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Numerous algorithms are available for segmenting medical images. Empirical discrepancy metrics are 

commonly used in measuring the similarity or difference between segmentations by algorithms and 

“true” segmentations. However, one issue with the commonly used metrics is that the same metric value 

often represents different levels of “clinical acceptability” for different objects depending on their size, 

shape, and complexity of form. An ideal segmentation evaluation metric should be able to reflect degrees 

of acceptability directly from metric values and be able to show the same acceptability meaning by the 

same metric value for objects of different shape, size, and form. Intuitively, metrics which have a linear 

relationship with degree of acceptability will satisfy these conditions of the ideal metric. This issue has 

not been addressed in the medical image segmentation literature. In this paper, we propose a method 

called LinSEM for linearizing commonly used segmentation evaluation metrics based on corresponding 

degrees of acceptability evaluated by an expert in a reader study. 

LinSEM consists of two main parts: (a) estimating the relationship between metric values and degrees 

of acceptability separately for each considered metric and object, and (b) linearizing any given metric 

value corresponding to a given segmentation of an object based on the estimated relationship. Since al- 

gorithmic segmentations do not usually cover the full range of variability of acceptability, we create a set 

( S S ) of simulated segmentations for each object that guarantee such coverage by using image transforma- 

tions applied to a set ( S T ) of true segmentations of the object. We then conduct a reader study wherein 

the reader assigns an acceptability score ( AS ) for each sample in S S , expressing the acceptability of the 

sample on a 1 to 5 scale. Then the metric- AS relationship is constructed for the object by using an es- 

timation method. With the idea that the ideal metric should be linear with respect to acceptability, we 

can then linearize the metric value of any segmentation sample of the object from a set ( S A ) of actual 

segmentations to its linearized value by using the constructed metric-acceptability relationship curve. 

Experiments are conducted involving three metrics – Dice coefficient ( DC ), Jaccard index ( JI ), and Haus- 

dorff Distance ( HD ) – on five objects: skin outer boundary of the head and neck (cervico-thoracic) body 

region superior to the shoulders, right parotid gland, mandible, cervical esophagus, and heart. Actual seg- 

mentations ( S A ) of these objects are generated via our Automatic Anatomy Recognition (AAR) method. 

Our results indicate that, generally, JI has a more linear relationship with acceptability before lineariza- 

tion than other metrics. LinSEM achieves significantly improved uniformity of meaning post-linearization 

across all tested objects and metrics, except in a few cases where the departure from linearity was in- 

significant. This improvement is generally the largest for DC and HD reaching 8–25% for many tested 

cases. Although some objects (such as right parotid gland and esophagus for DC and JI ) are close in their 

meaning between themselves before linearization, they are distant in this meaning from other objects 

but are brought close to other objects after linearization. This suggests the importance of performing 

linearization considering all objects in a body region and body-wide. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

1.1. Background 

Image segmentation is the process of recognizing and delineat-

ing objects in images. Literature on general image segmentation

dates back to the early 1960s ( Doyle, 1962 ; Narasimhan and For-

nango, 1963 ). Principles for medical image segmentation began to

appear from the late 1970s ( Herman et al., 1979 ; Liu, 1977 ) with

the routine availability of computed tomography (CT) images. Ap-

proaches to medical image segmentation can be classified broadly

into two groups: purely image-based or PI-approaches and prior-

knowledge-based or PK-approaches . PI-approaches make segmen-

tation decisions based entirely on information derived from the

given image ( Baxter et al., 2017 ; Beucher, 1992 ; Boykov et al.,

2001 ; Falcao et al., 1998 ; Kasset al., 1987 ; Malladi et al.,

1995 ; Mumford and Shah, 1989 ; Pope et al., 1984 ; Udupa and

Samarasekera, 1996 ). They predate PK-approaches and continue

to seek new frontiers. In PK-approaches ( Ashburner and Fris-

ton, 2009 ; Christensen et al., 1994 ; Chu et al., 2013 ; Cootes et al.,

1995 ; Drozdzal et al., 2018 ; Gee et al., 1993 ; Li et al., 2014 ;

Moeskops et al., 2016 ; Oda et al., 2018 ; Pizer et al., 2003 ;

Shen et al., 2011 ; Shi et al., 2017 ; Staib and Duncan, 1992 ;

Udupa et al., 2014 ; Zhang et al., 2015 ), known object shape, im-

age appearance, and relation information over a subject popula-

tion are first codified (learned) and then utilized on a given image

to bring constraints into the segmentation process. They evolved

precisely to overcome failure of PI-approaches in situations such

as lack of definable object boundaries in the image, variable object

boundary characteristics, and image artifacts, and also simply to

increase level of automation. Among PK-approaches, three distinct

classes of methods can be identified – model-based ( Cootes et al.,

1995 ; Pizer et al., 2003 ; Shen et al., 2011 ; Staib and Duncan, 1992 ;

Udupa et al., 2014 ), atlas-based ( Ashburner and Friston, 2009 ;

Christensen et al., 1994 ; Chu et al., 2013 ; Gee et al., 1993 ; Shi et al.,

2017 ), and deep-learning (DL)-based ( Drozdzal et al., 2018 ; Li et al.,

2014 ; Moeskops et al., 2016 ; Oda et al., 2018 ; Zhang et al., 2015 ).

The division between model- and atlas-based groups is somewhat

arbitrary and a matter of semantics. In fact, DL networks are also

often referred to as “models.” Segmentation is crucial in radiolog-

ical practice since accurate delineation of tissues and organs pro-

vides solid means for disease diagnosis, staging, treatment plan-

ning and guidance, and treatment response assessment and pre-

diction. 

In clinical practice, “degree of acceptability” subjectively eval-

uated by experts based on clinical knowledge and practical con-

cerns, is perhaps the most meaningful metric to evaluate goodness

and usefulness of segmentations. However, it is impractical to em-

ploy reader studies for technical bench testing of every algorithm

at the developmental phase. As such, it is more realistic to use ob-

jective computational metrics to evaluate segmentations. Empiri-

cal discrepancy metrics ( Zhang, 1996 , 2001 ) are commonly used in

measuring the similarity or difference between segmentations by

algorithms and “true” segmentations which are often referred to as

ground truth. However, one rather serious issue with these metrics,

whether for technical bench testing or end clinical evaluation in an

application, is that the same metric value often represents differ-

ent levels of clinical acceptability for different objects depending

on their size, shape, and complexity of form. For example, a Dice

coefficient value of 0.8 for a large non-sparse blob-like object such

as liver may imply good, and not outstanding, quality of segmen-

tation, whereas for a thin and narrow spatially sparse object such

as esophagus, this value represents excellent quality. This is mainly

due to the fact that small deviations in segmentation cause much

larger changes in the Dice coefficient value for sparse objects than

for large non-sparse objects. 
An ideal segmentation evaluation metric should: (a) be able to

eflect degrees of acceptability directly from metric values; (b) be

ble to show the same acceptability meaning by the same met-

ic value for objects of different shape, size, and form; and (c) be

asily calculated for a large set of segmentations. Intuitively, met-

ics which have a linear relationship with the degree of acceptabil-

ty will satisfy these conditions of the ideal metric. In this paper,

e propose a method called LinSEM for linearizing commonly used

egmentation evaluation metrics based on corresponding degrees

f acceptability evaluated by an expert. In this way, linearized met-

ics will have close-to-linear relationships with acceptability and

herefore the same (or similar) acceptability meaning for different

bjects. 

.2. Related work 

There are two main categories of segmentation evaluation

etrics: region-based and boundary-based. Region-based metrics

ompare regions occupied by segmentations by algorithms and

heir corresponding ground truth. Fractioned values are calcu-

ated among area or volume of True Positive (TP), True Negative

TN), False Positive (FP), and False Negative (FN) regions. TP and

N stand for correctly segmented object and background regions,

espectively, and FP and FN represent wrongly segmented ob-

ect and background regions, respectively. Commonly used region-

ased metrics include Dice coefficient ( DC ) ( Dice, 1945 ), Jaccard

ndex ( JI ) ( Jaccard, 1901 ), and separately expressed volume frac-

ions TPVF, TNVF, FPVF, and FNVF for both binary and fuzzy seg-

entations ( Udupa et al., 2006 ). Boundary-based metrics express

he difference between boundaries of segmentations by algorithm

nd ground truth. Common boundary-based metrics include Haus-

orff distance ( HD ) ( Huttenlocher et al., 1993 ), average symmet-

ic surface distance (ASD) ( Lamecker et al., 2004 ), and root mean

quared distance (RMSD) ( Detmer et al., 1990 ), which are all dif-

erent descriptions of some statistic of the distance between the

wo boundaries. These metrics are sometimes simultaneously re-

orted to show the effectiveness of algorithms ( Baiker et al.,

010 ; Chen et al., 2012 ; Dou et al., 2017 ; Linguraru et al., 2012 ;

olz et al., 2013 ). Some evaluations combine scores from differ-

nt metrics. For example, a composite metric created by combin-

ng two region-based metrics with three boundary-based metrics

ASD, RMSD, and HD ) is described in Heimann et al. (2009) . Scores

rom these five metrics are used in Lopez-Molina et al. (2013) ,

chmid et al. (2011) , Tomoshige et al. (2014) , and the average

cores are calculated as a balanced form of segmentation evalua-

ion in Ruskó et al. (2009) . 

The above commonly-used basic metrics all have their draw-

acks. Whereas boundary-based metrics are not precise in ex-

ressing the segmentation quality of objects of complex shape,

egion-based metrics always emphasize the importance of some

raits/measures (such as under segmentation or FNs) and weaken

thers (such as over segmentation or FPs). Several improved met-

ics have been created to mitigate certain concerns in practice.

 metric designed to detect and measure a wider range of seg-

entation errors which may be overlooked by common metrics

s described in Yeghiazaryan and Voiculescu (2018) . It combines

egion-based and boundary-based metrics, by estimating region-

ased measures in the neighborhood of the boundaries of ground

ruth and segmentations by algorithms. The works in Kim et al.

2012 , 2015 ) combine metrics with a medical consideration func-

ion, which considers regions inside and outside the object bound-

ry as having different medical importance and so calculates bidi-

ectional boundary distance. Ref. Cappabianco et al. (2017) noticed

he fact that large FN implies small TP, and, since FP has no re-

ationship with TP, commonly-used region-based metrics, such as

C and JI , portray the influence of FN and FP differently. The au-
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Fig. 1. A schematic representation of the LinSEM method. 
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hors proposed a metric that is balanced with respect to FP and FN

ariations. 

Although improvements are made in these proposals, the new

etrics all focus only on segmentation compositions and none of

hem concerned the problem of metrics having different accept-

bility meaning for different objects. In this work, we propose the

inSEM method to address this problem by studying the relation-

hip between a metric and segmentation acceptability in an object-

ependent manner. After linearization, metrics for different ob-

ects will have more similar acceptability meaning than the orig-

nal metrics. 

.3. Outline of approach 

The proposed LinSEM method 

1 is depicted in Fig. 1 and is de-

cribed in detail in Section 2 . In this method, we first estimate

model) the actual relationship between each metric and its degree

f acceptability for each object O via a reader study. The relation-

hip is estimated based on a set of simulated segmentations ( S S )

f O , created from a set of true segmentations ( S T ) so as to cover

arious degrees of segmentation qualities in S S from excellent to

nacceptable for O . To this end, we design a sequence of opera-

ions to mimic deviations between true segmentations and actual

egmentations of O by using morphological and image algebraic

perations. These operations are applied to true segmentations S T 
f O to create S S . A reader study is then conducted wherein the

eader assigns an acceptability score (abbreviated as AS ) a ( w ) for

ach segmentation sample w in S S , expressing the degree of ac-

eptability of w in the subjective opinion of the expert on a 1 to 5

cale. Metric values m ( w ) are also calculated for these segmenta-

ions for each metric of interest. 

We estimate a probabilistic acceptability score a P ( r ) for each met-

ic value r . Then, the relationship between the metric and AS of

ach considered object is constructed from pairs of metric values

nd their corresponding a P ( r ) by sequentially linking these pairs

n a piece-wise linear manner. With the idea that the ideal met-

ic should be linear with respect to acceptability, we can then lin-

arize any given metric value of the object under consideration
1 Although very different, LinSEM is reminiscent of intensity standardization 

ethods developed in the 1990’s to handle MR image intensity non-standardness 

 Nyul and Udupa, 1999 ). 

 

O

 

d

o its linearized value. Correction factors κm , O ( r ) are estimated for

 which indicate how a given metric value r of O resulting from

ny algorithmic segmentation should be corrected for it to be lin-

arized by using the metric- AS relationship curve for O . We then

evise a method to transform the metric values to linearized val-

es based on this estimated correction factors and test on a set

 A of segmentations of O created by an actual segmentation algo-

ithm. 

Section 3 describes experiments conducted using three metrics

 DC, JI , and HD ) and five anatomic objects defined in computed to-

ography (CT) images of the head and neck (H&N) and thoracic

ody regions of cancer patients undergoing radiation therapy. Over

0 0 0 slices in total from 100 3D segmentation samples are in-

olved in our reader experiments. The segmentation samples in S A 
re obtained via the AAR method ( Udupa et al., 2014 ; Wu et al.,

019 ). In Section 4 , we evaluate the effectiveness of LinSEM in

hree ways: (i) by assessing the similarity of acceptability among

ifferent objects for the same metric value before and after lin-

arization; (ii) by assessing the deviation of the object’s accept-

bility scores from the ideal values before versus after lineariza-

ion for each object; and (iii) for each object and for each theoret-

cal acceptability value, the closeness of the metric value achieved

y linearization to the value corresponding to the ideal curve. Our

onclusions, gaps remaining in this work, and avenues for potential

mprovements are discussed in Section 5 . 

. Method 

otations: 

O : An anatomical object. 

S A , S S , S T : Respectively, a set of actual segmentations via algo-

ithms, a set of simulated segmentations, and a set of true seg-

entations used for simulation. 

a ( w ), m ( w ), m l ( w ): Respectively, acceptability score, metric

alue, and linearized metric value associated with a segmentation

ample w . 

a P ( r ): Probabilistic acceptability score estimated for metric

alue r . 

κm , O ( r ): Correction factor for metric m at its value r for object

 . 

G ( m, O, W ): Plot of {( m ( w ), a ( w ))} for metric m and object O ,

etermined from segmentation set W . 
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Fig. 2. Hypothetical DC - AS curves for two objects O 1 and O 2 are illustrated where 

the same acceptability score A corresponds to different DC values d 1 and d 2 . The 

goal of LinSEM is to map these values as closely as possible to the ideal value M . 

ψ g (.), γ g (.), ρg (.) are three measures employed to evaluate the effectiveness of Lin- 

SEM, which will be described in Section 2.3 . 
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2 LinSEM is applicable to any set of images and not just near-normal. We believe 

that it is better to understand the metric-acceptability relationship first on near- 

normal objects before applying to objects with abnormal or distorted shapes. 
g m , O, W 

( r ): Estimated function describing AS -metric relationship

of metric m for object O determined from segmentation set W . 

G l ( m , O , W , Q ): Plot of {( m l ( w ), a ( w ))} for metric m and object O ,

determined from segmentation set Q , where linearization is based

on the segmentation set W . 

h m , O, W, Q ( r ): Linearized function describing AS -metric relation-

ship of metric m for object O , determined from segmentation set

Q , where linearization is based on the segmentation set W . 

ψ( O 1 , O 2 , m , r ), ψ L ( · ), ψ g ( · ): Respectively, semantic similarity of

metric m at its value r between objects O 1 and O 2 before ( ψ) and

after ( ψ L ) linearization and gain ( ψ g ) in linearization. 

ρ( O , m , r ), ρL (.), ρg (.): Respectively, closeness of the acceptabil-

ity of object O for metric m at its value r with ideal AS before ( ρ)

and after ( ρL ) linearization and gain ( ρg ) in linearization. 

γ ( O , m , r ), γ L (.), γ g (.): Respectively, closeness of the metric

value of object O for metric m with ideal metric value before ( γ )

and after ( γ L ) linearization and gain ( γ g ) in linearization. 

Our intent is that the linearization model needs to be devel-

oped only once for any object O (such as liver) for a given metric

such as DC . Subsequently, for any given segmentation of O in any

given image by any algorithm, it should be possible to apply the

linearization correction for that metric to this segmentation to ob-

tain the linearized value of the metric. In other words, we assume

(see further comments in Section 5 ) that the linearization process

would depend only on the metric and the object. For this to be

valid, a standard definition of O should be adopted, which implies

that the body region housing O should also be unambiguously de-

fined. To make this point clear, consider O to be cervical esopha-

gus. For this object to be anatomically defined consistently in any

image of any subject, the H&N body region in which it is housed

should be first clearly defined, especially regarding its superior and

inferior axial boundary plane locations. Otherwise, this object may

vary in its very definition from case to case due to its varying ex-

tents in the cranio-caudal direction. Similarly, what is included in

the anatomic object named O and what is excluded should also be

clearly specified. For example, when O = liver, including or exclud-

ing the hepatic portal system (at least its major vessels) in the def-

inition of O would make a significant difference in the complexity

of the shape of O which may influence the linearization process.

Therefore, as in our previous work on automatic anatomy recogni-

tion ( Udupa et al., 2014 ; Wu et al., 2019 ), we assume that a stan-

dardized definition of each body region and each object considered

in it is available for the LinSEM process. 

The main idea of LinSEM is illustrated schematically in Fig. 2

where two different objects O 1 , and O 2 are shown to have dif-

ferent DC - AS curves, and two DC values – d 1 for O 1 , and d 2 for

O 2 – both correspond to the same acceptability score A . Alterna-

tively, the same DC value M may also indicate different acceptabil-

ity meaning for the two objects as illustrated in the figure. We take

the DC - AS curves as reference, and after linearization, we would

like the same AS value, for both considered objects, to correspond

to the same DC value. That is, the two DC - AS curves should be lin-

earized to the ideal curve (diagonal line). So, as shown in the fig-

ure, d 1 for O 1 and d 2 for O 2 will be both linearized to M , which

is the DC value with an AS of A on the ideal curve. Unfortunately,

metric- AS relationships based on empirical AS values determined

from reader studies do not present as smooth curves or even func-

tions, and are generally 2D graphs or plots (see Fig. 3 ). So, first

we need to estimate a function that fits this 2D graph, which can

then be used to linearize the relationship. Consequently, LinSEM is

composed of two main parts: (i) estimating relationships between

metric and acceptability for all considered metrics and objects, and

(ii) linearizing metric values in given segmentation samples. These

parts are described in Sections 2.1 and 2.2 , respectively. Through-
ut, we assume that, there is an object O and a segmentation eval-

ation metric m (which is one of DC, JI , and HD in this paper) un-

er consideration. Even when these entities are not mentioned ex-

licitly, the reference to a specific object O and metric m is to be

nderstood. 

.1. Estimating metric-AS relationship 

.1.1. Generating set S S for object O by simulating segmentations 

To obtain metric- AS relationship, we need segmentation sam-

les with qualities covering the full spectrum from excellent to

nacceptable. Segmentations output by algorithms usually do not

over the whole range of qualities. For example, some well-defined

nd non-sparse objects such as skin outer boundary in a body re-

ion are easy to segment by algorithms, their samples will have

S = 4 or 5 and will not include cases of AS = 1 or 2. Conversely,

parse objects such as esophagus which are difficult to segment

arely cover cases with AS = 5. For creating a segmentation set with

iverse degrees of quality and mimicking segmentations by differ-

nt algorithms with different quality behavior and enough sam-

les, we create a set of simulated segmentations, denoted S S . The

imulation process is composed of three steps: 

Step 1: Collect a set of images which appear radiologically near-

ormal for the body region of interest and create the ground truth

egmentations of O for these images 2 following the definitions of

 . These segmentations will be denoted by set S T . 

Our idea is to design sequences of morphological and image

lgebraic operations which when applied to segmentations in S T 
ould create S S . We decided to perform these operations in a 2-

imensional manner within the xy-plane of the axial images for

everal reasons (see Section 5 for further comments). First, from

he human reader’s perspective, because of the mode of slice visu-

lization used for close and detailed scrutiny in radiological tasks,

e decided it is best to generate the deviations also in a 2D man-

er. Second, for the same reason, it is easier for the reader to

udge the quality of a segmentation more consistently on the in-

ividual slices than to examine all slices and then to judge the

uality as a single score for the whole 3D volume. Third, a true
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Fig. 3. Illustration of the process of estimating metric- AS relationship for the object O = Mandible (Mnd). (a) The blue marks denote the plot G(m, O, W ) of raw metric-value- 

empirical- AS- value pairs for metric m = DC and the simulated set W = S S . The smooth (red) curve represents the estimated function g m,O,W ( r ) . (b) Similar to (a) but for W = S A . 

(c) The plot G l (m, O, W, Q ) of linearized metric- AS pairs (blue marks) for W = S S and Q = S A and the fitted linearized function (red) h m,O,W,Q (.). (d) The correction factor κm,O ( r ) 

for the samples in Q = S A estimated by using the fitted curve g m,O,W ( r ) where W = S S (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.). 
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D reader study would involve overall many more slices than a

D reader study and would quickly become very time-consuming

nd impractical. Finally, since most acquired images do not possess

sotropic resolution, we did not want the 3D simulation process to

ntroduce its own vagaries that may treat the z-dimension (orthog-

nal to the xy-plane) differently from the other two dimensions. 

Each sequence of operations we designed is composed of shift

 S ), dilation ( D ), and erosion ( E ) operations. Each of these opera-

ions may be performed in x or y or both directions. The magni-

ude of the operation is expressed in strides which in turn is ex-

ressed in number of pixels. A sequence is composed of a set of

asic operations. The basic operations are expressed as: 

±x − S − n, ±y − S − n, ±x ± y − S − n, 

x − D − n, y − D − n, xy − D − n, 

x − E − n, y − E − n, xy − E − n. (1) 

here n denotes the number of strides, ±x − S − n denotes two op-

rations – shift in the + x or -x direction, and other operations in-

olving S are similarly defined. x- D - n denotes symmetric dilation

n the x-direction, and other operations involving D are similarly
efined. x- E - n denotes symmetric erosion in the x-direction; other

perations involving E are similarly defined. For example, - x + + y -

 -2 with a stride = 3 pixels denotes a shift in the -x direction by

 strides ( = 6 pixels) followed by a shift in the + y -direction by 2

trides ( = 6 pixels). These basic operations are combined to create

equences. Example: 

y − D − 2 → + x − S − 3 . (2)

This sequence consists of an initial dilation by 2 strides in the

- and y-directions, followed by a shift by 3 strides in the + x -

irection. We express the deviation of a segmentation sample w in

 S from its ground truth counterpart w T in S T resulting by applying

 sequence to w T by the maximum number δ of pixels of deviation.

n the above example in Eq. (2) , if a stride is 3 pixels, then the re-

ulting sample w will have a deviation of δ = 15 pixels. We have

esigned a set of sequences as shown in Table 1 ( Section 3 ) which

e employ to simulate segmentations with very small to large and

ealistic deviations. 

Step 2: The stride values utilized are estimated in an object-

pecific manner according to the thickness of the object sample.
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Table 1 

Sequences employed to simulate segmentations and their associated deviations 

δ expressed in stride size. 

Sequence δ Sequence δ

+ xy- S -1 1 xy- D -6 → + x -y- S -10 16 

xy- E -1 → -x- S -1 2 xy- E -6 → - x + + y - S -11 17 

xy- E -1 → + xy- S -2 3 xy- E -8 → + x - S -10 18 

xy- D -2 → + y - S -2 4 xy- D -5 → -y- S -14 19 

xy- E -2 → + x - S -3 5 xy- D -4 → + xy- S -16 20 

xy- D -2 → -y- S -4 6 xy- E -7 → + y - S -14 21 

xy- D -3 → -x- S -4 7 xy- D -8 → + x - S -14 22 

xy- E -3 → + x -y- S -5 8 xy- D -6 → -xy- S -17 23 

xy- D -5 → - x + + y - S -4 9 xy- E -5 → + xy- S -19 24 

xy- E -4 → -xy- S -6 10 xy- D -6 → - x + + y - S -19 25 

xy- D -5 → + xy- S -6 11 xy- E -5 → + x -y- S -21 26 

xy- D -4 → + y - S -8 12 xy- E -4 → -y- S -23 27 

xy- E -6 → + x - S -7 13 xy- D -3 → -x- S -25 28 

xy- D -7 → -y- S -7 14 xy- D -5 → - x + + y - S -24 29 

xy- E -5 → -x- S -10 15 xy- E -4 → + x -y- S -26 30 
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The reason for not designing deviations in units of pixels or mil-

limeters is that, for objects of different sizes and different shape,

the same magnitude of deviation in pixels may not result in a sim-

ilar change in quality. For illustration, a small object with a thick-

ness of 2 b pixels may disappear after symmetric erosion by b pix-

els, and a large object with a thickness of 10 b pixels will still be

8 b pixels thick after erosion, which may not constitute a signifi-

cant change in quality. 

Since erosion is the limiting operation determining the disap-

pearance or degeneration of an object, we set a limit defined by a

parameter θ to denote the fraction of the thickness of an object to

which we allow to diminish (by erosion). Let T min be the minimum

thickness of O (in pixels) over all its samples in S T , let t m 

be a sam-

ple of S T with minimum thickness, and let n max be the maximum

number of strides allowed for erosion. Our idea is that the number

of strides n selected for morphological operation in any sequence

in Table 1 should be less than n max . The size of a stride (in terms

of number of pixels) permitted for sample t m 

will be 

e m 

= 

θT min 

2 n max 
. (3)

If e m 

< 1, it implies that the stride size is less than 1 pixel

for t m 

, and so this triggers (shape-based) interpolation ( Raya and

Udupa, 1990 ) to be performed on all samples of S T . Interpolation

is done in such a manner that the pixel size p s of t m 

(in mm) is

changed to p o after interpolation and the new thickness of t m 

(in

pixels) becomes T o . 

p o = p s × e m 

, 

T o = 

T min 

e m 

. (4)

For other samples of S T , their pixel size and thickness also

change per factor e m 

as in Eq. (4) , and the stride size for each

sample is calculated as in Eq. (3) . Note that due to the manner

in which the stride size and interpolation factor are determined,

the new stride size after interpolation for t m 

becomes 1 and the

thickness (in mm) of all samples remains the same. If e m 

≥ 1, then

there is no need for interpolation. 

Step 3: Apply the sequences as per calculated strides to all sam-

ples of S T to create the simulated segmentation set S S . 

We also generated segmentations of O output by our AAR al-

gorithms ( Wu et al., 2019 ) for a set of patient images (which are

different from the near-normal data sets used for generating S S and

S T ) to compose set S A . We also created ground truth segmentations

of O for these data sets following our standardized object defini-

tions so that the different metric values for the samples in S A can

be calculated. Set S A will be used for testing the linearization pro-

cess of LinSEM. 
.1.2. Reader study to determine acceptability score AS 

In our reader study, a radiologist (co-author DAT) with 22 years

f experience in various radiological tasks involving image analysis

etermined the acceptability AS of segmentations. The reader ex-

mined each slice of a segmentation, which was displayed as an

verlay on to the corresponding CT slice image, and assigned an

S value to each slice on a 1 to 5 scale, with 1 denoting unaccept-

ble or poor segmentation and 5 representing excellent segmenta-

ion. The reader was blinded to the ground truth segmentations,

nd thus, acceptability scores were assigned based only on clini-

al knowledge and not influenced by the comparison with ground

ruth. The reader study was conducted on both sets S S and S A . 

The standard for AS assignment is hard to express in formula-

ion because AS values show comprehensive concerns of the ex-

ert, which encapsulate the size, shape, anatomical relationship of

bjects, and clinical importance. As a result, the standard for AS

ay be object (and application) dependent, which further suggests

hat it may not be possible to evaluate qualities of segmentations

imply and easily by computational metrics. 

We will use the following notations for simplifying our descrip-

ion. Let m (.) denote one of the metrics DC, JI , and HD , and for

ny segmentation sample w, m ( w ) will denote the value of that

etric for w . Let a ( w ) denote the acceptability score assigned to

 in the reader study. Since we will perform experiments involv-

ng both S S and S A , we will use W ∈ { S S , S A } to denote the set un-

er consideration. For W ∈ { S S , S A } and m ∈ { DC, JI, HD }, the reader

tudy generates a 2D graph or plot which we will denote by G ( m,

, W ) = {( m ( w ), a ( w ))}. Fig. 3 a and b show an example of G ( DC, O,

 S ) and G ( DC, O, S A ), respectively, where the object O is Mandible. 

.1.3. Constructing metric-AS relationship 

The metric- AS curve to be constructed (modeled) is intended

o show the relationship between metric values and acceptability

cores as a function for the considered object. However, there is

 challenge arising from the fact that the empirical AS values are

iscrete and the computed metric values are continuous, resulting

n G ( m, O, W ) being a 2D graph as illustrated in Fig. 3 . Notably

any different metric values may be assigned the same AS value.

onversely, segmentation samples with the same metric value may

e assigned different AS values according to clinical factors which

ay not be adequately reflected by metric values. Thus, metric- AS

urves do not directly emerge from G ( m, O, W ), although we can

ntuitively understand the rough tendency of the metric- AS rela-

ionship from such plots. See Fig. 3 . 

We overcome this ambiguity by estimating a probabilistic ac-

eptability score , denoted a P ( r ) , via the concept of Mahalanobis

istance ( Mahalanobis, 1936 ) determined for each possible metric

alue r over the whole range of the considered metric m (.). Ma-

alanobis distance is a measure of the distance from a point to

 probability distribution. The metric values (as random variables)

orresponding to each AS value have their own distribution. For a

etric value r , we measure its Mahalanobis distance to the metric-

alue distribution corresponding to each discrete AS value. A small

alue of this distance implies higher probability and a large value

uggests lower probability that a segmentation sample with metric

alue r should be assigned this AS value. Mahalanobis distance val-

es are calculated for each AS value and are taken as weight factors

n the estimation of a P ( r ). The resulting measure a P ( r ) can assume

ny real acceptability value in the range [1,5]. Since 5 discrete lev-

ls are the finest resolution usually employed in reader studies to

pecify a grade for the phenomenon under observation, AS values

ssigned by the reader have to be integers in {1, 2, 3, 4, 5}. The es-

imated probabilistic acceptability score a P ( r ) for each r , however,

s in the continuous range [1, 5]. 
Let D M 

( r, i ) denote the Mahalanobis distance of a specific met-
ic value r to the distribution p of metric values corresponding to
i 
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S = i and let μ( i ) and σ ( i ) denote the mean and standard deviation
f this distribution p i . a P ( r ) is estimated by the weighted average
f the AS values, where the weight given to an AS value is the re-
iprocal of the exponential of D M 

( r, i ) to reflect the fact that larger
istance should indicate lower probability. In this way, continuous
nd probabilistically estimated acceptability scores a P ( r ) result for
very possible metric value as expressed in Eq. (5) 3 , and each dis-
inct metric value r is represented by exactly one a P ( r ) value. 

a P (r) = 

⎧ ⎨ 

⎩ 

1 + 

r 
μ(1) 

(H(μ(1)) − 1) , if r < μ(1) , 

H(μ(5)) + 

r−μ(5) 
1 −μ(5) 

(5 − H(μ(5))) , if r > μ(5) , 

H(r) , otherwise , 

here H(r) = 

5 ∑ 

i =1 

i × exp (−D M 

(r, i )) 

∑ 5 
i =1 exp (−D M 

(r, i )) 
, 

and D M 

(r, i ) = 

| r − μ(i ) | 
σ (i ) 

. (5) 

For extreme cases where metric value r is 0 or 1, we take them as

he most unacceptable or the best possible cases and directly as-

ign them a P (0) = 1 or a P (1) = 5, respectively. For cases where r is

n the range [0, μ(1)] or [ μ(5), 1], we consider them as having a lin-

ar relationship from point (0, 1) to ( μ(1), H ( μ(1))) or ( μ(5), H ( μ(5)))

o (1, 5) on the plot, respectively. For implementation, we discretize

he metric value range, and for each discretized metric value r , es-

imate a P ( r ). In estimating a P ( r ), we exclude those r values for each

 for which D M 

( r, i ) > D max , the idea being that a large Mahalanobis

istance value indicates an outlier and potentially highly improba-

le AS value. The metric-acceptability relationship curve as a func-

ion, denoted by g m , O , W 

(.), is then created by piecewise linear link-

ng of the discrete ( r, a P ( r )) pairs. g m , O , W 

( r ) is then defined for any

eal value of r in [0, 1]. In Fig. 3 a and b, we demonstrate g m , O , W 

( r )

or W = S S and W = S A , respectively, where the object is Mandible

nd m = DC . Notably the curves seem to aptly express the underly-

ng plots. 

Three metrics are considered in this work: Dice coefficient ( DC ),

accard index ( JI ), and a normalized version of Hausdorff Distance

 HD N ). All metrics are computed for 2D segmentations on slices

ince our reader study assigning acceptability scores is carried out

n slices. DC and JI are commonly-used metrics ( Eq. (6) ). When

onsidering Hausdorff Distance ( HD ), there are two issues: (i) Un-

ike DC and JI which are fractions lying in [0, 1], HD is not a ratio

hence not normalized) and is measured in physical units. Hence,

ts worst possible value (maximum distance from true boundary)

as no easily definable bound although the best possible value is

. (ii) Minute false positives in segmentations, such as isolated pix-

ls or small clusters of pixels that lie far away from the true object

hich do not influence AS , may pose a challenge for normalizing

D . To overcome these issues, we use a median version, instead of

aximum, for HD and normalize HD to arrive at HD N as described

elow. 

To normalize HD for an object O , we use the maximum value

D M2 of HD among all samples of O for which AS = 2 as a nor-

alizing factor. If HD of a segmentation on a slice is greater than

D M2 , we may infer that this segmentation is of really unaccept-

ble quality and the HD N value should be set to 1. HD N is calcu-

ated as in Eq. (7) where HD M2 should be determined separately

or each considered object O . For a segmentation sample, large DC

nd JI (~ 1), and small HD N (~ 0) mean good quality, and small

C and JI (~ 0), and large HD N (~ 1) suggest unacceptable qual-

ty. So when conducting linearization on HD N , a slight modification

hould be made to Eq. (5) where μ(1) and μ(5) interchange their

oles for cases where r < μ(5) or r > μ(1). In Eq. (6) and (7) , w ∈ W
3 These equations are fashioned for DC and JI . For HD , changes are made along 

imilar lines. 

s  

m  

m  

l  
enotes the segmentation sample to be assessed ( W ∈ { S S , S A }), w T 

enotes the corresponding true segmentation, and β( w ) and β( w T )

enote the boundaries of samples w and w T , respectively. 

C(w, w T ) = 

2 × T P (w, w T ) 

2 × T P (w, w T ) + F P (w, w T ) + F N(w, w T ) 
, 

JI(w, w T ) = 

T P (w, w T ) 

T P (w, w T ) + F P (w, w T ) + F N(w, w T ) 
, (6) 

HD ( w, w T ) = median 

({
inf 

y ∈ β( w T ) 
{ d ( x, y ) | x ∈ β( w ) } } ∪ {

inf 
x ∈ β( w ) 

{ d ( x, y ) | y ∈ β( w T ) } 
})

, 

D N ( w, w T ) = min 

(
HD ( w, w T ) 

HD M2 ( w, w T ) 
, 1 

)
. 

(7) 

.2. Linearizing metric values 

Function g m , O , W 

( r ) can be used to linearize the value of m for

ny given segmentation sample q of O as follows. Let the ideal

etric-acceptability curve (diagonal line) be denoted by I m , O ( r ).

he linearized metric value m l ( q ) of q is then obtained by simply

rojecting the point ( m ( q ), a ( q )) on the curve of g m , O , W 

( r ) on to the

deal curve and reading off the corresponding metric value m l ( q ) as

hown in Fig. 3 a. Thus, 

 l (q ) = I −1 
m,O ( g m,O,W 

(m (q ))) . (8)

n particular, we can use g m , O , W 

( r ) to linearize metric values of

egmentation samples of O coming from another set Q � = W . For

xample, we may create g m , O , W 

( r ) from W = S S and then use this

o linearize Q = S A . The resulting pairs ( m l ( q ), a ( q )) of linearized

etric-values m l ( q ) and acceptability scores a ( q ) (assigned in a

eader study) again constitute a 2D graph (and not necessarily a

unction), which will be denoted by G l (m, O, W, Q ). On G l (m, O,

, Q ), we may again use the above fitting method to determine

 function that will portray the “linearized curve” for the sam-

les in Q . We will denote this function by h m , O , W 

, Q (.). Fig. 3 c illus-

rates the plot G l (m, O, W, Q ) and the linearized curve h m , O , W 

, Q (.)

or W = S S and Q = S A . Note that when Q = W, G l (m, O, W, Q ) will

epresent a plot where the marks in Fig. 3 a are all shifted (non-

inearly) to align closely around the diagonal, and the resulting fit-

ed curve h m , O , W 

, Q (.) will be mostly a diagonal line, within compu-

ational approximations. Comparing fitted curves g m , O , Q ( r ) ( Fig. 3 b)

nd h m , O , W 

, Q ( r ) ( Fig. 3 c) for W = S S and Q = S A and the associated

lots, it is clear that the distribution of samples is better centered

round the ideal curve, and the fitted curve after linearization is

loser to the ideal curve than before linearization. 

Note that the ideal curve is different for metrics which are

ased on similarity versus dissimilarity. After all metrics are nor-

alized from their original range to [0, 1], for metrics DC and JI

hich evaluate similarity of segmentations and their ground truth,

he ideal curve is the linear line from point (0, 1) to (1, 5), in-

icating that low similarity means unacceptable quality and high

imilarity implies excellent quality. For metrics which evaluate the

eviation between segmentations and their ground truth, such as

D N (and other metrics like False Positive and False Negative Vol-

me Fractions not considered in this paper), the ideal curve is the

inear line from point (0, 5) to (1, 1) indicating that low deviation

eans excellent quality and high deviation suggests unacceptable

uality. 

To make the linearization process convenient to use, object-

pecific correction factors κm , O ( r ) are computed for each metric

 which indicate how a given value r of m should be corrected

ultiplicatively for it to be linearized by using the metric- AS re-

ationship curve g m , O , W 

( r ) for the object under consideration. The
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a  
correction factor is given by (see Fig. 3 a) 

κm,O ( r ) = 

m l (q ) 

m (q ) 
(9)

For any test segmentation sample t of an object with metric

value m ( t ), its corresponding linearized metric m l ( t ) value is then

given simply by the product m ( t ) × k m, O ( m ( t )). For the illustration

in Fig. 3 , the κm , O ( r ) curve is displayed in Fig. 3 d for the samples

of object Mandible in the set Q = S A and m = DC , where the fitted

curve was estimated from the set W = S S . 

The LinSEM methodology as a whole has three parameters: θ
denoting the fraction of the minimum thickness of an object we

allow to diminish after erosion, n max representing the maximum

number of strides allowed for erosion, and a threshold D max on

Mahalanobis distance D M 

(.) that is used for detecting outliers. The

first two parameters are associated with the method of simulating

segmentations, and the third parameter relates to the method of

curve fitting. 

2.3. Evaluating the effectiveness of LinSEM 

Since LinSEM aims to harmonize acceptability-meaning among

different objects, to evaluate its effectiveness, we check whether

metric values have more similar meaning among different objects

after linearization. We collect another set of segmentations as a

test set, for which we will check whether differences of metric- AS

curves among considered objects are narrowed after linearization.

The evaluation process for each given metric m comprises of four

steps: 

Step 1: Collect a set of (test) segmentations S A produced by an

algorithm based on image data sets from a set of different subjects

for each of a set of different objects. For each such object, create

simulated segmentations S S based on the set S T of true segmen-

tations coming from image sets of subjects different from those

whose data sets yielded set S A . In other words, for each object, sets

S A and S S constitute completely disjoint sets of subjects and hence

image and object samples. 

Step 2: Conduct reader studies for the samples in sets S A and S S 
for each object. 

Step 3: From G ( m, O, S A ) and G ( m, O, S S ) for each considered ob-

ject O , determine the fitted curves g m ,O, S A 
(r) and g m ,O, S S 

(r) show-

ing the variability of (probabilistic) acceptability as a function of

m for S A and S S , respectively, before linearization. Estimate curve

h m ,O, S S , S A 
(r) after linearization of the metric values of the samples

in S A by using g m ,O, S S 
(r) for each object O . 

Step 4: If curves h m ,O, S S , S A 
(r) for different objects are more

similarly distributed compared to curves g m ,O, S A 
(r) for these ob-

jects, and if they are closer to the ideal curve, we may conclude

that the linearized metric, compared with the original metric, has

more similar acceptability meaning among objects, and the LinSEM

method is effective. 

We employ three types of evaluation measures, denoted by ψ ,

ρ , and γ , to assess the distribution of the linearized-metric- AS

curves h m ,O, S S , S A 
(r) for different objects. For two objects O 1 � = O 2 

and any given value r ∈ [0, 1] of metric m or its linearized version

m l , we define the semantic dissimilarity in m between O 1 and O 2 

prior to linearization ( ψ) and post-linearization ( ψ L ) by 

ψ( O 1 , O 2 , m, r) = 

∣∣g m , O 1 , S A 
(r) − g m , O 2 , S A 

(r) 
∣∣

ψ L ( O 1 , O 2 , m, r) = 

∣∣h m , O 1 , S S , S A (r) − h m , O 2 , S S , S A (r) 
∣∣, (10)

and the gain in sematic similarity by 

ψ g ( O 1 , O 2 , m, r) = ψ ( O 1 , O 2 , m, r ) − ψ L ( O 1 , O 2 , m, r ) (11)

We expect ψ g (.) > 0 or ψ( O 1 , O 2 , m, r ) > ψ L ( O 1 , O 2 , m, r ) for most

r ∈ [0, 1], or the mean value of ψ g (.) over all r to be positive. 
The second measure ρg (.) analogously describes the gain in

loseness of the acceptability score to the ideal value from pre-

inearization to post-linearization. We define the closeness of ac-

eptability to the ideal value prior to ( ρ) and post-linearization

 ρL ) and the gain in closeness due to linearization by 

ρ(O, m, r) = | g m ,O, S A 
(r) − I m,O (r) | , 

ρL (O, m, r) = | h m ,O, S S , S A (r) − I m,O (r) | , 
g (O, m, r) = ρ(O, m, r) − ρL (O, m, r) . (12)

Again, we expect ρg (.) > 0 or ρ( O, m, r ) > ρL ( O, m, r ) for most

 ∈ [0, 1], or the mean value of ρg (.) over all r to be positive. 

The third measure γ g (.) is similar to ρg (.) but describes the gain

n closeness of the metric value to the metric value on the ideal

urve. We define the closeness of the metric value to the ideal value

rior to ( γ ) and post-linearization ( γ L ) and the gain in closeness

ue to linearization by 

γ (O, m, r) = | r − I −1 
m,O ( g m ,O, S A 

(r)) | , 
γL (O, m, r) = | h 

−1 
m,O, S S , S A 

( g m ,O, S A 
(r)) − I −1 

m,O ( g m ,O, S A 
(r)) | , 

g (O, m, r) = γ (O, m, r) − γL (O, m, r) . (13)

We expect γ g (.) > 0 or γ ( O, m, r ) > γ L ( O, m, r ) for most r ∈ [0,

], or the mean value of γ g (.) over all r to be positive. See Fig. 2 for

 pictorial depiction of the meaning of these three measures. 

. Experiments 

.1. Data sets 

This retrospective study was conducted following approval from

he Institutional Review Board at the Hospital of the University

f Pennsylvania along with a Health Insurance Portability and Ac-

ountability Act waiver. Experiments are conducted on CT images

f two body regions, H&N and Thorax. The following five objects as

efined in Wu et al. (2019) are considered: the outer skin bound-

ry of the H&N (cervico-thoracic) body region superior to the

houlders (CtSkn-h), right parotid gland (RPG), mandible (Mnd),

ervical esophagus (CtEs), and heart (Hrt). The full name and the

cronym for these objects are listed in Table 2 for ready reference.

he first four objects are from the H&N region and the 5th object

s from the thoracic region. The objects have been selected to rep-

esent a mix of different shapes and sizes. CtEs is a thin and nar-

ow spatially sparse object. CtSkn-h, RPG, and Hrt are non-sparse

lob-like objects. Mnd is a hybrid between these two types. Fur-

hermore, CtSkn-h and Hrt are large objects with large thickness,

nd RPG, Mnd, and CtEs have relatively low thickness. 

The set S T of true segmentations employed for generating S S 
as chosen from images of subjects wherein the shape of the ob-

ect O considered was not affected significantly due to an abnor-

ality for making sure that we are dealing with roughly the same

hape in the samples of O contained in S T (see further comments

n Section 5 ). Since CT scans of H&N and Thorax regions are com-

only separately acquired, it is hard to find images of these two

ody regions from the same subjects, and object samples for the

wo regions come from different subjects, although object sam-

les for the same body region are selected from images of the

ame subjects. The set S T of true segmentations was created by

trictly following our body region and object definitions. The set S A 
f actual segmentations is derived from the output of AAR meth-

ds ( Udupa et al., 2014 ; Wu et al., 2019 ). The pixel size and slice

pacing of the CT data sets which produced S A were 1–1.6 mm and

.5–3 mm, respectively. Since these data sets pertained to cancer

atients undergoing radiation therapy, they contained various de-

rees of pathology. 

Following the method of Section 2.1 , we designed 30 sequences,

s listed in Table 1 , with deviations δ within 30 strides. Simu-
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Table 2 

Number of slices for the five objects considered in our reader study. 

Data 

sets 

Hrt (Heart) RPG (Right 

parotid gland) 

Mnd (Mandible) CtEs (cervical 

esophagus) 

CtSkn-h (Cervico-thoracic skin 

outer boundary – superior part) 

Total 

S S 280 255 434 356 539 1864 

S A 271 311 353 269 509 1713 

Total 551 566 787 625 1048 3577 
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ated segmentations for each object are created by applying these

equences to the object samples in S T . The structuring elements

or erosion and dilation both consist of the pixel plus its 4-

djacent neighbors in the 3 × 3 neighborhood. We set n max = 20

hich means a maximum of 20 strides are allowed for the ero-

ion operation, and θ is set to 0.7 which means, after symmetric

rosion by 20 strides, the original thickness t (in mm) will be re-

uced to 0.7 t. The stride size in millimeter will then be 0.7 t /40.

hen determining stride size in pixels, we should first find out

he minimum thickness of an object among all its samples, and

hen check if e m 

calculated by Eq. (3) is greater than 1 to decide

f samples of the object need to be interpolated. If e m 

< 1 and in-

erpolation is needed, the original thickness T (in pixels) will be

nlarged to T / e m 

, and stride size in pixels will be e = 0.7 T /(40 e m 

). If

 m 

≥ 1, the stride size in pixels will be e = 0.7 T /40. In this way, the

nterpolation factor e m 

is the same for all samples of the object but

he stride sizes are different. The resulting deviation will be δ × e

ixels based on the deviation for the designed sequence and the

tride size of the object sample. For the convenience of calculation

nd avoiding introducing extra interpolation, the floor integer � e 	
s selected as the stride size in generating the samples of S S . 

Since reader studies are time-consuming and expensive, we

onducted them on S S samples generated from 10 sequences and

0 S A samples generated from 10 subjects of each body region via

AR algorithm. The selected sequences covered deviations from

mall to large, and samples of objects from the same body re-

ion are subjected to the same set of sequences. The reader study

s thus conducted on 20 3D segmentation samples per object, or

00 3D object samples in total. For a given object, the object sam-

les in S S and S A are shuffled, and while performing the study, the

eader is blinded to the set ( S S or S A ) from which the data set orig-

nated and to the actual sequence used and the magnitude of the

eviations. For reader visualization, the boundary contours of the

bject derived from the corresponding segmentation are displayed

s an overlay on the corresponding CT slices of the data set. As

entioned earlier, the true segmentations are not available to the

eader so as to keep decisions on scoring acceptability indepen-

ent of the ground truth. The number of slices for each object and

ach segmentation set involved in the reader experiment is sum-

arized in Table 2 . Our experiment involved 3577 slices in total,

nd for each of them the reader assigned an acceptability score on

 1–5 scale. 

.2. Experiments 

The LinSEM methodology as a whole has three parameters – θ ,

 max , and D max . As mentioned above, we set θ = 0.7 and n max = 20.

or estimating acceptability-metric relationship ( Eq. (5) ), we set

 max = 2, which implies that about 95% of all samples will be con-

idered in the linearization process if the metric values for a given

cceptability score are normally distributed. These parameters are

xed once for all in the whole LinSEM process. 

Metric-acceptability curves g m , O , W 

( r ) are estimated for each

etric m and each object O and separately based on sets W = S S 
nd W = S A . For computations involving Eqs. (6) and (7) and for

tting the curve, we discretize the metric value range [0, 1] into

00 equal intervals at increments of 0.01 which results in a to-
al of 101 discrete values (including the end values 0 and 1). The

etric-acceptability curve g m ,O, S S 
(r) derived from S S is used as the

etric- AS relationship to linearize metric values of samples from

 A . Curves g m ,O, S A 
(r) and h m ,O, S S , S A 

(r) show the metric- AS relation-

hip for set S A before and after linearization. For S A , if the devia-

ion of curves h m ,O, S S , S A 
(r) from the ideal curve and/or the differ-

nce among the curves for different objects is smaller than those

f curves g m ,O, S A 
(r) , the effectiveness of the LinSEM method is

emonstrated. 

Similarly, to determine how realistic our simulations are, we

erformed the above experiment reversing the roles of S S and S A . 

To quantitatively assess the performance of LinSEM, we analyze

he mean and standard deviation of ψ g , ρg , and γ g over all sam-

les of S A where linearization is performed based on S S . Since the

loseness of the linearized curves to the ideal curves also matter

or each object, we also examine ρ(.) and ρL (.) ( Eq. (12) ) over all

amples of S A . We conduct a similar analysis over all samples of S S 
here linearization is performed based on S A . 

. Results and discussion 

.1. Image examples 

In Fig. 4 , we display sample images chosen from S S for dif-

erent levels of deviation ( δ) where the matching images from

 T and closely matching sample images from S A are also shown

s well as the expert-assigned AS . The deviations observed in S A 
rom corresponding true segmentations can be well simulated by

 S with designed sequences, and more potential variations which

ave not been collected in the current S A set can also be simulated

y designing different sequences for deviation. Fig. 5 demonstrates

everal examples of different object samples where metric values

chieved significantly improved similarity of meaning. In Fig. 5 a, S A 
amples of different objects with widely different DC values are as-

igned the same AS via reader study, and their resulting linearized

C ( LDC ) values are more similar to reflect the same acceptability

eaning. Fig. 5 b and c give two examples where same DC values

or different objects correspond to same AS and the resulting LDC

alues, although different, maintain the same meaning after lin-

arization. 

.2. Metric-acceptability curves 

Curves g m ,O, S A 
(r) and h m ,O, S S , S A 

(r) are portrayed in Figs. 6 –8 for

 = DC, JI , and HD N , respectively, for set S A . We make the follow-

ng observations from these plots. (i) Compared with the origi-

al curves g m ,O, S A 
(r) , linearized curves h m ,O, S S , S A 

(r) distribute more

ompactly and closer to the ideal curve for all objects. Understand-

bly, the degree of compactness achieved seems less for HD N than

or the other two metrics. (ii) As we pointed out previously, we

annot collect segmentations with diverse quality from the S A set.

n obvious case is CtSkn-h, where almost all collected samples are

f good quality and are assigned AS = 4 or 5. That is why set S S is

eeded to estimate metric- AS relationship and the reason for lin-

ar connection from ( μ(4), a P ( μ(4))) to (0, 1) (or (1, 1)). (iii) The

aximum improvement seems to be in the curve for Hrt for DC .
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Fig. 4. Image samples from sets S T (1 st column), S S (2 nd column), S A (4 
th column), and ground truth (3 nd column) corresponding to S A . For S S , three different levels of devia- 

tions are shown (in different rows) together with the corresponding image from S T and a closely matching sample from S A with its ground truth. The assigned acceptability 

scores ( AS ) and designed deviation ( δ) for samples of S S are also shown. Examples displayed are for objects Mnd, CtEs, and Hrt. 
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Fig. 5. Image samples from set S A of objects Mnd, RPG, CtEs, and Hrt. Their associ- 

ated DC values before (1 st value) and after (2 nd value) linearization are also shown. 
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Table 3 

Mean (1 st value) and sd (2 nd value) of ψ g (.) over all samples of S A for DC where 

the linearization mapping was estimated based on S S . 

RPG Mnd CtEs CtSkn-h 

Hrt 0.440 0.285 0.522 0.478 

0.446 0.408 0.554 0.317 

RPG −0.114 −0.038 0.142 

0.198 0.138 0.306 

Mnd 0.003 0.004 

0.233 0.327 

CtEs 0.092 

0.339 

Table 4 

Mean (1 st value) and sd (2 nd value) of ψ g (.) over all samples of S A for JI where 

the linearization mapping was estimated based on S S . 

RPG Mnd CtEs CtSkn-h 

Hrt 0.606 0.270 0.571 0.203 

0.407 0.237 0.464 0.321 

RPG −0.077 −0.056 0.164 

0.230 0.152 0.209 

Mnd 0.069 −0.092 

0.236 0.235 

CtEs 0.241 

0.181 

h  
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j  

s  

i  

m
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tEs and RPG are both diminutive or sparse objects and have simi-

ar DC -meaning before linearization, which is maintained after lin-

arization while bringing them closer to the ideal line. Interest-

ngly, for small DC (up to 0.5), Mnd, CtEs, and RPG have similar

eaning and behavior before linearization. (iv) Understandably, DC

nd JI behave similarly and quite differently from HD N , although JI

eems to produce curves that are closer to the ideal line compared

o DC , suggesting that JI’ s behavior is more linear than that of DC

ven before linearization. After linearization, DC and JI curves seem

o distribute very similarly. 

Analogous to Figs. 6–8 , we created curves g m ,O, S S 
(r) and

 m ,O, S A , S S 
(r) showing before and after linearization of metric val-

es of samples from S S based on linearization mapping estimated

rom S A . Since the trends of these curves are very similar to those

hown in Figs. 6–8 , we have included only the curves for DC as an

xample in Fig. 9 . 

Our set S S contains samples with AS of 1–5, except two cases

CtEs (a challenging object to segment) with AS = 1 and CtSkn-

 (an easy object to segment) with AS = 5. S S and its associated

S values demonstrate that large deviations seem to be more ac-

eptable for segmentations of small sparse objects and even small

eviations are less tolerated for large blob-like non-sparse objects.

nother phenomenon to notice is the discrete steps in the CtSkn-
Fig. 6. Curves g m ,O, S A 
(r) (left) and h m ,O, S S , S A (r) (righ
 curves of Fig. 9 , where the metric value range corresponding to

ach discrete AS value is more clear-cut than in other smaller ob-

ects and the ambiguity of samples with the same metric value as-

igned with different AS values is minimal. From Fig. 9 and sim-

lar curves for JI and HD N , we may conclude that the simulation

ethod is effective and needed for the linearization process. 

.3. Quantitative evaluation 

We list the mean and standard deviation of ψ g for DC, JI , and

D N in Tables 3–5 , respectively, and of ρg , ρL , γ g , and γ L for all

hree metrics in Table 6 . Recall from Eqs. (10) –( 13 ) that, in these

esults, the linearization transformation was estimated based on S S 
nd applied to the samples in S A . Since ψ g and ρg express gain in

imilarity of acceptability, their range will be [ −4, 4]. On the other

and, γ g describes the similarity of metric values achieved for the

ame acceptability value, and so its range will be [ −1, 1]. In both
t) for the five objects for set S A for m = DC . 
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Fig. 7. Curves g m ,O, S A 
(r) (left) and h m ,O, S S , S A (r) (right) for the five objects for set S A for m = JI. 

Fig. 8. Curves g m ,O, S A 
(r) (left) and h m ,O, S S , S A (r) (right) for the five objects for set S A for m = HD N . 

Fig. 9. Curves g m ,O, S S 
(r) (left) and h m ,O, S A , S S (r) (right) for the five objects for set S S for m = DC. 
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Table 5 

Mean (1 st value) and sd (2 nd value) of ψ g (.) over all samples of S A for HD N 
where the linearization mapping was estimated based on S S . 

RPG Mnd CtEs CtSkn-h 

Hrt −0.562 0.141 0.306 0.083 

0.485 0.224 0.231 0.321 

RPG −0.457 0.118 −0.198 

0.444 0.455 0.209 

Mnd 0.653 0.436 

0.363 0.440 

CtEs −0.146 

0.144 
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Table 7 

Mean (1st value) and sd (2nd value) of ψ g (.) over all samples of S S 
for DC where the linearization mapping was estimated based on S A . 

RPG Mnd CtEs CtSkn-h 

Hrt 0.396 0.166 0.446 −0.121 

0.395 0.233 0.330 0.468 

RPG 0.019 −0.080 −0.272 

0.265 0.190 0.440 

Mnd 0.190 −0.150 

0.181 0.418 

CtEs 0.038 

0.536 
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ases, a + ve value suggests improvement due to LinSEM and a -ve

alue implies deterioration. 

We make the following observations from Tables 3–6 which are

lso borne out by the acceptability curves. (i) Of the 30 pairwise

stimations of gain in similarity of semantic meaning ψ g (among

bjects) over all metrics, 21 of them are positive (of which 19 are

tatistically significant, P < 0.05) and 9 of them are negative (of

hich all are statistically significant, P < 0.05). Since some pairs

f objects may be similar even before linearization (such as RPG

nd CtEs for DC and JI as noted earlier), we do not expect for them

o show significant ψ g > 0 values post-linearization. In fact, they

ay show a small -ve value. (ii) More importantly, for such and

ost objects, we expect their curve to move closer to the ideal

ine after linearization (meaning ρg > 0) since this would guaran-

ee that all objects would behave similarly in their metric mean-

ng. From the 15 pairs of ρg mean values for the metric and its

inearized version over all objects and metrics, we see that this

s indeed the case except for two cases – RPG for JI and CtSkn-

 for HD N . The gain ρg (i.e., how much the curve is moved closer

o the ideal curve after linearization) is large (~0.7–1 acceptabil-

ty score units, or 18–25% improvement) for Hrt- DC and Mnd- HD N ,

ntermediate (~0.3–0.6, or 8–15%) for many cases (RPG- DC , Mnd-

C , CtEs- DC , Hrt- JI , Hrt- HD N , and RPG- HD N ), and small (~1–5%) for

he rest of the cases. (iii) Gain γ g in metric similarity of meaning

hows large positive values (0.1–0.26 on a [0, 1] range, or 10–26%)

or Hrt- DC , RPG- DC , Mnd- DC , CtEs- DC , Hrt- JI , RPG- HD N , and Mnd-

D N , and < 10% for the other cases with only two negative values

 −1% to −2% for RPG- JI and CtSkn-h- HD N ). γ L values show how

lose the curves of linearized metrics are to the ideal line, where

he values are 0.01–0.06 in cases of DC and JI and 0.03–0.1 in cases

f HD N . Again, from the γ L values and the curves, it is clear that in

 majority of the cases, the actual metric values across objects are

oved close to the ideal line. And only two cases have statistically

ignificantly negative γ g values. 

Since the trend in the results of linearizing metrics of samples

rom S S based on S A were similar to those listed in Tables 3–5 , we

how results for S S only for ψ g in Table 7 for DC . Among 10 pair-
Table 6 

Mean (1 st value) and sd (2 nd value) of ρg , ρL , γ g , and γ L for all three 

was estimated based on S S . 

DC JI 

ρg ρL γ g γ L ρg ρL 

Hrt 1.011 0.139 0.265 0.022 0.522 0.179 

0.554 0.109 0.138 0.030 0.338 0.180 

RPG 0.422 0.139 0.106 0.034 −0.094 0.185 

0.232 0.106 0.050 0.026 0.153 0.156 

Mnd 0.515 0.188 0.141 0.035 0.042 0.141 

0.265 0.135 0.086 0.029 0.168 0.103 

CtEs 0.421 0.117 0.107 0.028 0.072 0.074 

0.282 0.085 0.061 0.021 0.076 0.092 

CtSkn-h 0.192 0.227 0.047 0.057 0.162 0.221 

0.166 0.142 0.028 0.034 0.139 0.138 
ise estimations of gain in similarity of semantic meaning ψ g , 6

f them are positive (of which 4 are statistically significant, P <

.05) and 4 of them are statistically significantly negative. Because

f less variability in set S A , especially of CtSkn-h, the metric- AS re-

ationship is not completely fitted by the samples of S A but partly

y estimation due to linear connection, so semantic meaning for

 S have not improved as well as for S A . (This is in the spirit of the

ustification provided earlier for estimating the linearization trans-

ormation based on set S S and then applying it to set S A .) However,

omparing among curves in Fig. 9 , we can also tell that curves of

inearized DC distribute more closely along the ideal curve. 

.4. Gaps and challenges 

There are several gaps in this investigation and further chal-

enges to be addressed. First, limited by the cost of running the

eader study, we decided to perform the LinSEM process on a 2D

lice basis rather than in a true 3D fashion. Although there may

e differences using the 2D versus 3D approach at the simulation

tage and in the linearization process, we believe these differences

re small and inconsequential. We admit however that this needs

o be proven. The 3D approach has two serious drawbacks which

indered us in pursuing this approach – the reader-study cost due

o a substantially increased number of “slices to read”, and a dis-

onnection in the reader’s ability between reading 2D slices while

aving to score acceptability three-dimensionally. From our expe-

ience, we believe that this may result in less reliable acceptability

cores than from 2D experiments. 

Second, we indirectly assumed that the meaning of AS as de-

ermined by one expert is sufficient for the LinSEM process. Obvi-

usly, there may be differences in how experts score which may

lso vary for different applications. Considering multiple readers

s directly feasible within our linearization method by generaliz-

ng Mahalanobis distance from a single variable to a multi-variate

ersion or by pooling data from all readers. For different applica-

ions, application experts should perform the reader study to make

ure that application-specific concerns are expressed in the scores.
metrics over all samples of S A where the linearization mapping 

HD N 

γ g γ L ρg ρL γ g γ L 

0.125 0.051 0.363 0.317 0.069 0.101 

0.059 0.053 0.352 0.273 0.059 0.067 

−0.020 0.043 0.436 0.405 0.135 0.075 

0.034 0.038 0.363 0.208 0.088 0.051 

0.011 0.035 0.750 0.231 0.191 0.054 

0.050 0.024 0.433 0.156 0.086 0.036 

0.020 0.016 0.054 0.133 0.009 0.038 

0.019 0.022 0.143 0.147 0.035 0.037 

0.040 0.056 −0.036 0.366 −0.013 0.095 

0.023 0.034 0.077 0.218 0.010 0.056 
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Fig. 10. An example for illustrating the fact that the difference between curves 

g m ,O, S S 
(r) and g m ,O, S A 

(r) can be larger than the difference between g m ,O, S A 
(r) and 

the ideal line. 
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Third, the most difficult challenge is how to handle cases of

objects distorted by surgery or pathology. This takes us back to

the issue of object definition. What is actually being segmented

in these cases becomes crucial. If the goal is still the segmentation

of the object outer boundary and if its shape is roughly the same

as that of typical object samples, then it will not matter from Lin-

SEM’s perspective even if the object contains extensive pathology.

However, if the object shape is severely distorted and the segmen-

tation method cannot recover the original shape or if that is not

the goal, then LinSEM’s performance will be affected. 

Finally, a question arises as to why not perform curve fitting

in Section 2 using methods other than the proposed probabilistic

approach based on Mahalanobis distance. Our early efforts, such

as directly fitting from raw metric values and AS pairs of samples

to polynomial curves, did not yield meaningful and similarly ex-

plainable results for different objects. This is the reason that we

developed the proposed method. It is also conceivable that deep

learning networks can be designed to perform this regression in

more sophisticated ways, which we are currently examining. 

We noticed that although the patterns of curves g m ,O, S S 
(r) and

g m ,O, S A 
(r) obtained from S S and S A were similar, there were differ-

ences in distributions p i (see Section 2.1 ) between the two cases.

The main culprit is the lack of full coverage of segmentation qual-

ity in the case of set S A as we already mentioned. For example,

since object CtSkn-h is usually easy to segment, its samples in S A 
will have AS = 4 or 5 and will not include cases with AS = 1 or

2. Conversely, sparse objects such as CtEs rarely cover cases with

AS = 5. This causes the distributions pertaining to S S and S A to dif-

fer and, we believe, the deterioration of linearity we encountered

in our experiments. We expect the difference among curves due

to this difference in distribution between S S and S A to be smaller

than the actual difference in curves among objects. We observed

that violation of this expected behavior can lead to deterioration

of linearity. An example is shown in Fig. 10 for RPG for the case of

linearizing JI . Notice that, for m = JI , the difference between curves

g m ,O, S S 
(r) and g m ,O, S A 

(r) can be larger than the difference between

g m ,O, S A 
(r) and the ideal line for some metric and acceptability val-

ues. 

Computational considerations: LinSEM was implemented on a

computer with the following specifications: 6-core Intel i7-7800X

CPU 3.5 GHz with 64 GB RAM and running the Linux operating sys-

tem. Computational time for curve fitting for each object based on
ach dataset ( S A or S S ) is less than 0.2 s in MATLAB R2018b. Sub-

equent linearization is instantaneous. 

. Concluding remarks 

In this paper, we introduced a new concept (LinSEM) of lin-

arizing segmentation evaluation metrics for achieving uniformity

f meaning across different anatomic objects based on correspond-

ng degrees of expert-scored acceptability. We designed a set of

equences of basic image operations to be applied to true segmen-

ations to mimic the full spectrum of deviations potentially observ-

ble in actual segmentations by varied algorithms. We performed

 reader study on simulated segmentations ( S S ) wherein an ex-

ert determines an acceptability score AS for each study. The ra-

ionale for and advantage of employing simulations are that they

an cover the full spectrum of overall quality distribution much

etter and by design within a smaller population of samples than

ctual segmentations which typically cover a partial range of ac-

eptability and may also require a larger sample size to have a

roper coverage within the restricted range. Also, for some large,

ell-defined objects, even very large sample sets of actual seg-

entations may not capture the needed full range of variations.

hus, the cost associated with reader studies can be considerably

educed via simulated segmentations. Based on AS , we estimate

bject- and metric-dependent metric- AS relationships via the con-

ept of probabilistic acceptability scores by employing the Maha-

anobis distance over a discretized set of metric values covering the

ull domain of the metric. The relationships determined by using S S 
re taken as calibration reference to linearize the metric for each

bject on actual segmentations ( S A ). We conducted experiments on

ve anatomic objects (cervical esophagus (CtEs), cervical skin outer

oundary (CtSkn-h), heart (Hrt), mandible (Mnd), and right parotid

land (RPG)) utilizing three most commonly-used metrics ( DC, JI ,

nd HD ) to assess the improvement brought about by LinSEM in

he uniformity of metric meaning across objects. 

We summarize our conclusions as follows. (i) Generally, JI

eems to have a more linear relationship with acceptability before

ctual linearization than other metrics. (ii) LinSEM achieves signif-

cantly improved uniformity of meaning post-linearization across

ll tested objects and metrics, except in a few cases where the de-

arture from linearity was insignificant before linearization. This

mprovement, expressing how close metric-to-acceptability rela-

ionship has been brought to the ideal curve, is generally the

argest for DC and HD reaching 8–25% for many tested cases. (iii)

lthough some objects (such as RPG and CtEs for DC and JI ) are

lose in their meaning between themselves before linearization,

hey are distant in this meaning from other objects. This empha-

izes the importance of bringing all objects individually close to

he ideal curve to realize uniformity of meaning across all objects.

his in turn suggests that, eventually, linearization must be per-

ormed considering all objects in a body region, and preferably,

ll objects body-wide. (iv) Our results suggest that the proposed

ethod of simulating segmentations may be a practical way of ad-

ressing the dual challenges of keeping the set of segmentations

o be dealt with manageable and minimizing the cost of conduct-

ng reader studies. (v) Although we used image data sets from CT

rom H&N and thorax body regions, the LinSEM process is appli-

able as is to other image modalities and body regions as long as

ets S A and S T are available for a set of objects for the body region

f interest. 

Medical practice relies heavily on graded or categorical scoring

ystems for assessing various phenomena such as health status and

isease stage (for example, BI-RADS D’Orsi et al., 2013 , PI-RADS

urkbey et al., 2019 , etc.). These systems are body-region-, object-,

isease-, and application-specific, and have been arrived at through

tandardized guidelines for scoring. For wide-spread use of any
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ethod such as LinSEM, standardized guidelines will become nec-

ssary for acceptability scoring in order to reduce intra- and inter-

eader variability. We are in the process of conducting a multi-

enter study for acceptability scoring in the two body regions con-

idered in this paper for the application of auto-contouring organs

t risk for radiation therapy planning ( Wu et al., 2019 ). Currently

his application is perhaps the largest consumer of segmentation

ools and tools for clinically meaningful evaluation. 

In this paper, we focused on anatomical objects which have

nown prior shape. To apply LinSEM to objects of irregular shape

uch as tumors and pathological regions, they need to be first cat-

gorized into groups ( Cao et al., 2016 ) based on their geometric

ttributes (such as spherical, ovoid, polygonal, smooth, lobulated,

piculated) and morphological attributes (such as extensive, small).

hen the linearization process can be studied by group. This clearly

equires much further work. 
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