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ABSTRACT   

Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease 
burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such 
as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose 
applicability was demonstrated on near normal diagnostic CT images in different body regions on 35 organs. The aim of 
this paper is to investigate strategies for adapting the previous AAR system to diagnostic CT images of patients with 
various pathologies as a first step toward automated body-wide disease quantification. The AAR approach consists of 
three main steps – model building, object recognition, and object delineation. In this paper, within the broader AAR 
framework, we describe a new strategy for object recognition to handle abnormal images. In the model building stage an 
optimal threshold interval is learned from near-normal training images for each object. This threshold is optimally tuned 
to the pathological manifestation of the object in the test image. Recognition is performed following a hierarchical 
representation of the objects. Experimental results for the abdominal body region based on 50 near-normal images used 
for model building and 20 abnormal images used for object recognition show that object localization accuracy within 2 
voxels for liver and spleen and 3 voxels for kidney can be achieved with the new strategy.   
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1. INTRODUCTION  
Automatic disease quantification based on Computed Tomography (CT) images is useful for clinical research and the 
practice of evidence-based medicine. Body-wide anatomy recognition is an important first step for accurately and 
automatically quantifying diseases via CT images [2, 3]. However, the recognition or localization of objects with 
pathology on CT images has remained a challenge due to the presence of deviations from normalcy in object shape and 
intensity patterns. 

Many image segmentation methods have been investigated and applied to CT images, but mostly for segmenting organs 
in normal CT images. These include thresholding, region growing, clustering, deformable model driven techniques, and 
graph based approaches [4-7]. A few previous works studied anatomy recognition on CT images with pathology, but 
mostly by focusing on one specific object without considering multiple objects in the whole-body [8-13]. The 
generalizability of these methods to a different organ/object or body region is not clear, and to our knowledge none have 
demonstrated this on diagnostic CT images with pathology. Therefore, the development of a robust object 
localization/recognition method that works on diagnostic CT images with pathology body-wide would constitute an 
advancement of the state-of-the-art in diagnostic CT quantitative image analysis. 

Motivated by body-wide applications and generalizability of methods, and particularly body-wide automatic disease 
quantification, we have recently developed a general automatic anatomy recognition (AAR) methodology and 
demonstrated its operability in three different body regions on over 35 objects in contrast-enhanced diagnostic CT and 
MR images [1]. The AAR approach consists of the following three main steps: model building, object recognition, and 
object delineation. A hierarchical fuzzy anatomy model of a body region with all its major objects or a subset of them is 
built in the model building step. Recognition is a high-level process of determining the whereabouts of the object in the 
image. Delineation is a low-level process of determining the precise spatial extent of the object in the image.  The AAR 
approach was demonstrated and validated on near normal images from three different body regions – neck, thorax, and 
abdomen, involving over 35 organs for both the recognition and delineation tasks. We considered it important to 
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understand the behavior of the general AAR methodology on images with no or minor abnormalities and hence did not 
study the behavior of the methodology on abnormal images. 

The aim of this paper is to investigate modifications needed for adapting the previous AAR system to diagnostic CT 
images of patients with various pathologies as a first step toward automated body-wide disease quantification. In the next 
section we describe these adaptations while keeping the generality of the original approach. Subsequently, we will 
describe our evaluations, experimental results, and conclusions. 

2. MODIFIED AAR APPROACH FOR IMAGES WITH PATHOLOGY 
It is demonstrated in [1] that good recognition can guarantee good delineation accuracy. In this paper, we focus only on 
the recognition step and propose modifications to the recognition process in order to achieve good recognition 
performance on diagnostic CT images containing pathology.  Modifications are done to both steps: constructing fuzzy 
models and recognizing objects. We will highlight mainly the differences from the previous AAR approach; please refer 
to [1] for details on the original methodology.  

2.1 Constructing fuzzy models 

In [1], a population model for a given subject group is built for an entire body region. This model, called Fuzzy Anatomy 
Model FAM(B, G) for a body region B of subject group G is described by a quintuple: FAM(B, G) = (H, M, ρ, λ, η) [1]. 
The meaning of the elements of this body region model are described below.  

In this paper, for demonstration of the ideas, we will focus on the abdominal body region and the following six objects in 
the abdominal body region: Outer boundary of abdominal skin (ASkn), Liver (Lvr), Right kidney (RKd), Left kidney 
(LKd), both kidneys together as a composite object (Kd), and Spleen (Spln). H is a hierarchy of objects in B. That is, the 
objects are considered in a certain hierarchical structure and not flatly just as a collection.  The AAR approach follows 
strict definitions of body regions and objects [1] and in this paper we will follow the regimen described in [1]. Figure 1 
shows the hierarchy used in this study for the six objects.  

M = {FMℓ:1 ≤ ℓ ≤ L} is a set of fuzzy models, one fuzzy model per object. FMℓ represents the fuzzy model of object Oℓ. 
The fuzzy model FMℓ encodes the variations in the object’s form over G and is independent of image intensity and 
modality. FMℓ is constructed from training binary images for the object. Briefly, this process consists of estimating the 
mean shape length and geometric center of the object over G, repositioning all samples of the object to this mean 
position, and rescaling them to mean shape length. Subsequently a distance transform is applied to each resulting sample 
to propagate the shape form inward and outward from its boundary, the distance values are then averaged, and the 
average distance is transformed to a fuzzy object membership value. 

ρ = {ρℓ: 1 ≤ ℓ ≤ L} where ρℓ denotes the parent-to-offspring relationship in H over G of offspring object Oℓ with respect 
to its unique parent. From the repositioned and resized samples, the parent-to-offspring relationship ρℓ of Oℓ in the 
hierarchy is estimated over G. λ= {λℓ:1 ≤ ℓ ≤ L} and λℓ is the scale factor range indicating the size variation of object Oℓ 
over G. This parameter is also estimated over G from the repositioned and resized samples. η represents a set of 
measurements pertaining to the objects in B.  

 
Figure 1. Object hierarchy used in this study. ASkn: Outer boundary of abdominal skin; Lvr: Liver; Kd: Kidneys; RKd: 
Right kidney; Lkd: Left kidney; Spln: Spleen. 
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2.2 Recognizing objects 

The objects are recognized in the hierarchical order. In the earlier AAR approach, the optimal pose for Oℓ in a test image 
I is found in two steps. In the first step, called one-shot recognition, the pose of Oℓ is determined directly from the pose 
of its parent, once the recognition of the parent object in I is completed, and the known parent-to-offspring relationship 
ρℓ stored in the fuzzy anatomy model of B. In the second step, this pose is refined by finding the pose with which we can 
minimize the sum of the volume of false positive and false negative regions between the transformed fuzzy model 

( )pFM Ol
 and the binary image J resulting from thresholding I using a threshold interval Thℓ associated with Oℓ [1].  

 

(1) 

 

Image subtraction here is done in the sense of fuzzy logic. |x| denotes the fuzzy cardinality of x.  The search space to find 
p* is limited to a region around the initial pose. The search region is determined from knowledge of ρℓ and its variation 
and the scale factor range λℓ. An optimal threshold interval Thℓ is determined for Oℓ by rehearsing a recognition trial on 
the training images that yields the best recognition accuracy. See [1] for details. 

In the new AAR process, the second step of optimal search is modified. The modification is based on the premise that, if 
we randomly sample a spherical ball region bℓ in I within the region defined by the current fuzzy model, that sample is 
likely not to contain pathology. The ball radius Rℓ is set proportional to the size of Oℓ; Rℓ = k × size(Oℓ). The ball center 
is chosen to be within the model by one of several methods – at the geometric center of the model, at a point that is most 
medial, etc. For non-blob like objects with concavities, the latter criterion may fail. However for the objects considered 
in this paper, this method works. Having chosen the ball, the AAR pre-learned threshold Thℓ is refined to find a new 
optimal threshold Tℓ that would maximize the number of voxels Nℓ(t, bℓ, I) in the ball that satisfy this threshold.  
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The coverage Nℓ(t, bℓ, I) is a measure of segmentation of near normal object tissue within the ball. Greater coverage 
implies better ability to localize Oℓ. In our experiments, the two parameters k and δ are set to 0.3 and 50 Hounsfield 
Units, respectively. The refined threshold Tℓ is subsequently used in an AAR recognition process as described in (1). 

3. EXPERIMENTAL RESULTS 
3.1 Data sets and model building 

This retrospective study was conducted following approval from the Institutional Review Board at the Hospital of the 
University of Pennsylvania along with a Health Insurance Portability and Accountability Act waiver. Two data sets are 
employed in our experiments. DS1: contrast-enhanced abdominal diagnostic CT images of 50 male subjects with age in 
the range 50-60 years who were radiologically normal with exception of minimal incidental focal abnormalities; this 
image data set was one of the data sets used in [1]. DS2: contrast-enhanced abdominal diagnostic CT images of 20 male 
and female cancer patients (not necessarily in the above age range) with various pathologies involving one or more solid 
organs depicted in Figure 1. The image data sets were selected from our hospital patient image database. The voxel sizes 
for the two data sets are approximately 0.9 mm x 0.9 mm x 5 mm, which constitute typical clinical resolutions 
commonly employed in the abdomen.  

All objects considered in this paper were manually segmented using user-driven interactive tools such as live wire and 
iterative live wire which provided the reference segmentations. All samples in data set DS1 are used for model building 
and DS2 is used for testing the new AAR approach. 
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3.2 Recognition on CT images with pathology 

Figure 2 displays sample recognition results for the new AAR approach on images from DS2. The figures display cross 
sections of the fuzzy models at recognition overlaid on the test image slices. The image slices are also displayed 
separately to visualize the underlying pathology.  

We use location error and size error to evaluate recognition results quantitatively. Location error denotes the distance 
between the centers of ground truth objects and the fuzzy model at optimal recognition. Scale error denotes the ratio of 
the estimated object size to true object size. Ideally the location or position error should be zero and size error should be 
1. Table 1 lists the mean and standard deviation of location error and size error over all images in data set DS2 for the 
objects shown in Figure 1. As we can see from Table1, the average position errors are within 2 voxels for liver and 
spleen and 3 voxels for kidney, and average size errors are all close to 1. Generally speaking, the modified AAR shows 
consistent and good recognition performance on CT images with pathology for the objects considered in this paper. This 
is crucial for quantifying body-wide disease burden. 
 

 
 

 
 
 
 

Table 1. Location and size error (mean and standard deviation) over the images in DS2 for the new AAR approach. 
 

 ASkn Lvr Spln Kd Lkd Rkd 

Location error Mean (mm) 3.02 9.68 9.16 12.9 13.2 14.8 

Standard deviation (mm) 1.29 6.25 8.44 10.2 12.1 13.9 

Size error Mean 1.0 1.0 1.1 1.0 1.0 1.0 

Standard deviation  0.0 0.1 0.1 0.2 0.2 0.2 

Figure 2. Sample recognition results for the new AAR approach on images from image data set DS2. The models 
are shown overlaid on the test image slices. The results shown are for the following objects. Top: ASkn, Lvr. 
Middle: Spl, Kd. Bottom: LKd, Rkd. 
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The modified strategy also improves recognition accuracy on normal images over the original AAR approach in [1]. 
Table 2 lists location and size errors for images in DS1 when 25 data sets were used for building the models and the 
remaining data were used for testing. The original results are indicated in parenthesis.  

 

Table 2. Location and size error (mean and standard deviation) over the images in DS1 for the new AAR approach and 
previous AAR approach (in parenthesis). 

 ASkn Lvr Spln  Kd Lkd Rkd 

Location 
error 

Mean (mm) 5.83(5.83) 7.52(7.80) 5.48(10.41) 9.19(9.19) 13.2(13.4) 11.9(12.2) 

Standard deviation (mm) 3.42(3.42) 4.63(5.15) 3.19(11.73) 8.1(8.1) 12.0(12.0) 10.4(10.2) 

Size 
error 

Mean 1.0(1.0) 1.0(1.0) 0.9(0.9) 1.0(1.0) 1.0(0.9) 1.0(0.9) 

Standard deviation  0.0(0.0) 0.1(0.1) 0.1(0.1) 0.0(0.0) 0.1(0.0) 0.1(0.0) 

 

4. CONCLUSIONS 
 (a) Motivated by the goal of direct disease quantification, we present a new AAR strategy which is general and not 
object-specific and which retains the generality of the spirit of the original AAR approach. Its object localization 
accuracy is within 1-3 voxels, which is comparable to or better than that of methods in the literature. The new strategy 
retains the same level of performance or improves on the previous AAR approach on near normal images.  

(b) The strategy presented here works for blob-like solid organs without significant concavities. For the latter type of 
objects, other strategies can be devised to make sure that the sampled regions are properly inside the object of interest in 
the given image.  
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