Full Reference Image Quality Assessment Based on Saliency Map Analysis

Journal of Image Science and Technology, Vol. 54, No. 3, 2010 Yubing Tong and Hubert Konick, Fauzi A. Cheikh, Alain Tremeau

Presented by Bong Seok Choi

School of Electrical Engineering and Computer Science Kyungpook National Univ.

Abstract

Proposed method

- Using saliency map to image quality assessment
 - Salient region
 - Accentuation between distorted and original image
 - Global quality measure of image
- Using mixed saliency map model
 - Based on Itti`s model and face detection model
 - Composition of low-level feature
 - » Intensity, color, and orientation
 - Composition of high-level feature
 - » Using mixed model

Introduction

Image quality assessment

- Subjective image quality assessment model
 - Mean opinion score (MOS)
 - Numerical indication of perceived quality of image
 - Drawback of subjective image quality assessment
 - Requirement of large number of observer
 - Takes a lot of time

- Objective image quality assessment model

- Objective image quality evaluation techniques
 - Mean squared error (MSE)
 - Peak signal-to-noise ratio (PSNR)
 - Universal Quality Index (UQI)
 - Structural Similarity Index (SSIM)
 - Noise quality measure (NQM)
 - Weight signal-to-noise ratio (WSNR)
 - Visual signal-to-noise ratio (VSNR)

- Objective image quality evaluation techniques for distortion image
 - Using PSNRHVS and PSNRHVSM
 - » Image divided fixed size blocks and same weights
 - » High performance on noise, noise2, safe, simple, and hard subsets of TID2008
 - » Low performance on Exotic and Exotic2 subset of TID2008
 - Drawback of PSNRHVS and PSNRHVSM
 - » Contradictory with Human visual system operate
 - » Dividing image into blocks of equal size
 - » Introducing discontinuity from original image

Proposed method

- Using saliency information to mimic selectivity of HVS
 - Integrate into exiting objective image quality metrics
 - Contribution of salience regions of nonsalient regions
- Using image saliency map
 - Image reconstruction
 - Use to phase spectrum and Fourier transform

Analysis of previous work and primay conclusions

Previous work

- Using PSNR and MES for Assessment of distortion image quality
 - Dependent on absolute difference between original and distortion image

$$PSNR = \log_{10} \left(\frac{255^2}{MSE} \right) \tag{1}$$

$$MSE = \frac{1}{M \times N} \sum_{i=1}^{M} \sum_{j=1}^{N} \left[\delta(i, j) \right]^2$$
(2)

$$\delta(i,j) = \left[a(i,j) - \hat{a}(i,j)\right] \tag{3}$$

where (i, j) is current pixel position, a(i, j) and $\hat{a}(i, j)$ are original image and distortion image, M and N height and width of image

Using PSNRHVS and PSNRHVSM

- Improving performance of PSNR and MSE
 - Considering visual perception
 - Defining PSNRHVS
 - » Dividing image into 8x8 pixel nonoverlapping block δ

$$\mathcal{S}_{PSNRHVS}\left(i,j\right) = \delta\left(i,j\right) \cdot CSF_{cof}\left(i,j\right)$$
(4)

where (i, j) is calculated using DCT coefficients

Defining PSNRHVSM

$$\delta_{PSNRHVSM}\left(i,j\right) = \left[\delta\left(i,j\right) \cdot CM\left(i,j\right)\right] \cdot CSF_{cof}\left(i,j\right)$$
(5)
$$SE_{PSNRHVS}\left(i,j,I,J\right) = \frac{1}{M_{VV}} \sum_{i=1}^{M/8} \sum_{j=1}^{N/8} \left\{\sum_{j=1}^{8} \sum_{j=1}^{8} \left[\delta_{PSNR_{i}HVS}\left(i,j\right)\right]^{2}\right\}$$
(6)

 $MSE_{PSNRHVS}(i, j, I, J) = \frac{1}{M \times N} \sum_{I=1}^{N} \sum_{J=1}^{N} \left\{ \sum_{i=1}^{N} \sum_{j=1}^{N} \left[\mathcal{O}_{PSNR_HVS}(i, J) \right] \right\}$ where (I, J) is position of 8x8 block in the imgae (i, j) is position of pixel in 8x8 block

Analysis of previous work

Using PSNRHVS and PSNRHVSM

- Processing by nonovelapping 8x8 blocks
 - Equal to image quality metric at every 8x8 blocks
- Drawback of PSNRHVS and PSNRHVSM
 - Independent blocks with fixed size
 - Producing blockiness result
 - Drawback to sudden change region

Comparison to different distortion number in image

50 100 150 200 300 350 100 200 300 400 500

Fig. 2. Saliency map of I18

with face detection.

PSNR PSNRHVS PSNRHVSM 46.3dB 33.74dB 36.3dB

Fig. 3. I18 with noise in one salient region

Fig. 1. Reference Image I18.

PSNR PSNRHVS PSNRHVSM 41.6dB 32.4dB 35.8dB

Fig. 4. I18 with noise in nonsalient region

Fig. 5. I18 with distortion in four nonsalient region

Fig. 6. I14 and corresponding image. (a) The reference I14. (b) The distorted image I14-17-2. (c) The distorted image I14-17-3. (d) The Saliency map of I14

Image quality assessment based on region sliency

- Calculating saliency map of image
 - Using Itti`s saliency map model
 - Using mixed saliency map model
 - Consist of Itti`s map model and Face detection
 - Process to calculate saliency map

Fig. 7. Flowchart of the method based on region saliency used to assess the image quality

Itti`s saliency map model

- Definition of bottom-up visual attention mechanism
 - Extraction saliency region from input image
- Procedure of saliency map modeling
 - Analyzing each feature by gaussian pyramid
 - One intensity, four orientation, two color opponencies
 - Normalization each features map
 - Combination of features map

$$S_{Itti} = \frac{1}{3} \sum_{k \in i, c, o} C_k$$

where C_i is intensity conspicuous map, C_c is color conspicous maps C_o is orientation conspicuous map

(7)

- Application to image "I01" in TID2008

- Selectivity of HVS
 - Focus only on some part of image

Fig. 8. Image I01 with its saliency map and corresponding surface plot. (a) Reference image I01. (b) saliency map of I01.

Saliency map model based on face detection

- Definition of saliency map in face detection
 - Use to face as high level feature
- Detecting head and skin in image
 - Based on Gaussian model of skin hue distribution

- Procedure of saliency map modeling
 - Definition of Hue response from pixel

$$h \ r', g' = \exp\left\{-\frac{1}{2}\left[\frac{r'-\mu_r^2}{\sigma_r^2} + \frac{g'-\mu_g^2}{\sigma_g^2} + \frac{\rho \ r'-\mu_r \ g'-\mu_g}{\sigma_r\sigma_g}\right]\right\}$$
(8)
$$r' = \frac{r}{r+g+b} \quad and \quad g' = \frac{g}{r+g+b}$$
(9)

where μ_r, μ_g is average of skin hue distributions, σ_r^2 and σ_g^2 are the variances of r' and g' components, and ρ is correlation between components r' and g'

- Gaussian pyramid based on multiscale subsampling
- Calculating center-surround map from pyramid
- Normalization to saliency map

$$S_{face} = Norm \ CS \ GP \ h \ r', g'$$

(10)

- Mixed model based on face detection
 - Combination of Itti`s model and gaussian face detection model

$$S_{MIX} = \alpha S_{Itti} + 1 - \alpha S_{Face} \tag{11}$$

where α is constant, best result is $\alpha = 3/7$

- Comparison with Itti`s model and mixed model

- Human face in image
 - Reference image "I18" in In TID2008

Fig. 9. Saliency maps for mixed model and Itti's model on I18 reference image. (a) Saliency map from mixed model. (b) Saliency map from Itti's model.

- nonhuman face in image
 - Reference image "I23" in In TID2008

Fig. 10. Saliency map from mixed model and Itti`s model for I23 reference image. (a) I23 reference image (b) Saliency map from mixed model. (c) Saliency map from Itti`s model.

Mixed model based on salient region

- Focus on saliency point
 - Defining saliency regions and neighboring filed associated given pixel
- Definition of saliency region
 - Computing binary mark metric

$$B_{i,j} = \begin{cases} 0 & S_{MAX}(i,j) < T_{j} \\ 1 & otherwise \end{cases}$$

where T_1 is experimental threshold that adaptive to average value of and $S_{MIX}(i, j)$ and $S_{MIX}(i, j)$ is saliency value computed from saliency map model considered and (i, j) is pixel position in image

(12)

Computing block by block relative saliency degree

$$\phi = \begin{cases} false & if \sum_{i=1}^{8} \sum_{j=1}^{8} B_{block(I,J)}(i,j) < T_{2} \\ true & otherwise \end{cases}$$
(13)

where T_2 is experimental threshold, and average of current block was used T_2 ; is pixel position in Block(I,J)

Fig. 11. Current block, current pixel, and its neighboring field.

- Relative saliency degree of current region and block

$$\rho_{Block}\left(I,J\right) = \frac{1}{\overline{S_{Grobal}}} \left(\frac{1}{64} \sum_{i=1}^{8} \sum_{j=1}^{8} S_{MIX}\left(i,j\right)\right)$$
(14)
$$\rho_{region}\left(i,j\right) = \frac{S_{Local}}{\overline{S_{Global}}}$$
(15)

with

$$\overline{S_{Local}} = \frac{1}{k \times k} \sum_{i=1}^{k} \sum_{j=1}^{k} S_{MIX}\left(i, j\right)$$
(16)

$$\overline{S_{Global}} = \frac{1}{M \times N} \sum_{i=1}^{M} \sum_{j=1}^{N} S_{MIX}\left(i, j\right)$$
(17)

Relative saliency degree of current pixel and region

$$\rho_{pixel_average}(i,j) = \max\left\{\frac{S_{MIX}(i,j)}{\overline{S}_{Local}}, \frac{S_{MIX}(i,j)}{\overline{S}_{Global}}\right\}$$
(18)
$$\rho_{pixel_max}(i,j) = \frac{S_{MIX}(i,j)}{\overline{S}_{Max_Local}}$$
(19)

with

$$S_{Max_Local} = \max\left\{S_{MIX}\left(i,j\right)\middle|i \le k, j \le k\right\}$$
(20)

• Weighted saliency map $w_{s}(i,j) = \left\{ \max\left\{ \rho_{region}(i,j), \rho_{Block}(i,j) \right\} \middle| \rho_{region}(i,j) > T_{3} \right\}$ (21)

Fig. 12. Surface plot of saliency map and weighted saliency map W_s . (a) Surface plot of saliency map. (b) Surface plot of weighted saliency map W_s .

Image quality assessment weighted by saliency region

Weight image different metrics

- Application of weighted saliency map
 - Computing process

```
//for the pixels in a target block with 8 \times 8
for i=1:8
     for j=1:8
           if (\phi_{IJ} \text{ is false})
      \delta_{\text{PSNRHVS}_S}(i,j) = \delta(i,j) \cdot \left(\frac{\text{CSF cof}(i,j)}{\text{CSF cof}(i,j) + 1}\right)
;
           Else
                if [(\rho_{\text{pixel max}} > I_4)] and (\rho_{\text{pixel average}})
>I_5
                      \delta_{\text{PSNRHVS},S}(i,j)
= \delta_{\text{PSNRHVS}}(i, j) \cdot W_{s}(i, j);
```

```
Else

\delta_{PSNRHVS_S}(i, j) = \delta_{PSNRHVS}(i, j);

end

end

End

end
```


Experimental results and analysis

Test image

- Using TID2008 database
 - 1700 distorted image
 - 25 reference image, 17 type distortions, 4 level distortions
- Using LIVE database
 - 779 distorted image
 - 5 type distortion image, 161 subjective experiments

Table 1. Distortion subsets in TID2008.

* distortions that belong to a given subset are marked by +

No.	Distortion type	Noise	Noise2	Safe	Hard	Simple	Exotic	Exotic2	Full
1	Additive Gaussian noise	+	+	+	_	+	_	_	+
2	Different additive noise in color	-	+	-	-	-	-	-	+
3	Spatially correlated noise	+	+	+	+	-	-	-	+
4	Masked noise	-	+	-	+	_	-	-	+
5	High frequency noise	+	+	+	_	_	_	_	+
6	Impulse noise	+	+	+	-	_	-	-	+
7	Quantization noise	+	+	-	+	_	_	_	+
8	Gaussian blur	+	+	+	+	+	-	-	+
9	Image denoising	+	_	_	+	_	_	-	+
10	JPEG compression	-	-	+	_	+	_	_	+
11	JPEG2000 compression	-	_	+	_	+	_	_	+
12	JPEG transmission errors	-	_	-	+	_	_	+	+
13	JPEG2000 transmission errors	-	_	_	+	_	_	+	+
14	Non eccentricity pattern noise	-	-	_	+	_	+	+	+
15	Local blockwise distortions of	-	_	_	_	_	+	+	+
	different intensity								
16	Mean shift (intensity shift)	-	-	-	-	-	+	+	+
17	Contrast change	-	-	-	-	-	+	+	+

(a)

Fig. 13. Examples of distortion in different subsets. (a) Original image. (b) Distortion 5: High frequency noise. (c) Distortion 8: Gaussian blur noise. (d) Distortion 12: jPEG transmission errors.

Experimental results from TID2008

- Comparison of image quality metrics
 - Using spearman correlation and kendall correlation coefficient

Table 2.Spearman correlation.

	PSNRHVS	PSNRHVS_S	Δ (%)	PSNRHVSM	PSNRHVSM_S	Δ (%)
Noise	0.917	0.914	-0.327	0.918	0.92	0.218
Noise2	0.933	0.863	-7.5	0.93	0.871	-6.344
Safe	0.932	0.92	-1.28	0.936	0.924	-1.282
Hard	0.791	0.814	2.908	0.783	0.816	4.215
Simple	0.939	0.933	-0.639	0.942	0.935	-0.743
Exotic	0.275	0.465	69.09	0.274	0.442	61.314
Exotic2	0.324	0.377	16.358	0.287	0.331	15.331
Full	0.594	0.622	4.71	0.559	0.595	6.44

Table 3. Kendall correlation.

	PSNRHVS	PSNRHVS_S	Δ (%)	PSNRHVSM	PSNRHVSM_S	Δ (%)
Noise	0.751	0.745	-0.799	0.752	0.752	0
Noise2	0.78	0.68	-12.82	0.771	0.689	-10.63
Safe	0.772	0.752	-2.59	0.778	0.757	-2.69
Hard	0.614	0.634	3.257	0.606	0.637	5.11
Simple	0.785	0.773	-1.52	0.789	0.777	-1.52
Exotic	0.195	0.313	60.51	0.194	0.294	51.55
Exotic2	0.238	0.254	6.72	0.21	0.22	4.76
Full	0.476	0.472	-0.8	0.449	0.455	1.34

বসমন্তল্পন KYUNGPOOK NATIONAL UNIVERSITY

	WSNR	LINLAB	SNR	PSNR	PSNRHVSM	IFC	PSNRHVS	UQI	SSIM	PSNRHVS_S	PSNRHVSM_S
Noise	0.897	0.839	0.712	0.704	0.918	0.663	0.917	0.526	0.562	0.914	0.92
Noise2	0.908	0.853	0.687	0.612	0.93	0.743	0.933	0.599	0.637	0.863	0.871
Safe	0.921	0.859	0.699	0.689	0.936	0.775	0.932	0.638	0.632	0.92	0.924
Hard	0.776	0.761	0.646	0.697	0.783	0.736	0.791	0.759	0.812	0.814	0.816
Simple	0.931	0.877	0.794	0.799	0.942	0.817	0.939	0.784	0.769	0.933	0.935
Exotic	0.157	0.135	0.227	0.248	0.274	-0.269	0.275	0.292	0.385	0.465	0.442
Exotic2	0.059	0.033	0.29	0.308	0.287	0.276	0.324	0.546	0.594	0.377	0.331
Full	0.488	0.487	0.523	0.525	0.559	0.569	0.594	0.6	0.645	0.622	0.595

Charmon correlation comparison Table

Table 5. Kendall correlation comparison.

	PSNR	SNR	LINLAB	WSNR	IFC	UQI	PSNRHVSM	SSIM	PSNRHVS	PSNRHVS_S	PSNRHVSM_S
Noise	0.501	0.512	0.652	0.714	0.477	0.363	0.752	0.388	0.751	0.745	0.752
Noise2	0.424	0.492	0.671	0.736	0.547	0.42	0.771	0.45	0.78	0.68	0.689
Safe	0.486	0.497	0.682	0.753	0.581	0.454	0.778	0.437	0.772	0.752	0.757
Hard	0.516	0.464	0.569	0.586	0.552	0.565	0.606	0.618	0.614	0.634	0.637
Simple	0.598	0.593	0.715	0.766	0.624	0.587	0.789	0.564	0.785	0.773	0.777
Exotic	0.178	0.154	0.084	0.107	-0.156	0.196	0.194	0.266	0.195	0.313	0.294
Exotic2	0.225	0.205	0.026	0.047	0.208	0.389	0.21	0.431	0.238	0.254	0.22
Full	0.369	0.374	0.381	0.393	0.426	0.435	0.449	0.468	0.476	0.472	0.455
									VIUN V		> 21/2

KYUNGPOOK NATIONAL UNIVERSITY National Reserch Lab. 국가지정연구실

Fig 14. Spearman correlation Comparison.

Fig 15. Kendall correlation comparison

32 / 37

D

KYUNGPOOK NATIONAL UNIVERSITY

National Reserch Lab. 국가지정연구실

Fig 16. Scatter plots of the image quality assessment models, the plots with blue points are the results from the image quality assessment model based on weighted saliency map.

Experimental results from LIVE database

Table 6. Spearman correlation and kendall correlation on LIVE database.

Correlation	SNR	PSNR	WSNR	UQI	IFC	SSIM	PSNRHVS_S	PSNRHVSM_S
Spearman	0.7811	0.8044	0.8479	0.802	0.8429	0.86	0.89	0.8963
Kendall	0.5922	0.6175	0.6883	0.6142	0.6677	0.7057	0.7179	0.7258

Conclusion

Proposed method

- Objective image quality assessment
 - Using weighted saliency map
 - Using mixed model
 - » Combination of Itti`s model and face detection model
 - Saliency region
 - » Including local contrast saliency and average
 - Enhancement of previous method
 - Contribution to perceived image quality

		PSNRHVS_s		PSNRHVSM_s			
Distortion type	$\rho_{\text{region}}(i, j)$	$\rho_{Block}(i,j)$	Max	$\rho_{\text{region}}(i, j)$	$\rho_{Block}(i,j)$	Max	
Noise	0.913	0.913	0.914	0.920	0.920	0.92	
Noise2	0.862	0.862	0.863	0.872	0.872	0.871	
Safe	0.920	0.920	0.92	0.924	0.924	0.924	
Hard	0.815	0.815	0.814	0.817	0.817	0.816	
Simple	0.932	0.932	0.933	0.935	0.935	0.935	
Exotic	0.463	0.463	0.465	0.440	0.440	0.442	
Exotic2	0.377	0.377	0.377	0.331	0.331	0.331	
Full	0.622	0.622	0.622	0.595	0.595	0.595	

Table 7. Spearman correlation.

Distortion type		PSNRHVS_s	PSNRHVSM_s			
Distortion	$\rho_{\text{region}}(i, j)$	$\rho_{Block}(i,j)$	Max	$\rho_{\text{region}}(i, j)$	$\rho_{\text{Block}}(i,j)$	Max
Noise	0.743	0.743	0.745	0.752	0.752	0.752
Noise2	0.680	0.680	0.68	0.689	0.689	0.689
Safe	0.750	0.750	0.752	0.757	0.757	0.757
Hard	0.634	0.634	0.634	0.637	0.637	0.637
Simple	0.770	0.770	0.773	0.776	0.776	0.777
Exotic	0.313	0.313	0.313	0.293	0.293	0.294
Exotic2	0.255	0.255	0.254	0.220	0.220	0.22
Full	0.472	0.472	0.472	0.455	0.455	0.455

Table 8. Kendall correlation.

	PSNRHVS_S									
	Spearman correla	tion	Kendall correlation							
Distortion type	$ ho_{Block}(i,j)$ without T_3	With T3	Distortion type	$\rho_{\text{Block}}(i,j)$ Without T_3	With T ₃					
Noise	0.707	0.913	Noise	0.521	0.743					
Noise2	0.657	0.862	Noise2	0.475	0.68					
Safe	0.732	0.92	Safe	0.537	0.75					
Hard	0.587	0.815	Hard	0.422	0.634					
Simple	0.716	0.932	Simple	0.517	0.77					
Exotic	0.228	0.463	Exotic	0.162	0.313					
Exotic2	0.201	0.377	Exotic2	0.138	0.255					
Full	0.446	0.622	Full	0.312	0.472					

Table 9. PSNRHVS_S with different operator

Itti`s saliency map

General architecture of the Itti`s model

TID2008 database

Reference image

Type of distortions image in TID2008 database

Ma	Type of distortion	Correspondence to practical	Accounted HVS popularities	
JNO	(four levels for each distortion)	situation	Accounted HVS peculiarities	
1	Additive Gaussian noise	Image acquisition	Adaptivity, robustness	
	Additive noise in color components is			
2	more intensive than additive noise in the	Image acquisition	Color sensitivity	
	luminance component			
3	Spatially correlated noise	Digital photography	Spatial frequency sensitivity	
4	Masked noise	Image compression, watermarking	Local contrast sensitivity	
5	High frequency noise	Image compression, watermarking	Spatial frequency sensitivity	
6	Impulse noise	Image acquisition	Robustness	
7	Overtization poise	Image registration, gamma	Color local contract control frequency	
	Quantization noise	correction	Color, local contrast, spatial frequency	
8	Gaussian blur	Image registration	Spatial frequency sensitivity	
9	Image denoising	Image denoising	Spatial frequency, local contrast	
10	JPEG compression	JPEG compression	Color, spatial frequency sensitivity	
11	JPEG2000 compression	JPEG2000 compression	Spatial frequency sensitivity	
12	JPEG transmission errors	Data transmission	Eccentricity	
13	JPEG2000 transmission errors	Data transmission	Eccentricity	
14	Non eccentricity pattern noise	Image compression, watermarking	Eccentricity	
15	Local block-wise distortions of different	Innainting image acquisition	Evenness of distortions	
15	intensity	inpainting, image acquisition	Evenness of distortions	
16	Mean shift (intensity shift)	Image acquisition	Light level sensitivity	
17	Contrast change	Image acquisition, gamma correction	Light level, local contrast sensitivity	

AB

Example of distortion type in TID2008 database

• 4 level distortion image for I19

Original image

Different additive noise in color

Additive Gaussian noise

Spatially correlated noise

Masked noise

Impulse noise

High frequency noise

Gaussian blur

JPEG compression

Image denoising

JPEG2000 compression

JPEG transmission errors

Non eccentricity pattern noise

JPEG2000 transmission errors

Local blockwise distortion of difference intensity

Y

Mean shift (intensity shift)

Contrast change

Contrast sensitivity function

Spatial Frequency (cycles/degree)

Contrast Masking

$$C_{T} = \begin{cases} C_{T0} \left(\frac{C_{M}}{C_{T0}} \right)^{\varepsilon} & otherwise \end{cases}$$

 COLOR के Maina Lab.

 अंगमंजुनमंग्रे

 Kyungpook national university