholding followed by morphological opening and closing oper- 

tions. The binary image after thresholding the image in Fig. 3 (a) 

s shown in Fig. 3 (b), and the final segmented result is shown in

ig. 3 (c). We can see that the body region has been segmented 

ery well. We emphasize that precise segmentation of the body 

egion is neither the goal nor a necessary requirement since mi- 

or inaccuracies will not influence flux estimation. We estimate 

hreshold θ1 experimentally and fix it at 10 0 0. We use a struc- 

uring element consisting of the 4 edge-adjacent neighbors for one 

pening operation followed by a 24-neighbor (within the 5 × 5 

eighborhood) structuring element for one closing operation. We 

ave examined the body region segmentation results for all data 

ets used in this paper and confirmed that the method works very 

obustly in the above sense. 

In Section 4.1 , we will demonstrate that optical flux estimated 

or region R i is largely not influenced by the size or shape of R i . 

.1.2. Optical flow estimation 

The mechanism of optical flow assumes that the motion under 

onsideration at every pixel ( x, y ) is small in going from slice f T i −1 

t T i -1 to slice f T i at T i . This leads to the image constraint equation

hown below where �t = T i – T i -1 and ( x +�x, y +�y ) denotes a

ixel neighboring pixel ( x, y ). 

f T i (x + �x, y + �y ) = f T i −1 
(x, y ) . (1) 

ith the assumption of small motion from T i -1 to T i , by Taylor se-

ies expansion, 

f T i (x + �x, y + �y ) = f T i −1 
(x, y ) + 

∂ f T i 
∂x 

�x + 

∂ f T i 
∂y 

�y + 

∂ f T i 
∂t 

�t + ε,

(2) 

here ε denotes residual sum over higher order terms in the se- 

ies. If we divide throughout by �t , the ε/ �t will tend to 0 when

t tends to 0 and the above equation leads to 

∂ f T i 
∂x 

u + 

∂ f T i 
∂y 

v + 

∂ f T i 
∂t 

= 0 , (3) 

here (u, v ) t = ( �x 
�t 

, 
�y 
�t 

) t denotes the velocity vector with its hor- 

zontal (antero-posterior) component u and cranio-caudal compo- 

ent v at pixel p = ( x, y ) at time t = T i . We employ the Lucas –

anade method ( Lucas and Kanade, 1981 ) to solve for u and v

ased on the assumption that the optical velocities in local neigh- 
5 
orhoods of each pixel p = ( x, y ) are similar. 

u 

v 

]
= 

⎡ 

⎣ 

∑ 

(x,y ) ∈ L (p) 

∂ 2 f t (x,y ) 
∂ x 2 

∑ 

(x,y ) ∈ L (p) 

(
∂ f t (x,y ) 

∂x 

)(
∂ f t (x,y ) 

∂y 

)
∑ 

(x,y ) ∈ L (p) 

(
∂ f t (x,y ) 

∂x 

)(
∂ f t (x,y ) 

∂y 

) ∑ 

(x,y ) ∈ L (p) 

∂ 2 f t (x,y ) 
∂ y 2 

⎤ 

⎦ 

−1

⎡ 

⎣ 

− ∑ 

(x,y ) ∈ L (p) 

(
∂ f t (x,y ) 

∂x 

)(
∂ f t (x,y ) 

∂t 

)
− ∑ 

(x,y ) ∈ L (p) 

(
∂ f t (x,y ) 

∂x 

)(
∂ f t (x,y ) 

∂t 

)
⎤ 

⎦ . (4)

he mechanism of optical flow generates a vector field V i ( p ): 

 i → R 

2 , which is a mapping from the discrete body region R i in

D image plane to the vectors in the 2D space R 

2 corresponding 

o time instance T i . In other words, to every pixel p = ( x, y ) in R i 
dentified in slice f T i , we assign a vector ( u, v ) t which indicates the

elocity vector at p at time T i . 

Since we estimate optical flow based on the identified discrete 

ody region R i , the OFx process reduces the impact of background 

oise from outside the body region influencing analysis within the 

ody region. This idea is crucial for capturing the motion of lungs 

nd hemi-diaphragms precisely. Two examples of optical flow esti- 

ated within the body region R i are shown in Fig. 4 . In Fig. 4 (a),

he two time-adjacent slices are in the inspiration phase. The op- 

ical flow vector field in this case generally points outwards the 

ody region boundary. In Fig. 4 (b), the two time-adjacent slices 

re in the expiration phase, and the vector field points inwards 

s shown. From a close scrutiny of all data sets, we observed that 

ptical flow can capture the non-rigid local movement within the 

ody region precisely and robustly. This robust means of estimat- 

ng optical flow led us naturally to formulate optical flux as a res- 

iratory surrogate. 

.1.3. Optical flux of body region 

Flux is a property associated with a region in a vector field in- 

roduced by Maxwell ( Maxwell, 1881 ). It represents the net “outgo- 

ngness” for that region. One typical application of flux is in elec- 

ric fields. For a dipole (a pair of electric charges of equal magni- 

ude but opposite sign separated by a small distance), the electro- 

tatic potential field it generates is typically as shown in Fig. 5 . As 

e can see, the flux (net outgoingness) of any region like A (in- 

luding the + ve charge) will be positive, the flux of a region like 

 (including a -ve charge) will be negative, whereas the flux of a 

egion like C (without containing any charges) will be zero. For re- 

ion D, which includes both + ve and -ve charges, the flux going 

nto and out of D are the same and hence its net outgoingness will 

e 0. 
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Fig. 4. Examples of optical flow and flux within the body region in (a) inspiration and (b) expiration illustrated for two consecutive slices in a time sequence A z . 

Fig. 5. Illustration of the concept of flux. Flux for the three depicted regions A, B, 

and C are positive, negative, and 0, respectively. Flux for region D, which includes 

both A and B, is also 0. 
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Fig. 6. Optical-flux curve �z ( T i ) derived from the dMRI scan A z of a normal pedi- 

atric subject for one z location. 
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1 The unit of measurement for flux is mm/second. The values shown in Fig. 4 are 

in mm per unit time slice. Since our time slices are roughly 480 msec apart, these 

flux values should be divided by 480 to express them in physical units. 
In our case, we have the vector field V i ( p ) generated by the

echanism of optical flow to capture the motion of the tissues 

ithin the body region R i as explained above and depicted in 

ig. 4 . Although the notion of flux is applicable to any region 

ithin the slice domain, our focus will be the segmented body 

egion R i . During inspiration, chest wall and diaphragm move out- 

ard with respect to the lung tissues, which is reflected in the out- 

ard direction of the vectors in V i ( p ) as shown in Fig. 4 (a). (From

he electric field analogy, this situation is as if there is positive 

lectric charge inside the body region and negative charge outside.) 

oward the end of inspiration, this outgoingness will gradually de- 

rease and reverse during inspiration when the vectors will change 

irection to orient generally inwards corresponding to the inward 

otion of the chest wall and diaphragm, as in Fig. 4 (b). (Analo- 

ously, the interior positive charge gets gradually depleted toward 

he end of inspiration, with a reversal of charge to negative inside 

nd positive outside during exhalation.) 

The method to derive flux from the vector field is through the 

oncept of divergence, div ( V i ), (or derivative) of the vector field 

 i ( p ). Divergence ( Korn and Korn, 20 0 0 ) at a point (pixel) p in Vi

s a local measure of outgoingness at p . In other words, it denotes 

he amount (a scalar) of outward flux locally within an infinitesi- 

al volume (area) around p . 

i v ( V i ) = ∇ · V i = 

(
∂ 

∂x 
, 

∂ 

∂y 

)t 

· ( u, v ) t = 

∂u 

∂x 
+ 

∂v 
∂y 

(5) 

he divergence map (divergence value at each pixel) for the optical 

ow vector field is shown in the Divergence part of Fig. 4 . Notably,

he divergence at most pixels in Fig. 4 (a) is positive, as indicated by

he red end of the color scale. On the other hand, the divergence 
6 
t most pixels in Fig. 4 (b) is negative, as depicted by the blue end

f the color scale. The total outgoingness for body region R i cor- 

esponding to time point T i (and slice location z ), which we will 

erm optical flux �z ( T i ), is simply an integral of divergence over R i .

z ( T i ) = 

∑ 

p∈ R i 
di v ( V i (p)) . (6) 

s we can see, the optical flux for the inspiration phase depicted 

n Fig. 4 (a) is positive and that for the expiration phase in Fig. 4 (b)

s negative 1 . 

After estimating optical flux for each time point T i in A z based 

n adjacent time slices in A z as expressed by Equations (1) –(6) , we

erive an optical-flux curve �z ( T i ) associated with A z as shown in 

ig. 6 , which can be regarded as a surrogate to respiratory signal 

ssociated with sagittal slice location z . Notably, optical flux can 

epresent the respiratory signal remarkably accurately! 

From the definition of flux, we can see that it is an indicator to 

easure the total "outgoingness" of a certain region in the vector 

eld. For the optical flow field, flux can represent the total amount 

f movement outwards or inwards with respect to the region. In 

his case, movement is mainly caused by air entering or leaving 

he body. The magnitude of movement is highly correlated with 

he amount of breathing. Therefore, from another perspective, the 

ptical flux can be also regarded as the air flux entering or leaving 

he human body. In summary, the body region R i as the reference 

egion for estimating flux is simple and effective. In Section 4.1 , 

e will examine if and how the size of the body region may affect 

z ( T i ). 
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Fig. 7. EI and EE points detected on the flux curve �z ( T i ) derived from the dMRI 

scan A z of a TIS patient. 

3

c

i

l

c

“

a

n  

E

�  

c

c

o

3

 

�  

r

c

o

t

b

0

t

w

t

t

 

c

d

f

w  

w

E

b

q  

t

Fig. 8. Cycles detected on the flux curve �z ( T i ) derived from the dMRI scan A z of a 

TIS patient. 
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.2. Analysis of Cycles 

Typically, A z includes 10–15 cycles in the �z ( T i ) curve asso- 

iated with A z . Some of these cycles are near-normal, constitut- 

ng tidal breathing, and others are abnormal, representing shal- 

ow or deep breaths, etc. In this step, for each time sequence A z 

orresponding to each z location, the goal is to output the set of 

normal” cycles contained in �z ( T i ), denoted C z = {c 1 , …, c m 

}, 

nd the associated set of subsequences of time slices in A z , de- 

oted S z = {s 1 , …, s m 

}. Toward this end, we (i) first identify the

nd-Inspiration (EI) and End-Expiration (EE) time points ( Fig. 7 ) in 

z ( T i ) and identify all cycles in �z ( T i ); (ii) derive features from

ycles to help classifying them as normal or abnormal; and (iii) 

lassify cycles, based on features, and filter out abnormal cycles to 

utput C z and S z . These individual steps are described below. 

.2.1. Extraction of cycles 

The goal of this step is to identify EI and EE time points in

z ( T i ) and thereby partition �z ( T i ) into respiratory cycles. If all

espiratory cycles are near-normal as in the example in Fig. 6 , we 

an detect EI and EE points easily depending on the zero-crossings 

f the flux curve. However, A z typically contains abnormal pat- 

erns. An example is illustrated in Fig. 7 . Notably there are shallow- 

reathing or breath-holding patterns with �z ( T i ) hovering around 

. After examining images manually, we found that the reason for 

he flux curve appearing irregular was not due to any deficiencies 

ith the concept of flux or its estimation, but was instead due to 

he real breathing motion pattern, where the flux curve truly por- 

rays it . 

To detect EI and EE points, we first find all peaks on the �z ( T i )

urve and then filter out peaks with values close to 0. The final 

etected peaks are shown in Fig. 7 , represented by triangles. Then, 

ollowing the time sequence, we find the last time point (slice) 

ith positive flux after each peak as an EI point and the first slice

ith negative flux before each peak as an EE point. The detected 

I-EE points are displayed in Fig. 7 . 

With the detected EI-EE points, we can extract all cycles in A z 

y just following the EI-EE sequence and simply taking the subse- 

uence of time points from one EE point to the next EE point in

he sequence as one cycle, as shown in Fig. 8 . 
7 
.2.2. Deriving features from cycles 

In natural breathing, the patterns of movement are quite varied 

nd complex. After closely studying these patterns from 10 0 0 s of 

ycles in our data set, we arrived at 4 major rules that characterize 

espiratory movement as described below. These rules guide us to 

efine the features that will be used to distinguish between nor- 

al and abnormal cycles. 

1) Rule 1: The tidal volume is the most important feature to dis- 

tinguish between normal and abnormal cycles. Typically, there 

are 8–14 cycles in one acquired sequence of slices ( A z ). Normal 

cycles always have a stable tidal volume but abnormal cycles do 

not. For example, tidal volume of deep breathing cycles will be 

much greater and that of shallow breathing cycles will be much 

smaller. Reflected in the signal, the tidal volume for a sagittal 

location over a cycle is the sum of the optical-flux of all time 

points in the cycle. This rule alone can distinguish most abnor- 

mal cycles in the signal from normal cycles, but to make the 

analysis more detailed so border-line cycles are also detected, 

we have included additional rules. 

2) Rule 2: In very few breathing cycles, hesitation seems to appear 

during tidal movement. For example, when breathing moves to- 

wards inspiration, the breathing pauses suddenly and a slight 

exhalation takes place (it is too short to be considered a cycle), 

but then quickly returns to the inspiration process. Reflected in 

the breathing signal, this will show one or more peak(s) or val- 

ley(s). The impact of this kind of cycles on construction is low 

and very few such cases exist. 

3) Rule 3: The relationship between the inspiratory tidal volume 

and the expiratory tidal volume can also be regarded as a fea- 

ture that distinguishes abnormal cycles. Their ratio in the nor- 

mal cycle should be ~1, but the ratio in the abnormal cycle will 

be much smaller or much larger. When we evaluate absolute 

tidal volume, Rule 1 already covers this situation to some ex- 

tent. Here we use it as an additional rule to make our analysis 

more refined and robust. 

4) Rule 4: Some cycles may have an abrupt stop at the end of in- 

spiration. Some cycles may stay for a while at the endpoint. Al- 

though these cycles can be considered normal cycles (if their 

volumes in Rule 1 are acceptable), we can use this rule to de- 

termine which cycle is more normal. This phenomenon is re- 
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flected in the signal as the time distance from the peak to the 

endpoint. 

To implement these rules ( Rule 1- Rule 4), we derive the follow- 

ng features from each cycle identified in �z ( T i ). 

Flux volume during inspiration ( F 1) and expiration ( F 2): F 1 is de-

ned as the sum of the fluxes �z ( T i ) associated with the time

oints T i corresponding to the inspiration phase of the cycle. F 2 is 

imilarly defined for the expiration phase of the cycle but by tak- 

ng only the magnitude and ignoring the sign. [ F 1 + F 2] represents

he total flux for the cycle. 

Number of peaks ( F 3) and valleys ( F 4): These features express the

egree of smoothness of the respiratory motion of the cycle. Since 

he instantaneous flux �z ( T i ) represents the speed of motion of the 

ody region R i at time T i , the smaller F 3 and F 4 are, the smoother

ill be the motion of R i within the cycle. Ideally, we should have 

ne peak and one valley in a cycle. In the example displayed in 

ig. 8 , the first cycle has 2 peaks and 2 valleys, the 3rd cycle has 1

eak and 1 valley, and the 4th cycle has 3 peaks and 3 valleys. 

Time distance between peak and EI time points ( F 5): It also repre-

ents the smoothness of the movement in the cycle. It denotes the 

ime taken from the fastest positive speed to change to a negative 

peed. In Fig. 8 , the distance is 2 for the 2nd cycle and 0 for the

rd cycle. 

.2.3. Filtering cycles 

We design four loss functions L 1 - L 4 corresponding respectively 

o the 4 rules as explained below. First, according to the character- 

stics of each rule, we choose a parametric function such as linear, 

yperbolic, exponential, etc. Second, we solve for the parameters 

f the functions based on the rules. 

1) L 1 : This loss function follows Rule 1. First, we define Fm as 

the median of cycle volumes [ F 1 + F 2] over all cycles in the

signal associated with each z location. Then variable x is de- 

fined as the ratio x = ( F 1 + F 2 - Fm )/ Fm . The greater this ratio,

the deeper the breathing is in this cycle. The smaller the ratio, 

the shallower is the breathing. The best case is when the ra- 

tio is zero. The loss should increase exponentially as the ratio 

increases in the positive direction and increase exponentially 

with a negative exponent as the ratio becomes more negative. 

Therefore, we define L 1 ( x ) via an exponential model as follows: 

L 1 ( x ) = 

∣∣7 

x + P1 + P 2 

∣∣, (7) 

here P 1 and P 2 are the model parameters. Clearly, when x = 0,

 1 = 0. We normalize the loss range to [0, 1]. We also define the

olerable boundary based on experience. When x = 0.7, we would 

ike L 1 to be 1. This means x = 0.7 is the acceptable boundary of

he normal breathing cycle, which is normalized to 1. The reason 

or using 7 as the base is that we wish to adjust the ratio of the

ositive (deep breathing) and negative (shallow breathing) parts 

f the function 

2 . Shallow breathing has little effect on the sub- 

equent construction process, which should be assigned a smaller 

oss. Thus, our conditions are 

x = 0 ⇒ L 1 ( x ) = 0 

x = 0 . 7 ⇒ L 1 ( x ) = 1 . 
(8) 
2 We found that when employing the commonly-used 2 as the base, the value 

f L 1 is not much different when x is positive vs. when x is negative; for example, 

hen x = 0.7, L 1 ( x ) = 1, and when x = -1, L 1 ( x ) = 0.8. But in fact, in the subse- 

uent reconstruction process, shallow breathing has little effect on the quality of 

he final reconstruction result, while deep breathing does. Therefore, we need to 

djust the Loss values when x is negative to smaller values. Therefore, while keep- 

ng other conditions unchanged, we compared among the bases 2, 5, 7, and 10 and 

bserved that in the four functions, the curve does not change much when x is pos- 

tive. However, the part where x is negative changes more drastically. From 2 to 5, 

he loss value when x = -1 changes greatly, but from 5 to 7 and then to 10, the loss 

alue when x = -1 changes very little. Thus, we empirically choose 7 as the base. 

L

 

 

8 
fter substituting these 2 cases into the function model, we can 

olve for parameters P1 and P2, which come out to be -0.5479 and 

0.3443, respectively. The final form of L 1 , as depicted in Fig. 9 (a)

ill be: 

 1 ( x ) = 

∣∣7 

x −0 . 5479 − 0 . 3443 

∣∣. (9) 

2) L 2 : This loss function follows Rule 2. The number of peaks 

and valleys is x = [ F 3 + F 4 ] . Based on our cycle extraction pr o-

cess, x ≥ 2 . As x increases, L 2 should also increase exponentially. 

However, x cannot grow indefinitely. When x approaches a cer- 

tain value, we would want L 2 → + ∞ . So, the model for L 2 can

be chosen to be: 

L 2 ( x ) = 

P 3 

x + P 4 

+ P 5 , (10) 

here P 3, P 4, and P 5 are the parameters of the model. When

 = 2 , L 2 should be 0. As x → 30 , we would like L 2 → + ∞ . Consid-

ring the number of time points in a cycle, x = 30 is large enough

here L 2 (x ) should approach + ∞ . As with L 1 , we define the toler-

ble boundary to normalize the loss to [0, 1]. When x = 4 , L 2 = 1 .

ecause the normal respiratory cycle contains only one peak and 

ne valley; 4 is the tolerable boundary for normal cycles. Thus, our 

onditions are 
 

x = 2 ⇒ L 2 ( x ) = 0 

x = 30 ⇒ L 2 ( x ) = + ∞ 

x = 4 ⇒ L 2 ( x ) = 1 . 

(11) 

fter substituting these 3 cases into the function model, we can 

olve for P 3, P 4, and P 5, which yields P 3 = −364 , P 4 = −30 , and

 5 = -13. The final definition of L 2 , as depicted in Fig. 9 (b), will be

 2 ( x ) = 

364 

30 − x 
− 13 . (12) 

3) L 3 : This loss function follows Rule 3. Here we define x = 

| F 1 − F 2 | / ( F 1 + F 2 ) and L 3 to exponentially increase with x . But 

unlike L 1 , x cannot be too large since lung vital capacity is lim-

ited. Therefore, we formulate L 3 as an inverse function of x as 

L 3 ( x ) = 

P 6 

x + P 7 

+ P 8 , (13) 

here P 6, P 7, and P 8 are parameters of the model. When x = 0 , L 3 
hould be 0. Also, as x → 1 we would like L 3 → + ∞ . For the toler-

ble boundary, when x = 0 . 2 , L 3 = 1 . In normal cycles, inspiration

nd expiration volumes should be almost the same, 0.2 is the tol- 

rable ratio for normal cycles. Thus, our conditions are 

 

x = 0 ⇒ L 3 ( x ) = 0 

x = 1 ⇒ L 3 ( x ) = + ∞ 

x = 0 . 2 ⇒ L 3 ( x ) = 1 . 

(14) 

fter substituting these cases into the model, we arrive at P 6 = -4, 

 7 = -1, and P 8 = -4. The final model of L 3 , as depicted in Fig. 9 (c),

ill be 

 3 ( x ) = 

4 

1 − x 
− 4 . (15) 

4) L 4 : The design of this loss function follows Rule 4. By examining 

all cycles, we found that F 5 for most normal cycles is in the 

range 0–3, with F 5 = 1 and 2 being the best. To formulate L 4,

we define x = F 5. We would like L 4 ( x ) to increase faster than

linearly with x and so define our model as a quadratic function, 

with the symmetric point situated at x = 1.5, as 

L ( x ) = 

( x + P 9 ) 
2 + P 10 

, (16) 
4 
P 11 
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Fig. 9. Loss functions L 1 - L 4 employed in filtering cycles. Variable x denotes the feature combinations used in the definition of each loss function. Their counterpart linear 

formulations L ′ 1 − L ′ 4 described in Section 4.2.1are also shown. 
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Fig. 10. An example of cycles for a flux curve �z ( T i ) derived from the dMRI scan A z 
of a TIS patient together with the associated loss value of each cycle. The selected 

“normal” cycles after filtering are shown in bold. 
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ith P 9, P 10, and P 11 as model parameters. For x = 1 and 2, L 4 
hould be 0, and when x = 0, we would like L 4 = 0.25. The tolera-

le boundary of L 4 will be between 4 and 5 as shown in Fig. 9 (d).

hus, our conditions are 
 

x = 1 ⇒ L 4 ( x ) = 0 

x = 2 ⇒ L 4 ( x ) = 0 

x = 0 ⇒ L 4 ( x ) = 0 . 25 . 

(17) 

gain, solving for the parameters, we get P 9 = -1.5, P 10 = -0.25,

nd P 11 = 8. The final model of L 4 , as depicted in Fig. 9 (d), will be

 4 ( x ) = 

( x − 1 . 5 ) 
2 − 0 . 25 

8 

. (18) 

ince we have normalized the losses to [0, 1], 0 is the ideal value

or each loss function L i ( c ) associated with each cycle c and 1 is the

ormalized tolerable boundary value. We combine them linearly as 

n Eq. (19) such that w 1 + …+ w 4 = 1. 

 ( c ) = 

4 ∑ 

i =1 

w i L i ( c ) (19) 

From the goal of cycle analysis, Rule 1 is the most important 

ule, the remaining being auxiliary ones. So, we set w 1 = 0.7 and 

he others such that they sum up to 0.3. The composite loss func- 

ion L ( c ) assigns a score to each cycle c in [0, 1], 0 being the best

core and 1 being at the tolerable boundary for normal cycles. We 

et a threshold θ2 such that if L ( c ) ≥ θ2, then c is considered to

e abnormal. Due to the complexity of human breathing, 1 is just a 

uzzy boundary. Therefore, we should set θ2 between 0 and 1. We 

x θ2 at 0.4 experimentally since we observed that L ( c ) of most

bnormal cycles is greater than 0.4. A special case needs attention, 

or a z location where there is no cycle with L ( c ) less than 0.4, we

elect the cycle with the smallest loss as the normal cycle. Some 

xamples of cycles detected from a flux curve together with their 
9 
 (c) values and the normal cycles resulting after filtering are dis- 

layed in Fig. 10 . The figure suggests that the filtering method is 

ffective in weeding out cycles that are clearly abnormal. 

.3. 4D Image Formation 

The final output from the previous step is set C z of normal cy- 

les contained in �z ( T i ) for each z -location and the associated set 

 z of image sequences. Note that C z is determined for each z inde- 

endently of other z -locations. This stance is intentional and makes 
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Fig. 11. (a) Cosine model for normal respiratory cycle. Time instances from two different normal cycles (red and green) are mapped on to the model. The x-axis represents 

respiratory phase and the y-axis denotes the flux volume as a surrogate for the position of the diaphragm. (b) Time instances from all m normal cycles from a z -position 

are mapped on to the model where the inspiration (red) and expiration (yellow) phases are shown in different colors. (c) A model cycle with equi-spaced time instances 

marked by dashed lines for m c = 7, and the actual time instances selected (marked in red/ yellow) from the composite normal cycle c zn in (b). 
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3 Possibly, the detected EE and EI points can also be used to measure phase 

within each cycle by assuming that phase changes linearly from EE to EI and EI to 

EE. The accuracy of this method will depend on hitting the EE and EI time points 

accurately while acquiring data. 
Fx general and, as we explain in Section 4, capable of handling 

ituations where we may wish to acquire dMRI time sequences for 

ery few z -locations and still be able to perform 4D construction 

nd analysis. However, it has so far completely ignored the spatial 

ontiguity in the z dimension. The purpose of this step is exactly 

o handle this factor to finally form a 4D space-time image. This 

oal is accomplished in three steps: (i) Modeling respiratory cycle. 

ii) Constructing one composite respiratory cycle c zn per z -location 

uided by the model based on all cycles in C z . (iii) Resampling cy-

les c zn for different z -locations to form the 4D image. 

.3.1. Modeling respiratory cycle 

The ventilation model of human respiration has been studied in 

he past ( Crooke et al., 2002 ; Low et al., 2005 ; Mols et al., 1999 ;

uanjer et al., 1993 ). Seemingly, a trigonometric function (like co- 

ine) can accurately model this phenomenon, even though nor- 

ally there is a slight difference between the lengths of the inspi- 

ation and expiration phases. As such, some 4D construction meth- 

ds have employed a trigonometric function with only one param- 

ter as an approximation of the respiration model ( Clough et al., 

018 ; Uh et al., 2016 ). There are several reasons in support of this

pproximation. First, typically the acquisition temporal sampling 

requency is not large enough to capture the details of this asym- 

etry, since only about 5–7 time points are sampled in one respi- 

atory cycle. Second, for the subsequent analysis of the constructed 

D image for tidal volume estimation, it is more important to cap- 

ure the slices at the EI and EE points than at other time points.

o, we adopt a cosine function as shown in Fig. 11 as the model. 

Now, consider two different cycles c i and c j in set C z . Since 

lices are acquired under free breathing conditions, the number of 

nd the actual respiratory phases of sampled time points in c i and 

 j will be generally quite different. However, once we perform a 

osine fit to c i and c j , each separately, we will know within the fit

osine model, the exact phase of each time instance in the two cy- 

les. This idea is illustrated in Fig. 11 (a) where time instances from 

wo cycles are mapped on to a single cosine model. Note that the 

asis for this idea is the use of flux as a surrogate for respiratory

unction. The flux value for each time slice can be regarded as the 

oving velocity of the slice. For each cycle c in C z , we can esti-

ate the moved distance from velocity for each time slice in c by 

ccumulation, which can be regarded as the tidal volume signal of 

he slice in the cycle. For all cycles in C z , we normalize the posi-

ion signal from [min value, max value] to [-1, 1]. Following this 

rocedure, we can align all time slices of the cycles in C z into the

osine model as presented in Fig. 11 (b). 

.3.2. Constructing one composite cycle c zn per z -location 

To construct one normal cycle for each z -position, we simply 

ollow the above principle of mapping time instances from all cy- 
10 
les in C z to the same model. This results in a single cycle c zn and

he associated time sequence s zn of slices, which is a subset of the 

lices in A z . This process is illustrated in Fig. 11 (b). Note that the

odel facilitates aligning all cycles for z . 3 

.3.3. Resampling cycles c zn for different z -locations 

Given c zn and the associated time sequence of slices s zn , for 

 = z 1 , …, z N , in this step, we first obtain the minimum number

 c of time samples in the composite cycles c zn over all z . Subse- 

uently, from each cycle c zn , we select m c time samples as max- 

mally uniformly distributed over the cycles as possible. In other 

ords, we first divide the model cycle into m c equal instances and 

ark these time instances. The actual time instances for which 

ata were acquired that are closest to these marked ideal instances 

re then selected from c zn . This process is illustrated in Fig. 11 (c)

or the case of m c = 7. This process yields a cycle c zns and the

ssociated time sequence of slices s zns for each z . Finally, the 4D 

onstructed image corresponding to the acquired data set A is ob- 

ained by simply compiling together the slices in the sequences s zns 

ver all z . 

OFx has an interesting and desirable theoretical property: Let 

 1 and A 2 be two dMRI acquisitions such that the z -locations for 

 2 are a subset of the z -locations for A 1 and the corresponding 

onstructed 4D images be I 1 and I 2 , respectively. Then I 2 will be 

 proper sub-image of I 1 in the sense that the slices in I 2 will be a

ubset of the slices in I 1 . 

OFx as a process as a whole has only two key parameters: 

hreshold θ1 used for body region identification and threshold θ2 

n the loss function L (c). The process for estimating these para- 

etric values has already been described in this section. 

ethod Analysis 

In this section, we will first outline our evaluation strate- 

ies and metrics and then analyze the robustness of two key 

teps in the whole methodology: (a) body region identification 

 Section 3.1.1 ) and (b) filtering cycles ( Section 3.2.3 ). We employ

ve metrics as follows. Metrics (i) and (ii) are used for robustness 

nalysis, and metrics (ii)-(v) are used to evaluate the accuracy of 

he 4D construction process from different perspectives, with (ii) 

nd (iii) referring to the temporal aspect and (iv) and (v) to the 

patial component. Experiments and results for the actual perfor- 

ance evaluation of the method is presented in the next section. 
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Fig. 12. Different body region definitions. R 0 is the original R i . R 1- R 3 crop the bottom part of R 0 by 5%, 10% and 20% according to the height of R 0. R 4- R 5 crop the top part 

of R 0 by 5% and 10% according to the height of R 0. R 0- R 5 represent the entire trimmed body region within the skin boundary. The cropped MRI slice together with the 

segmented binary body region displayed as an overlay is shown for each case of cropping. 
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Table 1 

Error in detecting EI and EE time points ( E ie ) for 25 normal pedi- 

atric subjects with different body regions R 0- R 5. 

R 0 R 1 R 2 R 3 R 4 R 5 

Mean 0.250 0.248 0.244 0.235 0.253 0.252 

SD 0.055 0.053 0.053 0.051 0.057 0.057 
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(i) P NC – Percentage of correctly identified normal cycles in the 

filtered set of cycles: Not all normal cycles at each z loca- 

tion are required, and in principle a few or even one normal 

cycle is sufficient for obtaining 4D constructions. Yet, abnor- 

mal cycles may affect our 4D construction results especially 

if they are grossly abnormal. Therefore, P NC is an important 

indicator of the effectiveness of the filtration process. 

(ii) E ie – Error in detecting EI and EE time points: For a given 

detected EE (correspondingly EI) time point t in a time se- 

quence A z , we define the error in its detection E ie ( t ) as its

distance (in terms of the number of time points) from the 

closest true EE (correspondingly true EI) time point. 

(iii) E to – Error in temporal order: This metric defines the num- 

ber of time instances in a cycle that are out of cyclic order 

as a fraction of the total number of time instances in the 

cycle. 

(iv) E ss – Degree of spatial smoothness: This metric defines spa- 

tial smoothness in the z dimension of the constructed 4D 

image. For each time-instance of the 4D image, we select 

one point at the middle of the hemi-diaphragm dome man- 

ually. These points will form a curve as a function of z . The 

smoothness of this curve reflects the spatial continuity qual- 

ity along z of our 4D construction. To quantify this smooth- 

ness, we first fit a spline function to the curve and then use 

the mean of the absolute distance from the labeled points 

to the fitted curve as the smoothness factor E ss for that time 

point. 

(v) E sc – Degree of spatial continuity: This metric is similar to 

E ss except that it is determined via a reader study wherein 

a reader assigned a spatial smoothness score E sc on a 1 to 5 

scale with the following meaning: 1 = the diaphragm region 

is non-smooth overall; 2 = the diaphragm region at more 

than 3 locations is non-smooth; 3 = the diaphragm region 

at 2–3 locations is not smooth; 4 = the diaphragm region 

at only 1 location is potentially out of order; 5 = the di- 

aphragm region is smooth overall. A score is determined for 

each time point by visualizing all z -location slices and check- 

ing the smoothness of both hemi-diaphragm regions. 

.1. Influence of body region on detecting EE and EI time points 

We cropped the size of R i ( Fig. 12 ) to study how this may influ-

nce the error E ie in detecting EE and EI time points. For each crop-

ing condition, we perform the EI and EE detection experiment for 

ll 25 normal pediatric subjects, and obtain the mean and standard 

eviation (SD) of the E ie value over all subjects, listed in Table 1 ,

nd for each subject, depicted graphically in Fig. 13 . The true loca- 

ions of EE and EI points for all cycles (~10,0 0 0) were determined

y a trained technician. 
11 
As can be seen from the results, the mean E ie value for each 

rimmed case is ~0.25 which is much less than 1 time point. Ad- 

itionally, for R 0- R 3, when the region contains less of the lower 

bdomen, the results seem to get a little better. This is perhaps 

ow due to our focus on the real motion of interest. This analysis 

ividly demonstrates that the flux estimated from body region R i 
s a robust means of tracking respiratory motion. 

.2. Evaluation of the robustness of the method of filtering cycles 

There are three key factors defining the filtering process: the 

orm of loss functions L 1 - L 4 , weights w 1 - w 4 , and threshold θ2. We

ill examine these factors in turn in relation to filter robustness. 

.2.1. Choice of loss function models 

In this section, we will demonstrate that the cycle filtration pro- 

ess is robust and not very sensitive to the elaborate designs by 

eplacing the models used in the four loss functions expressed in 

qs. (7) –(18) by simple linear counterparts, as illustrated in Fig. 9 . 

e will employ metric P NC to compare the accuracies of the two 

ltering processes. Here again, we established the ground truth by 

abeling all cycles from 25 normal pediatric subjects (~10,0 0 0 cy- 

les) manually as “normal” or “abnormal”. 

In general, loss functions L 1 - L 4 can be replaced by any other 

orms, including linear. As long as we comply with Rule 1 - Rule 4, 

e basically obtain the same results. Eqs. (20) - (23) show the linear 

ounterparts, denoted L’ 1 , …, L’ 4 , which we arrived at by following 

ule 1 - Rule 4. 

 

′ 
1 ( x ) = 

{
10 x 

7 
when x ≥ 0 

− 3 x 
10 

when x < 0 , 
(20) 

 

′ 
2 ( x ) = 

x 

2 

− 1 , (21) 

 

′ 
3 ( x ) = 5 x, (22) 

 

′ 
4 ( x ) = 

{
x −2 

4 
when x ≥ 1 . 5 

1 −x 
4 

when x < 1 . 5 . 
(23) 

When using loss functions L 1 - L 4 , P NC obtained over all 25 pe-

iatric subjects was 98.88%, and for linear loss functions L’ - L’ , 
1 4 
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Fig. 13. Error in detecting EI and EE time points. Mean E ie value over the cycles in each data set for 25 normal pediatric subjects with different body region definition ( R 0, 

R 1, R 2, R 3, R 4, R 5). 
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Fig. 14. Variation of P NC as a function of θ2. 
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 NC = 96.79%. This demonstrates that the filtering process is not 

ensitive to parameters in L 1 - L 4 and is indeed very robust. The re-

ned designs based on L 1 - L 4 not only make the results a little bet-

er, but also make the method conceptually sounder. 

.2.2. Choice of weights w 1 - w 4 

In the design of L 1 - L 4 , 0 is the ideal value and 1 is the nor-

alized tolerable boundary value. Therefore, when weighting the 

oss functions, we should not change their scale. The sum of w 1 - 

 4 should be equal to 1. These four parameters are set accord- 

ng to the importance of the 4 rules Rule 1- Rule 4. From our ob-

ervation, we found that the actual settings did not matter much 

nce the spirit of the above meaning is satisfied. We varied the 

eights within this meaningful range, like [0.4, 0.2, 0.2, 0.2], and 

ound that the resulting P NC over the 25 pediatric subjects changed 

rom 98.88% to 98.15%, suggesting that once their relative meaning 

s maintained, the actual value chosen is not very sensitive to the 

esult. 

.2.3. Threshold θ2 

The role of θ2 is to filter out the abnormal cycles via threshold- 

ng the loss L (c). Since we have normalized the tolerable boundary 

f L (c) to 1, θ2 should be set between 0 and 1. Due to the com-

lexity of human breathing patterns, 1 is really a fuzzy boundary. 

hen θ2 is closer to 0, our attitude is conservative which yields 

igher P NC , but the total number of filtered normal cycles ( N NC )

ay be less. Conversely, when θ2 is closer to 1, we are more lib-

ral which leads to more filtered cycles ( N NC ), but P NC itself may

e lower. θ2 is a trade-off between P NC and N NC . For the 4D con-

truction process, as we pointed out, all normal cycles are not re- 

lly needed, and a few or even one normal cycle per z location can 

ield good results, although abnormal cycles may affect the final 

esults. Therefore, P NC (accuracy of normal cycle detection) is more 

mportant than N NC . Hence, we select θ2 as 0.4 to keep P NC at a

igh level. The relationship between P NC and θ2 for the 25 sub- 

ects is depicted in Fig. 14 . We can see that 0.4 is a good choice to

eep high precision of detecting normal cycles. 

xperiments, Results, and Discussion 

We tested OFx on dMRI data sets from 25 normal pediatric sub- 

ects and 58 pediatric patients with TIS; see Section 2.1 for details 
12 
n data sets. To evaluate the accuracy of the 4D construction pro- 

ess from different perspectives, we employ the four metrics de- 

cribed in Section 4: E ie , E to , E ss , and E sc . 

i) E ie : Error in detecting EI and EE time points 

The true locations of EE and EI points for all ~29,0 0 0 cycles (83

MRI data sets × 35 z -locations × 10 cycles per location) were de- 

ermined by a trained technician by visualizing an animation of 

he cine sequence A z . Since our interest is only in normal cycles, 

e focus on them for evaluating E ie . To understand the distribu- 

ion of normal and abnormal cycles in our data sets, we display 

n Fig. 15 these numbers separately for the normal pediatric sub- 

ects and TIS patients. A considerable fraction of the total number 

f cycles is constituted by abnormal cycles – 9.92% for normal data 

ets and 11.27% for the patient data sets. The number of normal cy- 

les detected per z -location for the two data sets is 2 to 16 with a

ean value of 11.2 for normal subjects and 1 to 20 with a mean 

alue of 11.4 for patients. Fig. 16 summarizes E ie values for the two 

ata sets separately. The mean and standard deviation of E ie over 

ll data sets are found to be 0.25 ± 0.05 and 0.38 ± 0.16, respec- 

ively, for the two subject groups. 

(ii) E to : Error in temporal order 

This metric defines the number of time instances in a cycle that 

re out of cyclic order as a fraction of the total number of time 

nstances in the cycle. In the examples shown in Fig. 17 , all cycles
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Fig. 15. Distribution of normal and abnormal cycles in our data sets: (a) normal subjects and (b) TIS patients. Subjects and patients are ordered along the x-axis according 

to increasing number of normal cycles. 

Fig. 16. Error in detecting EI and EE time points. Mean E ie value over the cycles in each data set for (a) normal pediatric subjects and (b) TIS patients. 

Fig. 17. Examples of temporal order/ disorder. The cycles in (a) and (b) are in cyclic order. The cycle is out of order at time instance 6 in (c) and at 2 in (d). 

Fig. 18. Error in temporal order. Mean value of E to over the cycles in in each data set for (a) normal pediatric subjects and (b) TIS patients. 

h

(

E

i  

F

m

b

t

a

d

T

a

fi

t

a

s

(

p

t

a

a

t

o

s

F

h

o

ave 7 time instances and 6 time intervals, the cycles in (a) and 

b) have all of their time intervals in the proper cyclic order, hence 

 to = 0, and the cycles in (c) and (d) have 1 interval out of order –

ntervals 6 in (c) and 2 in (d) – and thus E to = 1/6 for these cycles.

ig. 18 summarizes E to values for the two data sets separately. The 

ean and standard deviation of E to over all data sets are found to 

e 2.7% % 2.3% and 1.8% % 2%, respectively, for the two groups. 

(iii) E ss : Degree of spatial smoothness 

This metric defines spatial smoothness in the z dimension of 

he constructed 4D image. For each time-instance of the 4D im- 

ge, we select one point at the middle of the hemi-diaphragm 

ome manually. These points will form a curve as a function of z . 

he smoothness of this curve reflects the spatial continuity quality 

long z of our 4D construction. To quantify this smoothness, we 
13 
rst fit a spline function to the curve and then use the mean of 

he absolute distance from the labeled points to the fitted curve 

s the smoothness factor E ss for that time point. Two examples are 

hown in Fig. 19 for one time-instance– (a) with E ss = 0.226, and 

b) with E ss = 2.422 (both in pixel units). Note that in each exam- 

le, for anatomic accuracy, the right hemi-diaphragm appears on 

he left in the graph, the left hemi-diaphragm appears on the right, 

nd the graph depicts roughly the shape of the hemi-diaphragms 

t the selected time point in a coronal section corresponding to 

he chosen mid-point. Fig. 20 demonstrates the mean of E ss values 

ver all time instances for each constructed 4D image for normal 

ubjects and patients in our cohort. Several large spikes seen in 

ig. 20 (b) corresponding to patients 20B, 41A, 59B, 173A, and 198B 

appen to be due to patient movement during scanning. Notably 

ur method of evaluation caught those poor scan cases correctly. 
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Fig. 19. Pattern of change in the y-location of the mid-point in the right and left hemi-diaphragm domes: An example of a spatially smooth (a) and non-smooth (b) 

construction. 

Fig. 20. Degree of spatial smoothness. Mean of E ss values (blue) and E sc values (red) over all time instances in the constructed 4D image for each normal subject (a) and TIS 

patient (b) in our data cohort. 
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4 http://www.mipg.upenn.edu/Vnews/Materials/4D _ video _ sequences.pptx http: 

//www.mipg.upenn.edu/Vnews/Materials/4D _ video _ sequences.pptx http://www. 

mipg.upenn.edu/Vnews/Materials/4D _ video _ sequences.pptx 
xcluding these poor scan cases, the mean and standard deviation 

f E ss values over all data sets are found to be 0.50 ± 0.17 and

.54 ± 0.25, respectively, for the two subject groups. 

(iv) E sc : Spatial smoothness score 

This metric is similar to E ss except that it is determined via a 

eader study wherein a reader assigned a spatial smoothness score 

 sc on a 1 to 5 scale with the following meaning: 1 = the di-

phragm region is non-smooth overall; 2 = the diaphragm region 

t more than 3 locations is non-smooth; 3 = the diaphragm region 

t 2-3 locations is not smooth; 4 = the diaphragm region at only 

 location is potentially out of order; 5 = the diaphragm region is 

mooth overall. A score is determined for each time point by vi- 

ualizing all z -location slices and checking the smoothness of both 

emi-diaphragm regions. Fig. 20 displays the mean of E sc values 

ver all time instances for each constructed 4D image for normal 

ubjects and patients. The mean and standard deviation of E sc val- 

es over all data sets are found to be 4.6 ± 0.48 and 4.56 ± 0.98, 

espectively, for the two subject groups. 

From the above results (and others not shown), we make the 

ollowing observations: (i) The range and mean value of the num- 

er of time points in the constructed 4D image for the two pop- 

lations were: [5, 9], 6.6; and [3, 13], 6.4. Thus, with the same 

maging protocol, not surprisingly, normal-subject data sets can 

e constituted with higher temporal resolution than patient data 

ets. A desirable feature of our approach is that as the number 

f normal cycles included in the scan increases, the temporal res- 

lution of the constructed image increases. (ii) As observed pre- 

iously ( Sun et al., 2019 ), manual labeling itself has a variability 

f 0.34 ± 0.66 time instances, and thus, our E ie results statisti- 

ally have a variability of 0.34 ± 0.15, which is statistically the 

ame ( p = 0.98) as that from the reference manual method in lo- 

ating EI and EE time points. Understandably, E ie for normal data 

ets is less than that for TIS patients with statistical significance 

 p = 0.0 0 02) due to the higher complexity of the cycles in the lat-

er data sets. (iii) The temporal order seems to be equally accu- 
14 
ate in the two subject groups ( E to is statistically indistinguishable, 

 = 0.08) notwithstanding the fact that the cycles in patients are 

ore complex. This is largely due to the accuracy of our detected 

ormal cycles and the method of forming one composite cycle us- 

ng the model. (iv) Spatial continuity as determined computation- 

lly ( E ss ) and manually ( E sc ) correlate exceptionally well (Pearson 

orrelation = -0.74) suggesting that the computational method be- 

ind metric E ss is valid. The deviation of the estimated y -positions 

f the hemi-diaphragm domes from a smooth fit is much less than 

ne pixel as suggested by E ss . 

Finally, in Figs. 21 and 22 , we present exemplary slices from 

 constructed 4D image of a normal subject and a TIS patient. 

o save space, only selected slices through the right and left 

ung ( z -locations) are shown but with the full temporal resolution 

chieved in the 4D construction. Two video sequences representing 

isualizations of one 4D constructed image are available at here 4 

a normal pediatric subject). The first video animates the dynam- 

cs for each z -location over the respiratory cycle of the 4D image 

nd then loops over the z -locations. The second video animates the 

patial variation in the z- direction for each fixed time instance and 

hen loops over the time instances over the respiratory cycle. 

Applicability to dynamic CT (dCT): To test the applicability of 

Fx to dCT images, we performed 4D construction on a dCT data 

et gathered from a rabbit in connection with a small animal 

odel we have been studying to understand the phenomenon un- 

erlying TIS ( Tong et al., 2019 ). The respiratory rate of the rabbit

as 37 cycles per minute, the orientation of the slice plane was 

agittal with a total of 124 sagittal locations, and the acquisition 

ate of the slices was at 285 ms per slice for a total of 20 time

amples acquired in the time dimension. OFx was applied unmod- 

fied to this data set except for threshold θ1 set to 800 to account 

or the different modality. OFx successfully constructed a 4D im- 

http://www.mipg.upenn.edu/Vnews/Materials/4D_video_sequences.pptx
http://www.mipg.upenn.edu/Vnews/Materials/4D_video_sequences.pptx
http://www.mipg.upenn.edu/Vnews/Materials/4D_video_sequences.pptx
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Fig. 21. A display of slices selected from a constructed 4D image of a normal pediatric subject. Each column represents a z-location, and each row represents a time instance. 
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ge with the following error metric values: E ie = 0.26; E to = 1.77%; 

 ss = 0.19; and E sc = 5. Analogous to Fig. 21 and 22 , we display in

ig. 23 some sample slices from the 4D constructed image for the 

ight and left lung. 

Computational considerations: The computational time taken 

er study for our method on a computer with Intel Core i7-8700 

s as follows: Step 1 – Respiratory signal extraction: ~321 s; Step 2 

Analysis of cycles: 0.59 s; Step 3 – 4D image formation: 0.02 s. 

hus, the total time for fully automated 4D construction from one 

MRI scan data set is ~322 s. 

Comparison with other methods: The only published meth- 

ds that we are aware of that operate fully automatically 

n free breathing slice acquisition data are ( Clough et al., 

018 ; Georg et al., 2008 ; Vázquez Romaguera et al., 2019 ; 

achinger et al., 2012 ). The method in ( Vázquez Romaguera et al., 
15 
019 ) extracts an ROI based on knowledge on the spatial distribu- 

ion of the organ within the image, which is not robust for slices 

n patients with abnormal cycles. Methods in ( Clough et al., 2018 ; 

eorg et al., 2008 ; Wachinger et al., 2012 ) extract respiratory sig- 

al based on manifold learning, but do not filter the abnormal cy- 

les before alignment, which makes them susceptible to outlier cy- 

les. Among published works, only ( Tong et al., 2017 ) has demon- 

trated its ability to handle free-breathing dMRI acquisitions from 

ediatric subjects, as compared to dCT from adult subjects ad- 

ressed by all other approaches. These two factors are crucial since 

he challenges in handling pediatric dMRI are much harder than 

hose for adult dCT due to lower image quality and the increased 

omplexity of the respiratory cycles. There are several key differ- 

nces between our approach and that described in ( Tong et al., 

017 ). (i) ( Tong et al., 2017 ) requires manually identifying EI and



Y. Hao, J.K. Udupa, Y. Tong et al. Medical Image Analysis 72 (2021) 102088 

Fig. 22. A display of slices selected from a constructed 4D image of a TIS patient. Each column represents a z-location, and each row represents a time instance. 
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E time points first on all A z sequences which requires a substan- 

ial amount of human time. (ii) It formulates a weighted graph 

here space and time continuity are nested to solve the optimiza- 

ion problem of finding the best 4D volume. Due to this nesting, 

t cannot handle data sets when only a few slices at sparse z - 

ocations are acquired. Such acquisitions are often helpful for es- 

imating tidal volumes for patients who cannot tolerate long scan 

imes required by full scans. (iii) It does not identify and filter out 

bnormal cycles, and hence, abnormal cycles in the data can af- 

ect the quality of the constructed 4D image or such data sets have 

o be simply discarded. (iv) The proposed approach has two desir- 

ble properties which are not shared by ( Tong et al., 2017 ): First,

s already pointed out, the temporal resolution of the constructed 

mage increases with the number of normal cycles in the data set. 

econd, the existence of the theoretical property mentioned in Sec- 

ion 3, namely the image constructed from a sparse scan is a sub- 

mage of the image constructed from a full scan. In summary, the 

roposed method has several strong features which are unique and 

ake it stand out among currently available approaches for 4D 

onstruction. 

oncluding Remarks 

In this paper, we present a novel approach, named OFx, for au- 

omatic 4D image construction from dynamic free-breathing MRI 

cquisitions of the thorax based on the central concept of op- 

ical flux . We believe that optical flux is highly correlated with 

he volume of actual gas exchange and hence acts as an accu- 

ate and powerful respiratory surrogate. The method has the fol- 

owing unique features. (i) It is fully automatic while not sacrific- 

ng robustness to other impediments such as abnormal breathing 

atterns. (ii) It is general. With minor changes (mainly relating to 

ody region identification), it can be applied to other modalities 
16 
uch as CT and other MRI protocols. It is not specific to the TIS ap-

lication illustrated in this work. With some changes, it can also 

e applied to other dynamic and moving organs such as heart, up- 

er airways, abdominopelvic, and musculoskeletal structures. (iii) 

he 4D construction principle is independent of the number of z - 

ocations, which implies that it can be employed even when imag- 

ng is done to gather only partial data and not the full set across 

he chest, body region, or organ of interest. Recovering spatial con- 

inuity based on guaranteed temporal continuity is the fundamen- 

al premise of this approach. (iv) It has two desirable theoretical 

roperties – the image constructed from partial data being a sub- 

mage of the image constructed from full data; and the temporal 

esolution increasing with the number of normal cycles included 

n the scan. In fact, as the dMRI temporal resolution increases, in 

he limit, OFx would converge to a perfect solution. 

It should be noted that OFx is different from methods that em- 

loy body region area to derive a surrogate for respiratory signal. 

he area measure is sensitive to errors in segmentation of the re- 

ion and may require some user interactive help. Optical flux is 

nsensitive to segmentation errors and is actually a measure of the 

ody motion due to respiration, not just of the outer skin surface 

ut also of the internal structures including the chest wall and 

iaphragm. Structures with greater motion make correspondingly 

arger contributions to optical flux. An underpinning of OFx is that 

t first ensures time continuity and then restores spatial continu- 

ty while preserving time continuity. During normal breathing, the 

otion depicted in A z for different z will be similar. Therefore, the 

ffectiveness of OFx will be guaranteed once similar normal cycles 

re detected and the phase for each time instant in each cycle is 

ccurately identified. 

One current gap in OFx is that if a time series A z does not con-

ain any normal cycles (or if the method fails to find any such cy- 

les when the series actually contains normal cycles), it will fail 
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Fig. 23. A display of slices selected from the constructed 4D image of a rabbit. Each column represents a z-location, and each row represents a time instance. 
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o form a 4D image. In our analysis of all 83 data sets, how- 

ver, we did not encounter such a situation. Second, we believe 

hat the cycle filtering approach may perhaps be improved via the 

se of deep networks such as Long Short-Term Memory (LSTM) 

 Hochreiter and Schmidhuber, 1997 ) which may help in salvaging 

ome near-normal cycles which our current rather conservative ap- 

roach may fail to detect. Third, the cosine function utilized by OFx 
17 
ay not be suitable to model a normal breathing cycle since the 

nspiration and expiration phases are known not to be identical in 

ength. Notably, OFx is not dependent on the specific cosine func- 

ion and so other more appropriate non-symmetric functions such 

s a Rayleigh distribution ( Wait, 1985 ) can be utilized in the future. 

Our future goal is to adapt OFx to other modalities, body re- 

ions, organs, populations, and applications. 
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