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Abstract 

Purpose: Quantification of body composition plays an important role in many clinical and 

research applications. Radiologic imaging techniques such as Dual-energy X-ray 

absorptiometry (DXA), magnetic resonance imaging (MRI), and computed tomography (CT) 

imaging make accurate quantification of the body composition possible. However, most 

current imaging based methods need human interaction to quantify multiple tissues. When 

dealing with whole-body images of many subjects, interactive methods become impractical. 

This paper presents an automated, efficient, accurate, and practical body composition 

quantification method for low-dose CT images.  

 

Method: Our method, named automatic anatomy recognition body composition analysis 

(AAR-BCA), aims to quantify four tissue components in body torso (BT) – subcutaneous 

adipose tissue (SAT), visceral adipose tissue (VAT), bone tissue, and muscle tissue – from 

CT images of given whole-body positron emission tomography/computed tomography 

(PET/CT) acquisitions. AAR-BCA consists of three key steps – modeling BT with its 

ensemble of key objects from a population of patient images, recognition or localization of 

these objects in a given patient image I, and delineation and quantification of the four tissue 

components in I guided by the recognized objects. In the first step, from a given set of patient 

images and the associated delineated objects, a fuzzy anatomy model of the key object 

ensemble, including anatomic organs, tissue regions, and tissue interfaces, is built where the 

objects are organized in a hierarchical order. The second step involves recognizing, or finding 

roughly the location of, each object in any given whole-body image I of a patient following 

the object hierarchy and guided by the built model. The third step makes use of this fuzzy 

localization information of the objects and the intensity distributions of the four tissue 

components, already learned and encoded in the model, to optimally delineate in a fuzzy 

manner and quantify these components. All parameters in our method are determined from 

training data sets. 
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Results: 38 low-dose CT images from different subjects are tested in a 5-fold cross validation 

strategy for evaluating AAR-BCA with a 23-15 train-test data set division. For BT, over all 

objects, AAR-BCA achieves a false positive volume fraction (FPVF) of 3.7% and false 

negative volume fraction (FNVF) of 3.8%. Notably, SAT achieves both a FPVF and FNVF 

under 3%. For bone tissue, it achieves a FPVF and a FNVF both under 3.5%. For VAT tissue, 

the FNVF of 4.8% is higher than for other objects and so also for muscle (4.7%). The level of 

accuracy for the four tissue components in individual body sub-regions mostly remains at the 

same level as for BT. The processing time required per patient image is under a minute. 

 

Conclusions: Motivated by applications in cancer and systemic diseases, our goal in this 

paper was to seek a practical method for body composition quantification which is 

automated, accurate, and efficient, and works on BT in low-dose CT. The proposed 

AAR-BCA method towards this goal can quantify four tissue components including SAT, 

VAT, bone tissue, and muscle tissue in the body torso with under 5% overall error. All 

needed parameters can be automatically estimated from the training data sets. 

 

Keywords 

Body composition analysis, image segmentation, automatic anatomy recognition (AAR), 

computed tomography (CT), PET/CT, quantitative imaging.  

 

1. Introduction 

1.1 Background 

Assessment of body composition is important for various clinical and research applications 

including evaluation of the effects of obesity upon comorbid disease development, prognosis, 

and treatment outcome
1-8

, and assessment of gender-based or age-based differences of body 

composition in health and disease
9
. An efficient and accurate technique for quantification of 
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body tissue components including subcutaneous adipose tissue (SAT), visceral adipose tissue 

(VAT), muscle tissue, and bone tissue is needed to perform such assessments practically. 

With accurate quantification of these body tissue components in a production-mode, many 

clinical and research questions can be addressed objectively. 

 

1.2  Related work 

There are many methods available for body composition assessment
10

. Anthropometry is a 

non-invasive method which is easy to perform. Body mass index (BMI)
12

, skin fold 

thickness
13,14

, waist circumference, hip circumference, and waist-to-hip ratio
15

 are the most 

common anthropometric measures used to assess body composition. However, these methods 

are based on the assumption that SAT has a constant relationship with whole-body adipose 

tissue. This assumption results in inaccuracy in the assessment of VAT and of measurement 

of adipose tissue in pathologic states. Even if the assumption is valid, it can achieve only 

rough estimation result. Bioelectrical impedance analysis (BIA) is an often-used method for 

estimating body composition, and in particular body fat. It is another non-invasive method 

with better accuracy than the anthropometry methods in healthy populations
10

. However, it 

assumes that the human body is a cylinder with equal conductance as well as stable hydration 

status, which may not be valid in patients with advanced disease conditions
16

. Consequently, 

BIA cannot overcome the influences of variations in different subjects that can lead to 

inaccurate measurement of body composition. Air displacement plethysmography (ADP) is 

also a non-invasive method based on the same principles as the reference standard method 

of hydrostatic weighing
17

. Although ADP is a recognized and scientifically validated 

densitometry method to measure human body composition, it still has some drawbacks. It has 

a strict requirement for the subject to fully exhale, which may be difficult to achieve in 
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children and in patients with lung disease. ADP also cannot quantify the individual VAT and 

SAT components
10

, let alone the individual non-fatty tissue components. 

None of the above methods permits accurate regional quantification of body composition, 

and the fat quantification results may be unrelated to the amount of VAT
18

. Radiologic 

imaging techniques make the visualization and spatial localization of human internal 

structures possible, affording the potential for improving quantification accuracy. 

Dual-energy X-ray absorptiometry (DXA) is a reference standard method in body 

composition quantification because of its high precision and high stability for measurement
19

. 

However, DXA has a limited ability to distinguish between different compartments such as 

VAT and SAT
10

. Moreover, DXA is unnecessary for most disease conditions and requires 

additional radiation exposure if applied for body composition quantification. Unlike DXA, 

magnetic resonance imaging (MRI) and computed tomography (CT) images are routinely 

acquired in many clinical situations, and thus can be utilized to quantify body composition 

with little added healthcare cost. MRI can measure the quantity and distribution of body 

composition in the whole body without exposure to ionizing radiation, which makes it an 

ideal method for whole-body composition analysis. Yet, as it is more expensive, slower in 

terms of image acquisition time, and less widely available compared to CT
10,23

, it has a more 

limited role in body-wide quantification of body composition. Moreover, it poses serious 

challenges to quantify bone tissues since they do not yield adequate MRI signals and are 

difficult to distinguish from other low signal intensity connective tissues such as ligaments 

and tendons. CT is widely used in body composition quantification
4,9,18,20

 because it is easy to 

perform, has a short image acquisition time, and provides accurate, high-quality information 

on tissue composition in the body
21

. However, diagnostic CT is performed to scan only 

specific body regions depending on the clinical indication. Given its associated radiation 

dose, whole-body information is often not obtained and fully assessed.  
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Until now, most body composition analysis methods based on CT have used single or 

multiple slices in a body region (mostly abdomen) to estimate the whole-body volume in any 

given individual
24-28

. Some investigators use the third lumbar vertebral region (L3) for 

analysis
24-26,45

, others believe that the L4-L5 level is the best choice
27,28,46

, and some others 

focus on using the slice or slices most correlated to whole-body volume
20,29

. Although use of 

a handful of slices may have strong correlation with the whole-body volume, use of these 

slices alone cannot accurately quantify body composition, since the distributions of body 

composition in different subjects are generally different, and high correlation does not imply 

high accuracy of prediction. There are also approaches to assess body composition based on a 

threshold method
30

 as well as via manual operation
18,31

. However, the accuracy of 

thresholding is poor, and the manual operation method is labor-intensive, error-prone, and 

impractical when applied to the whole body or to a large number of imaging studies. Some 

methods aim at automatically segmenting adipose tissues, more specifically with a focus on 

separating SAT and VAT, from CT images
47-51

. The central idea of those methods is to seek 

the abdominal wall which separates SAT and VAT in the abdominal region. Many strategies, 

including curve smoothing
47

, morphological operations
48

, and mask matching
49-51

, have been 

proposed to automatically achieve this objective. However, these methods cannot be applied 

to muscle and bone segmentation simultaneously with SAT/VAT segmentation/separation, 

and the performance is highly dependent on the accuracy of the location of the abdominal 

wall. 

Positron emission tomography (PET)/computed tomography (CT), or PET/CT, provides 

co-registered molecular and anatomic images in a single imaging session, and is the most 

frequently used method for clinical molecular imaging assessment of patients with various 

disease conditions, most notably cancer
22,23

. The low-dose CT technique in PET/CT allows 

for a reduced radiation exposure, which facilitates whole-body CT imaging. Therefore, 
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considering the above drawbacks of single-slice and body-region methods and the lack of 

availability of body-wide images, low-dose CT is an attractive modality for performing body 

composition analysis in certain disease conditions. Body composition analysis studies based 

on low-dose CT images are very few
34-36

, and they are all limited in the level of automation 

achieved, the extent of body region covered, and the type of tissues considered. Pak et al
34

 

manually outline the volume of interest around the abdominal muscular wall and then uses 

thresholds to separate VAT on CT images. Adriana et al
36

 calculate VAT and SAT volumes 

from L1 through L5 using semi-automated tracings. The above two methods require manual 

interaction on image slices of each target subject and do not segment bone and muscle 

tissues. Chan
35

 presents a method which uses thresholds to evaluate the volume of lean body 

mass. However, the method is not yet tested on adipose tissues, let alone for separately 

quantifying VAT and SAT. A recent study presented by Hussein et al.
52

 proposed a fully 

automatic method to segment SAT and VAT on low-dose CT images. They firstly utilized 

geometric median absolute deviation and local outlier scores to remove the outlier point. 

Then, sparse 3D conditional random fields algorithm was employed to achieve the 

segmentation. Although this method achieved superior assessment results for adipose tissue, 

it is applied only on the abdominal region, and muscle and bone tissues were not analyzed. 

Given the challenges introduced by the suboptimal quality of low-dose CT images and the 

limitations of manual methods of segmentation including time-inefficiency, 

labor-intensiveness, and suboptimal accuracy and reproducibility, our goal in this paper is to 

develop a method of body composition analysis from low-dose CT images which are 

obtained as part of routine clinical PET/CT acquisition. Our approach adapts and 

substantially extends a recently developed methodology called Automatic Anatomy 

Recognition (AAR)
11

 which is a general framework for the localization (called recognition) 

and delineation of multitudes of objects body-wide on CT, PET/CT, and MR images. It has 
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been employed and tested in several medical image analysis applications, such as multi-organ 

recognition in whole-body PET/CT images
22

, disease quantification in PET/CT images
40

, 

auto-contouring organs at risk for radiation therapy planning
41

, study of pediatric obstructive 

sleep apnea syndrome via MR images
42

, and lymph node zone localization in PET/CT 

images
43

. Although our focus in this paper is not on multitudes of objects, we will exploit 

AAR’s generic ability to accurately localize objects for supporting our method to delineate 

the tissue components of interest. 

 

1.3  Outline of paper and approach 

We will focus on the body torso (BT), defined to be the union of the thoracic, abdominal, and 

pelvic body regions. Our aim is to quantify four tissue components in BT – SAT, VAT, bone 

tissue, and muscle tissue – from low-dose CT images of given whole-body PET/CT 

acquisitions. Our method, which we will name AAR-BCA (BCA for body composition 

analysis) consists of three key steps – modeling BT with its ensemble of key objects from a 

population of patient images, recognition or localization of these objects in a given patient 

image I, and delineation and quantification of the four tissue components in I guided by the 

recognized objects. In the first step, a set of objects is first identified. The objects include 

anatomic organs and conceptual objects that are amenable to model and facilitate accurate 

recognition such as tissue regions and tissue interfaces. The latter are expressly formulated to 

facilitate the precise delineation of the four tissue components of our focus in BT. Modeling 

follows the principles of AAR of first precisely defining the anatomic extent of each object, 

generating binary delineations of the objects in the given image population following the 

definitions, determining the best hierarchical order in which the objects should be arranged 

for the specific application at hand, and constructing a fuzzy anatomy model of the object 
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ensemble following the hierarchy
11

. The second step involves recognizing, or finding roughly 

the location of, each object in any given whole-body image I of a patient following the object 

hierarchy and guided by the built model. The third step makes use of this fuzzy localization 

information of the objects and the intensity distributions of the four tissue components, 

already learned and encoded in the model, to optimally delineate and quantify these 

components. Significant modifications and extensions engineered over the original AAR 

approach for arriving at AAR-BCA are fully described in Section 2 for each of the three 

steps. In Section 3, the experimental procedures involving whole-body PET/CT images from 

38 subjects and the results are illustrated, and Section 4 summarizes our conclusions. 

 

2.  Materials and Methods 

We will continue using the terminology of Udupa et al
11

 but add some new notations that are 

specific to this work. Frequently used notations and their description are provided in Table 1 

for convenience. Besides the body torso, we will also refer to the thoracic, abdominal, and 

pelvic body (sub) regions as body regions of interest in this paper. 

The procedures of the AAR-BCA method are illustrated in Figure 1. They will be discussed 

in detail in the rest of Section 2.  

 

2.1  Model building 

As with previous AAR methodology
11

, we start off by developing a precise anatomic 

definition of each object involved in the AAR-BCA process. Although our focus is the 

quantification of body composition in terms of subcutaneous adipose tissue (SAT), visceral 

adipose tissue (VAT), muscle (Msl), and skeleton (Sk) in BT, we will need additional objects 

to facilitate the accurate recognition and delineation of those objects of interest. These 

additional objects are listed in Table 2 along with their brief definitions, and are also 
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illustrated on three axial slices (at the inferior, middle, and superior level for each object) on 

an lCT image of a representative patient in Figure 2. Although AAR is a generic 

methodology, it does not prescribe automatically methods of devising (including conceptual) 

objects and their hierarchy that is best suited for the application at hand. 

It should be noted that although our final goal is BT-wide body composition quantification, 

the proposed method can also be applied to smaller regions of BT including the thorax (Thx), 

abdomen (Abd), and pelvis (Plv) as defined in Table 2. 

We will first briefly summarize the AAR method
11

, and then elaborate on our adaptations for 

the BCA application. The main idea behind AAR is to use the training data sets to build a 

fuzzy anatomy model of B. This model includes a fuzzy object-model for every object in B 

and the relationships between objects in B taken pairwise. The objects are arranged in a tree 

structure and the relationships between a parent and its children, which characterize the 

geographical layout of the objects relative to each other, are codified in the anatomy model. 

The intensity characteristics of each object are also estimated and included in the anatomy 

model. Then, using this anatomy model, in any given test image, every object in B is 

recognized or localized. The recognition result is a fuzzy mask for each object which 

determines the approximate position, shape, and size of the object. 

Formally, the fuzzy anatomy model FAM(B, G) is denoted by an ordered set of 5 entities 

FAM(B, G) = (H, M, , ). The first entity H represents the hierarchy of objects, which is 

formed in a tree structure. M = {FM(O): = 1, …, L} is a collection of object-models, one 

for each object. k: k = 1, …, L} is a set of relationship measures where k denotes the 

relationship of object Ok with its unique parentIt contains information regarding the position 

as well as orientation relationship between Ok’s parent and itself. The fourth parameter  = 

{k: k = 1, …, L}is a set of scale ranges indicating the size range of each object Ok over the 

subject population.   denotes a set of measurements pertaining to the object assembly in B, 

which includes all of the necessary estimated measures in the AAR method such as object 

intensity characteristics. In particular, it includes the intensity distributions of the different 

objects which are needed for the optimal recognition and delineation of the objects. 
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The formulation of the objects to be considered, or equivalently, the choice of objects to be 

included in H, plays a vital role in the effective recognition and delineation of the specific 

tissue regions for the application at hand. Tissue regions SAT and VAT are both referred to 

as sparse objects
11

, which are spatially sparse and not compact, and are usually significantly 

more challenging to model, recognize, and delineate compared to compact and blob-like 

objects. These objects, especially VAT, are highly variable over G and raise the question of 

their very modelability. To overcome these issues, we identify indirect or conceptual objects 

which do not pose these challenges, but which, once modeled and recognized, facilitate the 

precise delineation of the actual tissue regions of interest. 

Following these ideas, in AAR-BCA we have identified two indirect or conceptual objects, 

denoted IAM and OBM as defined in Table 2, which play a pivotal role in the delineation and 

separation of SAT and VAT. As seen in Figure 2, OBM is defined as an object which is such 

that SAT is precisely the adipose (fat) tissue included within the object called Skin that is 

external to OBM (i.e., in the subcutaneous location). Similarly, IAM is formulated as an 

object which is such that VAT is exactly the adipose tissue that is inside of IAM (i.e., in the 

visceral location). In other words, if the position, shape, and size information of Skin, OBM, 

and IAM can be accurately obtained in a given image, SAT and VAT can be subsequently 

derived based on the intensity properties of adipose tissue and these three object masks using 

appropriate logical predicate functions. This is the central tenet of AAR-BCA. It is important 

to note that IAM and OBM are not real anatomic organs or objects, and, as is the case for 

many real anatomic objects, lack real tissue boundaries in several regions. For example, the 

posterior aspects of OBM and IAM inferiorly in the pelvis have no actual intervening tissue 

boundary between subcutaneous and visceral adipose tissue components as seen in Figure 2. 

We should emphasize that, in the thoracic region, the definition of and the separation between 

SAT and VAT is complicated because their precise boundaries are somewhat ambiguous. 

The reasons for this are that the dome of the diaphragm intersects slices in the mid and lower 

thoracic region, which brings portions of the abdominal visceral region into the thoracic 

slices, as well as the lack of an easily identifiable SAT-VAT interface in the region of the 

cervicothoracic junction. 
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Figure 3 shows examples of hierarchies utilized in the AAR-BCA method for BT. Among 

these and many other hierarchies that have been tested, the one shown in Figure 3(a) has been 

found to be optimal from the perspective of object recognition, and hence, delineation. The 

main requirement for these hierarchies is that the root object should be easily recognizable. 

This is the reason that we chose the Skin object as the root. We will see later that although 

several objects listed in Table 2 are not explicitly entered in the selected hierarchy H, they all 

come into the picture in the AAR-BCA procedure eventually. 

One other point of notation needs to be clarified. Although all objects in the set  = {O: = 

1, …, L} as listed in Table 2 are of interest for AAR-BCA, not all objects will participate in 

every step. As we explained above, only the subset H = {Skin, Msl, IAM, OBM, Sk} will be 

involved in the model building and recognition processes. Another subset of objects BC = 

{SAT, VAT, Msl, Sk} will participate in the tissue quantification process. Furthermore, body 

regions {Thx, Abd, Plv} will enter into picture when we analyze the results of quantifying 

objects in BC confined to these body regions.  

Given the set  of images, set 
b
 of binary images over  for each object O considered in H, 

where each object is delineated as per the definitions in Table 2, and H itself, the process of 

constructing FAM(B, G) follows the AAR methodology described in Udupa et al
11

 in forming 

M, and . For the formation of the 5
th 

entity , however, the procedure is different in the 

actual information gathered while building FAM(B, G). The way this information is used for 

delineation is also different which we will describe in Section 2.3. In the AAR approach
11

, 

since delineation is performed by a model-based iterative relative fuzzy connectedness 

(IRFC) algorithm, the fuzzy affinity parameters needed by the IRFC algorithm for object O 

are estimated from 
b
, other nearby co-object tissue regions, and . In AAR-BCA, the 

delineation procedure is different, as explained later, and requires just the intensity 

distribution within O. This information is estimated as follows. 
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Let F(x) denote the intensity distribution of the tissue constituting object O. We take F(x) to 

be the image intensity histogram of the interior of O over all samples of Oas represented in 

. To handle issues such as noise, missing intensities, artifacts due to segmentation, etc., 

instead of using F(x) directly, we fit a smooth function to F(x) and take the fit function as 

the intensity distribution for object O. After observing F(x) for objects OBC, we 

decided to approximate F(x) by the following function using a least squares method
37

. 

          =   -  -  
  

  
    

-  -  
  

  
                        

 (1) 

All parameters of f(x), including a1, a2, 1, 2, 1, and 2, are estimated using the 

Gauss-Newton method
38

 to solve the nonlinear least squares problem. Figure 4 illustrates this 

fitting process for object Msl for our data set (see Section 3.1 for details on data set). The 

parameters of f(x) for each object O then become part of the entity  in FAM(B, G). The 

intensity function f(x) will be utilized in delineating the objects in BC as explained in 

Section 2.3. Notably, since the intensity distributions for objects SAT and VAT are the same, 

the fit intensity function f(x) will also be the same for them. For bone tissue, a slightly 

modified half-version, namely f
h
(x), of f(x) is used as the final membership function, where 

f
h
(x) is identical to f(x) on the left shoulder of f(x) up to the value of x where f(x) reaches its 

maximum, and then f
h
(x) will remain at maximum value for all values of x. This is necessary 

to make sure that we capture soft and cortical bone tissue in the modified membership 

function f
h
(x). 
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2.2  Object recognition 

The purpose of recognition is to determine the pose, including position, rotation, and scale, of 

the object-model of a target object O in a given test image I by using the anatomy model 

FAM(B, G). The output FM
T
(O) of recognition is a transformed version of the fuzzy model 

FM(O) of O which indicates the location, orientation, and size of O in I. Voxel-by-voxel it 

denotes the certainty of each voxel in FM
T
(O) to overlap with the actual object Oin I. The 

recognition procedure follows the hierarchy H chosen while building the model of B, and 

follows H top-down locating objects in I one by one. Firstly, the root object is recognized (see 

Udupa et al
11

 for details). Then, while proceeding down H, assuming that the parent of Ois 

already recognized, the parent-offspring relationship is utilized to guide placement of O 

relative to its parent in I. Subsequently, this pose is refined by an optimal search
11

, which 

yields FM
T
(O). The main deviations here from the prior work

11
 in the recognition procedure 

are: the body region BT is larger (compared to body regions neck, thorax, and abdomen dealt 

with separately in Udupa et al
11

), and the objects dealt with are different. Note that only the 

objects in H will be involved in recognition. 

 

2.3 Object delineation 

For any given image I, the recognition process yields a fuzzy mask FM
T
(O) over I for each 

object O. We first utilize the intensity function f(x) of O to transform I into an intensity 

membership image, denoted IM(I) which expresses at each voxel v of I the fuzzy 

membership of v in O based only on the intensity characteristics of O. We then delineate O 

in I as a fuzzy membership image I
D
 of O by using a fuzzy predicate operation involving 

FM
T
(O) and IM(I). With a slight extension of the notation, we denote the fuzzy membership 
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of FM
T
(O) at voxel v of I by [FM

T
(O)](v) and the intensity membership of IM(I) at v by 

[IM(I)](v). The latter is thus defined by [IM(I)](v)= f(I(v))/C, where C is a constant used for 

normalizing the membership values to [0, 1] range. 

The basic idea of fuzzy delineation is to take the location information from the model 

component FM
T
(O) and the image intensity membership information from IM(I) to decide 

on the final delineation membership I
D
(v) of each voxel v in I. In this process, for each object 

O, two thresholds are employed, one Th
FM

 for the fuzzy model membership value 

[FM
T
(O)](v) and another Th

IM
 for the intensity membership value [IM(I)](v) (see below as 

to how these thresholds are estimated automatically and optimally). The predicate operation 

is different for the different objects in BC, as enumerated below. 

For O {Msl, Sk}, 

     =       ,  i                
                  

  

 ,            ther ise                                                           .            (2) 

For O = SAT, 

     =       ,  i                 
                  

  

 ,             ther ise                                                            , where Ok=OBM.    (3) 

For O = VAT, 

     =       ,  i                 
                  

  

 ,             ther ise                                                              , where Ok=IAM.   (4) 

Note how objects IAM and OBM are utilized. The delineation of Msl and Sk (Equation (2)) is 

not influenced by IAM and OBM. The output membership at v is taken to be intensity 

membership [IM(I)](v) if the model membership and the intensity membership both strongly 
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confirm (above the respective thresholds) that v is to be considered to be in the object. 

Notably, the result itself is fuzzy. For SAT (Equation (3)), the exterior (complement) of the 

model FM
T
(OBM) is taken as the model component of evidence, since SAT resides outside 

OBM (see Figure 2), and hence the logic shown in its predicate function. For VAT (Equation 

(4)), since it resides in the interior of object IAM (Figure 2), the logic is similar to those of 

Msl and Sk, with one difference, namely that the object used as model mask is IAM and not 

VAT itself. 

Estimating optimal thresholds Th
FM

 and Thk
IM

: We essentially perform a delineation rehearsal 

on the training image data set , and knowing the associated true delineations 
b

 
for each 

object O, we estimate these thresholds by minimizing the delineation error. To elaborate, 

first the anatomy model FAM(B, G) is built using 
b
,  = 1, …, L, and . Then, the objects in 

H are recognized following the recognition methods, which yields, for each object O in H 

and image In in , the fuzzy model FM
T
(O). Knowing the intensity function f(x) of each 

object O in BC, we generate the intensity membership image IM(In). Thus, for each image 

In, we now have FM
T
(O) for each OH and IMk(In) for each OkBC. Therefore, by 

using Equations (2)-(4), for any given thresholds t1 on FM
T
(O) and t2 on IMk(In), we can 

determine the delineations Ik
D
(v) for each OkBC and In. Let the true delineation of Ok in 

In be       (which is of course one of the images in the set k
b
) and let Qk(t1, t2) denote the sum 

of squares of the fuzzy false positive volume and fuzzy false negative volume
33

 between 

Ik
D
(v) and      

 
over all images in . That is, 

                                                    a     in     .          (5) 

Note here that                   denotes the fuzzy false positive value at v. It is intended as a 

fuzzy logic operation (or fuzzy set difference) between the fuzzy membership image        
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and the binary image         , meaning that the actual value                  
 
is taken only if 

it is positive; otherwise it is set to 0. The same principle applies to                   which 

denotes the fuzzy false negative value at v. The optimal threshold pair (Th
FM

, Thk
IM

) is 

estimated by minimizing Qk(t1, t2). 

   
  ,   

    ar   in
                    .                           (6) 

In our implementation, we use a multi-resolution strategy to search for optimal thresholds. 

From prior knowledge, we know the approximate range of values for these thresholds. The 

initial (coarse resolution) search is carried out based on this range and larger steps. Once an 

optimal pair is found, the search is refined using a smaller step size to search around and 

starting from the coarse optimal value. We set the coarse searching range of Th
FM

 to the 

interval from the median value of FM
T
(O) to 1, and that of Thk

IM
 to the interval from 0 to the 

median value of IM(). The step sizes of each iteration is (0.1)
m
, where m denotes iteration 

number. Convergence is usually achieved within 3 to 4 iterations. Note that this step of 

finding optimal thresholds is actually performed in the model building stage, and 

(Th
FM

,Thk
IM

) become part of item  of FAM(B, G). We described this process under 

delineation for continuity of ideas and ease of reading.  

After the delineation step, any small amounts of artifacts remaining in I
D
, caused by partial 

volume effects or residual components of the scanning table, etc., are suppressed by a 2D 

morphological opening operation performed in the slice plane for one iteration using a 

structuring element formed by the 8-neighbors of each pixel. 

3.  Experiments and Results 

3.1  Image data sets 

This retrospective study was conducted following approval from the Institutional Review 

Board at the Hospital of the University of Pennsylvania along with a Health Insurance 

Portability and Accountability Act waiver. The image data set used in our experiments was 

selected from our hospital patient image database by a board-certified radiologist (co-author 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

DAT), and was verified to be of acceptable quality. This data set included 31 subjects with 

minimal focal abnormalities and 7 cancer patients. These subjects previously underwent 

18
F-2-fluoro-2-deoxy-D-glucose (FDG) PET/CT imaging without administration of 

intravenous contrast material on a 16-detector row LYSO PET/CT scanner with 

time-of-flight capabilities (Gemini TF, Philips Healthcare, Bothell, WA). The low-dose CT 

images were acquired during quiet respiration using a kVp of 120, an effective mAs of 50, 

and a gantry rotation of time of 0.5 msec, and were reconstructed using a standard soft tissue 

kernel. For each subject, following the definition of BT (see Table 2), any extra slices falling 

outside the BT region were removed manually. Then, each of the 10 objects in the set was 

segmented in each lCT image of the 38 PET/CT acquisitions to serve as the reference 

standard, adhering to the object definitions formulated in Table 2. The segmentation tools 

used include iterative live wire, thresholding, manual painting, and correction. The ground 

truth segmentations were performed by well-trained operators and verified for accuracy by 

the same radiologist. The data sets were from 25 male and 13 female subjects in the age range 

31 – 83 years with BMI ranging from 17.27 to 38.28. The voxel sizes for CT and PET were, 

respectively, 1.2  1.2  4 mm
3
 and 4  4  4 mm

3
.   

 

3.2  Evaluation methods and metrics 

We employ a 5-fold cross validation strategy for evaluating AAR-BCA with a 25-13 

train-test data set division. That is, the training set  consisting of 25 images is formed by 

randomly choosing 25 out of the 38 subjects, FAM(B, G) is built based on these images, the 

performance of AAR-BCA is then tested on the images of the remaining 13 subjects, and the 

entire process is repeated 5 times for a total of 65 test cases. For each of the 5 test groups, 

normal subjects and cancer subjects appear in both training and testing data sets. 

Additionally, for any two groups, the number of overlapped subjects is no more than 20. The 

results reported are all based on 65 AAR-BCA experiments designed in this fashion. 

Although our main focus is not object recognition in this paper, we will present its results, 

particularly for the hierarchies shown in Figure 3. As in the AAR approach
11

, recognition 

accuracy is expressed by localization error and scale error. The former describes the distance 

of the geometric center of the actual object and the found model FM
T
(O) for each O in H. 
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The latter denotes the ratio of the estimated object size to the true size. The ideal values for 

the two measures are 0 and 1, respectively.  

For delineation, since our output is fuzzy (and not binarized), we will use false positive 

volume fraction (FPVF) and false negative volume fraction (FNVF) defined for comparing 

fuzzy delineations with binary ground truth delineations as formulated in Udupa et al.
33

. We 

have included a new metric based on Hausdorff boundary distance (HD) adapted to fuzzy 

delineations. We compute HD between a fuzzy output Xf and the corresponding binary true 

segmentation Xt by first thresholding Xf and then determining HD between the two binary 

volumes. HD will thus become a function of the chosen threshold. We will present the mean 

HD curve (as a function of the threshold on fuzzy membership) for each object in H 

computed over the 65 experiments to demonstrate how the boundary distance metric for the 

fuzzy delineation results varies for each delineated object. 

 

3.3  Results 

Sample recognition results for the hierarchy in Figure 3(a) are displayed in Figure 5 for one 

test image, where, for each object in H, a slice of the fuzzy model FM
T
(O) at recognition is 

shown overlaid on the corresponding slice of the image. Table 3 lists the mean and standard 

deviation of location and size errors for the objects in H for the three hierarchies in Figure 3. 

As mentioned previously, the hierarchy in Figure 3(a) yielded the best recognition results 

among the hierarchies we tested, and so it is used subsequently for obtaining all delineation 

results. The reason it has the best recognition performance, we believe, is that Sk is encircled 

by Msl, and therefore it is more related to Msl than to other objects. Since Skin and IAM both 

surround Msl and in similar shape, the position and size errors of Msl are almost the same in 

all hierarchies. 

Sample delineation results are displayed in Figure 6 for the objects in BC on one test image 

where the fuzzy delineations are overlaid on the original image slices. The ground truth 

delineations are also shown in a similar manner for comparison. Since the AAR-BCA results 

are fuzzy, depending on the membership at a voxel and due to translucent overlay, some 
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subtle regions do not show up prominently, such as for VAT and SAT, although they are 

accurately delineated accounting for how such subtle and thin aspects will manifest 

the se ves  ith s  e hat di  erent CT va ue  a bit bri hter  than  ther “ at”  at re i ns due 

to partial volume effect.  

Quantitative evaluations of AAR-BCA delineation results are summarized in Table 4 for the 

BT region for the four tissue types. The table also lists evaluation metrics by smaller body 

regions – for Thx, Abd, and Plv for the same tissues. Mean and standard deviation of FPVF 

and FNVF are listed for each object in BC. Finally, Figure 7 portrays the boundary distance 

metric via mean HD curves obtained for the objects in BC. 

 

4. Discussion 

For BT, over all objects, AAR-BCA achieves a FPVF of 3.7% and FNVF of 3.8%. Notably, 

SAT achieves a FPVF and FNVF both under 3%. For VAT, the FNVF of 4.8% is higher than 

for other objects, and so also for Msl (4.7%). VAT is a particularly challenging object to 

delineate since its total volume is small and it is spatially sparsely distributed within the body 

with a very complex shape as an object with subtle and thin aspects. This is exemplified by 

the inferior slice in the pelvic region for VAT in Figure 6. Because of these reasons, VAT 

segmentation is more challenging in the thorax and pelvis than in abdomen. Under these 

considerations, our result for VAT (as well as for SAT) is quite remarkable, especially in 

light of the lower quality of lCT images compared to diagnostic CT images. We believe this 

has been facilitated by the two conceptual objects we introduced into the AAR methodology, 

namely IAM and OBM, and also by the fuzzy stance taken for delineation. As we can see 

from Table 3, the recognition results for these objects are accurate enough to make the 

predicate functions perform their task of accurate delineations of SAT and VAT. This is a key 

central and novel idea underlying the AAR-BCA approach for body composition analysis.  

The fuzzy boundary of AAR-BCA delineations cannot be strictly compared with the hard 

boundaries of the ground truth delineations. The novel boundary distance measure HD 

displayed in Figure 7 helps to some extent to illustrate how the iso-membership boundaries of 

AAR-BCA match the boundary of ground truth delineations. Note that, as can be expected, in 
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closest match, the distance between the two boundaries is about 1 voxel (~4 mm). Object Sk 

demonstrates an interesting behavior where the match worsens at higher membership 

thresholds and again improves as this threshold is increased. We believe this is due to the fact 

that the ground truth delineations of bone actually contain two types of tissues – hard cortical 

bone and soft medullary bone. We believe that the accuracy for Sk would have been higher if 

we treated these two component tissues separately in ground truth delineations. 

Note also that for Thx, Abd, and Plv, FPVFs and FNVFs mostly remain at the same level as 

for BT. In Thx, all objects achieve FPVFs under 5%, and SAT with FPVF < 3%. The FNVFs 

are a little higher than 4% for VAT, but under 4% for Sk and SAT. Msl has inferior FNVF, a 

little higher than 7%, in Thx compared to other regions. In Abd, Sk has the best results in 

both FPVF (2.6%) and FNVF (3.2%) among all body regions. However, Msl and VAT both 

have inferior FPVFs (both 6.6%) compared to other regions. In Plv, Msl has the best results 

in FPVF (4.2%) and FNVF (2.5%) among all regions. For the other three objects, the FPVFs 

are under 4% but FNVF ranges from 2.1% (for SAT) to 6.5% (for VAT). The above 

differences among different regions are mainly caused by the influence of other organs. In 

Thx and Abd for Msl, for example, confounding objects like stomach, large bowel, liver, etc. 

influence recognition as well as delineation. 

The following computational times are estimated on a modern desktop Dell computer with 

the following specifications: 4-core Intel Xeon 3.3 GHz base to 3.7 GHz max turbo CPU with 

8 GB RAM and running the GNU/Linux 3.11.10-25-desktop operating system. Building 

FAM(B, G) from 25 lCT images using the hierarchy of Figure 3(a) takes about 3,410 seconds 

excluding the threshold optimization step of Equation (6) which takes about 4,600 seconds 

for all four objects. Thus, model building utilizing 23 cases takes about 2.2 hours in total. 

However, it should be emphasized that model building needs to be performed only once or 

very infrequently, and is thus really not a consideration of time cost. Moreover, this time cost 

is far less compared to atlas and deep learning techniques which can take many hours to days 

for training. Object recognition costs about 18 seconds per object per lCT image, and the 

actual delineation step costs less than 1 second per object per image. Thus, once the model 

FAM(B, G) is built, full body torso composition analysis of the four tissue components can be 

completed fully automatically in about 1 minute per study. 
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The related works described in Section 1.2 for body composition analysis usually need 

interactive operations, and many of them perform body composition analysis based on just 

one slice. Many of them focus on the problem of only quantifying SAT and VAT tissue 

components only and not muscle and bone and all 4 tissues silumtaneuously.  

In our previous AAR work
11

, we reported on the segmentation and quantification of SAT, 

VAT, and muscle in the abdomen (not the whole-body torso) and bone tissue in the thorax 

and abdomen utilizing contrast-enhanced diagnostic CT images. That approach modified an 

iterative relative fuzzy connectedness (IRFC) algorithm
32

 to take model information for 

delineation following the object recognition step. It achieved (FPVF, FNVF) as follows for 

these tissue components. Abdominal SAT: (5%, 12%); abdominal muscle: (13%, 9%); 

abdominal skeleton: (6%, 14%); thoracic skeleton: (19%, 13%). Since that approach was 

based on modeling each object explicitly, and recognizing and then delineating the object, it 

did not directly delineate the VAT component since meaningful modeling of VAT is very 

difficult. AAR-BCA not only extends the body domain of application but also substantially 

improves on these earlier results through three key strategies: (1) Instead of modeling SAT 

and VAT objects directly, better “  de ab e” indirect  bjects are designed, defined 

anatomically in a consistent manner, and employed for delineating SAT and VAT tissue 

regions through them. (2) The collection of objects and their hierarchy within the AAR 

framework that best suits our goal of delineating the four tissue components is determined. 

(3) The IRFC algorithm is replaced by a logical predicate function involving the fuzzy 

models and intensity membership functions. While the model-based IRFC engine works well 

when solid organs are to be delineated as previously demonstrated
11

, the sparse and scattered 

objects, particularly SAT, VAT, and Msl, pose challenges in accurately and automatically 

identifying an adequate set of seeds needed for their fuzzy connected delineation. Since it is 

difficult to ascertain that seeds are planted automatically in each scattered component of the 

same tissue region, the proposed fuzzy predicate solution works better than the previous 

AAR-IRFC.  

In summary, AAR-BCA is able to handle other and more challenging body regions like the 

thorax and pelvis for efficient body composition analysis, even on lCT images, compared to 

currently existing solutions which mostly focus on the abdomen and only SAT and VAT. 

AAR-BCA performs simultaneous quantification of all 4 key tissue types, for which there is 

currently no demonstrated method in the literature. 
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5.  Concluding Remarks 

Motivated by applications in cancer and systemic diseases, our goal in this paper was to seek 

a practical method for body composition quantification which is automated, accurate, and 

efficient, and works on the region of the whole body (and not specialized to only a particular 

body region) where such analysis is needed, namely the body torso. Since PET/CT imaging is 

commonly used in the above disease conditions, we sought to perform body composition 

analysis on the more challenging lCT images that are acquired as part of routine PET/CT 

examination. Through a confluence of three key ideas – carefully designing the needed 

(including indirect) objects; finding the AAR hierarchy that is best suited for our application; 

and using a fuzzy predicate that combines model and intensity membership information – we 

extended the previous AAR approach to design the AAR-BCA method for quantifying bone 

tissue, muscle tissue, SAT, and VAT in the body torso. One important feature of AAR-BCA 

is that it is parameter free. All needed variables are automatically estimated from the training 

data sets, and no manual setting or adjustment of any parameters is needed. AAR-BCA can 

quantify the four tissue components in the body torso with under 5% overall error in about 1 

minute per patient image. 

In this work, we demonstrated the quantification results in body-torso-wide application, but 

also parcellated the results to smaller body regions to understand how accuracy varied over 

different body regions. AAR-BCA can also be applied to a smaller body region on diagnostic 

CT (dCT) or lCT. For instance, we can use abdominal dCT images for training and then 

quantify body composition on abdominal dCT images. We can also perform training on 

abdominal lCT images and then quantify on abdominal dCT images, or vice versa. Similar 

applications are feasible on MR images as well. For the intensity membership functions to 

make sense and to devise a proper predicate function, however, the MR images should first 

be corrected for intensity non-uniformity in each image and non-standardness over a 

population of subjects. Another future avenue is to use a fuzzy predicate function which is an 

appropriate direct parametric function of the two independent variables [FM
T
(O)](v) and 

[IM(I)](v) in place of the functions in Equations (2)-(4). The parameters of such a function 

can be optimally estimated following the same approach described for estimating the two 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

thresholds. In fuzzy set theory
39

, many membership functions are available which can be used 

as predicate functions. 

The adoption of the recognition-delineation paradigm in AAR is by design and intentional 

and has several advantages as has been described in AAR publications. The AAR recognition 

operation is very robust to image variations as demonstrated in head and neck, thoracic, 

abdominal, and pelvic body regions on over 800 data sets and 80 objects in previous AAR 

publications
41, 43

. Image variations considered in those data sets were due to patient age, 

gender, and size, image acquisition parameters such as the use of a contrast agent, resolution, 

dose, reconstruction kernel, etc., and artifacts such as beam hardening artifacts, noise, body 

posture deviations, extent of pathology, etc.  Employing a method to objectively score 

objects and images based on 9 quality criteria that are likely to influence segmentation, we 

observed
44

 that, objects and images tend to group at the two ends of the quality score scale. In 

the task of delineating organs at risk for radiation therapy planning in head and neck and 

thoracic body regions, we have observed
41

 that even when objects had poor quality score in 

the image, recognition was quite accurate although delineation was unable to perform at the 

same level of accuracy. If recognition is inaccurate, delineation is bound to be inaccurate. 

However, if recognition is accurate, delineation accuracy cannot be guaranteed. Streak 

artifacts arising from beam hardening are the worst offenders for recognition in particular and 

hence delineation as well in our experience with the above data sets considering variations 

commonly found in images. For AAR-BCA, we believe recognition accuracy will remain 

robust to image variations in this application as well and with an error within 1-3 voxels of 

object localization as reported in the paper. Delineation accuracy will be more susceptible to 

image variations. Since organs are much more heterogeneous in intensity properties, 

delineation of organs is much more challenging to make as robust as recognition compared to 

the tissue regions considered in this paper. This is because adiposity and muscle tissues are 

by definition homogeneous (at least more homogeneous) and therefore we believe that if 

recognition is robust for the application of this paper, delineation will be robust to image 

variations (at least some of them). Of course, this needs to be tested in the future with more 

extensive evaluations. 
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One shortcoming of this current work is the small number of the image data sets utilized for 

evaluating performance. It   u d have been very use u  t  de  nstrate this  eth d’s 

performance on 100s of data sets. A major challenge is the generation of ground truth 

segmentations, especially for adipose and muscle tissues, for adipose tissues because of their 

very complex shape, and for muscle due to the need for excluding subtle adipose pockets 

within muscle regions. Notably, bone ground truth segmentation has its own perils as well 

specially to include consistently the same trabecular bone components and to exclude 

similarly appearing parts from muscle tissues and voxels in the boundary between cortical 

bone and air influenced by partial volume effects. Ground truth generation is especially 

challenging in the thorax and pelvis. In the segmentation literature, the sample size we used is 

very common because of the above reason. Therefore, quite reasonably we decided to present 

these early results in this first paper. Another item of concern is how the accuracy of 

AAR-BCA may be affected by the presence of gross pathology. Although we included 

images with abnormalities in our study, this aspect needs to be studied more extensively. 
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Figure Legends 

Figure 1 A schematic representation of the AAR-BCA approach. 

Figure 2 Some representative examples of objects considered in AAR-BCA. The green masks 

superimposed on the lCT images are manually segmented object regions. Each row, from 

left to right, shows three axial slices selected from the inferior, middle, and superior 

aspects of the body torso in the same subject. See Table 2 for definition of the objects. 

Figure 3 Examples of hierarchies tested in AAR-BCA. 

Figure 4 Left: Intensity histogram F

(x) for Msl. Right: The fit function f


(x) together with F


(x). 

Figure 5 Sample recognition results on a test image for objects in the hierarchy in Figure 3(a). 

Top-down: Three slices selected from superior, middle, and inferior aspects of the body 

torso are shown, with original slices in the first column, and slices of recognized objects 

overlaid on original slices in other columns. 

Figure 6 Sample delineation results for AAR-BCA. For each object delineated, the fuzzy 

delineation (lower row) and ground truth delineation (upper row) are shown overlaid on 

the original test image slices. Slices selected from inferior (left), middle (middle), and 

superior (right) aspects of each object are shown. 

Figure 7 Illustration of delineation accuracy via fuzzy boundary distance curves. The mean HD 

curves for the delineations of SAT, Msl, Sk, and VAT produced by AAR-BCA over all 

experiments are displayed. 
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Table 1. Definitions of notations utilized in AAR-BCA 

Notations Definition 

BT Body torso consisting of thorax, abdomen, and pelvis. 

B Body region of interest which by default is BT in this paper. 

G Human population group under consideration for both training parameters and testing. 

lCT Low-dose CT images in a PET/CT acquisition. 

= {I1, …, IN} The set of lCT images of B of human subjects who belong to G. 

= {O1, …, OL} L objects considered in B for the AAR-BCA procedure. 


b= {I1,, …, IN,} 

The set of binary images representing the true delineations of object Oin the images 

in . 

FM(O) Fuzzy model of Oderived by AAR. 

FAM(B, G) 
Fuzzy anatomy model of the whole object assembly in B for a specified hierarchical 

arrangement of the objects, derived from all ground truth images in 
b
. 

FM
T
(O) 

Fuzzy model FM(O) of object Oafter it has been transformed to match O optimally 

in a given test image I. 

F(x) Histogram of the tissue constituting object Owithin population G. 

f(x) Parametric intensity function fit to F(x). 

IM(I) Intensity membership image of I in O based only on f(x). 

I A given test lCT image. 

I
D
 Fuzzy delineation of O in a given test image I expressed as an image. 
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Table 2. Definitions of body regions and objects in the body torso. 

Abbreviation Definition 

Thx 
Thoracic region extending from 5 mm inferior to the bases of the lungs to 15 mm superior 

to the lung apices. 

Abd 
Abdominal region extending from the point of bifurcation of the abdominal aorta into 

common iliac arteries to the superior aspect of the liver. 

Plv 
Pelvic region extending from the inferior aspect of the ischial tuberosities to the point of 

bifurcation of the abdominal aorta into common iliac arteries. 

BT 
Body torso extending from the inferior aspect of the pelvic region to the superior aspect of 

the thoracic region. 

Skin 
The outer boundary of the skin (arms excluded) in the body torso. The interior region 

constitutes the entire body torso region. 

Msl All skeletal musculature in the body torso region. 

Sk All skeletal structures in the body torso region. 

SAT Subcutaneous adipose tissue in the body torso region. 

VAT Visceral adipose tissue (internal to Msl) in the body torso region. 

IAM 
The inner aspect of Msl. The interior region includes all visceral organs in the body torso, 

such as liver, lungs, etc., as well as air, fluid, and VAT in the body torso region. 

OBM The outer boundary of Msl. The interior region includes Msl, Sk, and IAM. 
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Table 3. Location error (in mm) and size error for the hierarchies shown in Figure 3. Mean and 

standard deviation (in parenthesis) values are listed in each cell. 

  Hierarchy a Hierarchy b Hierarchy c 

  Loc error 

(mm) Size error Loc error 

(mm) Size error Loc error 

(mm) Size error 

Skin 7.6   (4.6) 1.00  (0.01) 7.6   (4.6) 1.00  (0.01) 7.6   (4.6) 1.00  (0.01) 

Msl 11.0  (6.9) 0.99  (0.03) 11.0  (6.9) 0.99  (0.03) 11.1  (7.1) 0.99  (0.02) 

Sk 12.2  (5.7) 0.97  (0.03) 13.6  (6.8) 0.96  (0.03) 13.8  (7.2) 0.96  (0.03) 

IAM 16.0  (7.0) 1.06  (0.03) 16.0  (7.0) 1.06  (0.03) 16.0  (7.0) 1.06  (0.03) 

OBM 7.1   (4.2) 1.00  (0.02) 7.1   (4.2) 1.00  (0.02) 7.1   (4.2) 1.00  (0.02) 
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Table 4. The mean and standard deviation of fuzzy FPVF and FNVF of the AAR-BCA 

delineations for BT, Thx, Abd, and Plv body regions. 

  BT Thx Abd Plv 

FPVF FNVF FPVF FNVF FPVF FNVF FPVF FNVF 

SAT 
0.029 

0.021 

0.024 

0.026 

0.022 

0.014 

0.036 

0.049 

0.032 

0.029 

0.026 

0.037 

0.030 

0.020 

0.021 

0.026 

Msl 
0.047 

0.018 

0.047 

0.057 

0.043 

0.017 

0.071 

0.062 

0.066 

0.027 

0.058 

0.064 

0.042 

0.021 

0.025 

0.038 

Sk 
0.031 

0.016 

0.034 

0.035 

0.032 

0.017 

0.037 

0.044 

0.026 

0.014 

0.032 

0.040 

0.035 

0.019 

0.035 

0.034 

VAT 
0.042 

0.026 

0.048 

0.037 

0.031 

0.030 

0.045 

0.034 

0.066 

0.045 

0.036 

0.025 

0.033 

0.017 

0.065 

0.061 
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