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A B S T R A C T   

Purpose: Automated lymph node (LN) recognition and segmentation from cross-sectional medical images is an 
important step for the automated diagnostic assessment of patients with cancer. Yet, it is still a difficult task 
owing to the low contrast of LNs and surrounding soft tissues as well as due to the variation in nodal size and 
shape. In this paper, we present a novel LN segmentation method based on a newly designed neural network for 
positron emission tomography/computed tomography (PET/CT) images. 
Methods: This work communicates two problems involved in LN segmentation task. Firstly, an efficient loss 
function named cosine-sine (CS) is proposed for the voxel class imbalance problem in the convolution network 
training process. Second, a multi-stage and multi-scale Atrous (Dilated) spatial pyramid pooling sub-module, 
named MS-ASPP, is introduced to the encoder-decoder architecture (SegNet), which aims to make use of 
multi-scale information to improve the performance of LN segmentation. The new architecture is named DiS
egNet (Dilated SegNet). 
Results: Four-fold cross-validation is performed on 63 PET/CT data sets. In each experiment, 10 data sets are 
selected randomly for testing and the other 53 for training. The results show that we reach an average 77 % Dice 
similarity coefficient score with CS loss function by trained DiSegNet, compared to a baseline method SegNet by 
cross-entropy (CE) with 71 % Dice similarity coefficient. 
Conclusions: The performance of the proposed DiSegNet with CS loss function suggests its potential clinical value 
for disease quantification.   

1. Introduction 

Lymph node (LN) segmentation aims to assign a categorical label to 
every voxel in an image, which plays an important role in medical image 
analysis and disease quantification. Yet, manual detection and mea
surement/segmentation of LNs in images by human observers is time- 
consuming and error prone (Feulner et al., 2013). Moreover, LNs are 
difficult to recognize and segment owing to the low contrast between 
LNs and surrounding soft tissues as well as due to the variation in nodal 
size and shape. 

This topic has received much attention in recent decades. Discrimi
native learning and a spatial prior probability have been used for LN 
detection and segmentation in chest computed tomography (CT) images 
(Feulner et al., 2013). The discriminative model was used to detect LNs 

from their appearance combined with the anatomical prior knowledge, 
and the graph cut method was used to segment LNs. In (Barbu et al., 
2012a), the authors proposed a learning-based approach that used 
marginal space learning for LN segmentation in the axillary region. 
Pathological LNs were detected and segmented in (Hoogi et al., 2017). 
The method employed machine learning techniques such as marginal 
space learning, convolutional neural network, and active contour 
models for organ detection, LN detection, and LN segmentation. All of 
the methods above are based on the hand-crafted features or prior 
knowledge to recognize and delineate LNs. 

Recently, fully convolutional networks (FCNs) (Long et al., 2015) 
were used for pixel-wise semantic segmentation tasks due to the 
development of deep learning methods, especially given the success of 
deep convolutional neural network (DCNN) models such as AlexNet 
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(Krizhevsky et al., 2012), VGG (Simonyan and Zisserman, 2014), and 
ResNet(He et al., 2016). Many semantic segmentation architectures 
after FCNs appeared used the encoder and decoder structure, such as 
SegNet (Badrinarayanan et al., 2017) and U-Net (Ronneberger et al., 
2015). However, there still exists a problem in the decoder part by 
recovering the low-resolution feature maps owing to the max-pooling 
operation. In (Chen et al., 2018), the dilated (or Atrous) convolution 
was proposed to overcome this problem, where 
Atrous-spatial-pyramid-pooling (ASPP) with various dilation rates was 
proposed to robustly segment objects at multiple scales. The DeepLab 
architecture has been designed by the integration of a ASPP sub-module 
in order to capture objects and context at multiple scales. Yet, it only 
uses one ASPP sub-module after the fifth max-pooling layer and did not 
exploit ASPP in different stages after the max-pooling operation that 
may miss some important features, especially from the small size of LNs. 
Moreover, it did not discuss the order that was employed for ASPP in the 
architecture, which is still an open question in terms of which layer/
layers should use ASPP in the architecture of DCNN. 

Although much success has been achieved in semantic segmentation, 
there are only a few works that employ semantic segmentation neural 
network for LN segmentation. In (Bouget et al., 2019), the authors 
combined U-Net and Mask R-CNN for segmentation and detection of 
mediastinal LNs. However, this method needs to train two DCNNs, 
which increased many repeat computations for feature learning because 
feature maps from U-Net can also be used in Mask R-CNN (Ren et al., 
2017). In (Oda, 2018), the 3D U-Net was trained to segment LNs and 
other anatomical structures on contrast-enhanced chest CT volumes. 
Yet, it incurs much computation cost and memory consumption, espe
cially GPU memory, given the 3D convolution operation. 

There are two issues which are not addressed by the LN segmentation 
methods reviewed above. Firstly, none of the proposed methods 
considered the imbalance in voxel classes between the LNs and the 
remaining part of the volumes, which will impede the training effi
ciency. In (Lin et al., 2017), they proposed a focal loss function for the 
dense object detection problem, which focused on the imbalance of the 
bounding box between the objects and the background by 
down-weighting the loss from the well-classified examples. Inspired by 
the focal loss function, an exponential loss function (Xu et al., 2020) is 
proposed for the slice classification task, which aims to classify each 
slice as to whether or not it contains pathological LNs on PET/CT. 
However, the problem of imbalance is more severe in the LN segmen
tation task owing to the fact that most voxels do not constitute LNs. 
Second, the multi-scale information from feature maps is helpful to do 
semantic segmentation in natural images (Chen et al., 2018), which did 
not used in LN segmentation. 

In this work, there are three novelties: 
Firstly, considering the merit of multi-scale feature analysis by ASPP 

and training time and efficiency, a new strategy is proposed by using 
more than one ASPP sub-module called multi-stage Atrous-spatial-pyr
amid-pooling (MS-ASPP) after the max-pooling layer in the encoder 
part, which could provide more context information into the decoder to 
aid with LN segmentation. We named this DiSegNet, which involves the 
integration of MA-ASPP into the SegNet architecture. 

Second, we tested the loss functions that are used to train the se
mantic segmentation network such as cross-entropy and Dice loss (Sudre 
et al., 2017), and found that these loss functions did not consider the 
imbalance of voxel classes. In (Lin et al., 2017), the authors designed a 
focal loss function for the imbalance problem of dense object detection. 
A new exponential loss function is proposed in (Xu et al., 2020) for 
pathological LN classification, which aims to handle the imbalance of 
slice classes that include and do not include LNs. Inspired by the idea of 
focal loss function (FL) and exponential loss function (EL), we propose a 
novel loss function named cosine-sine (CS) loss function to deal with the 
imbalance of voxel classes for LN segmentation in this study. Compared 
to FL and EL, the proposed CS loss function will up-weight the loss from 
misclassified voxels while down-weighting the loss from well-classified 

voxels, which facilitates the pathological LN segmentation task. 
Third, to our best knowledge, this is the first report of pathological 

LN segmentation in positron emission tomography/computed tomog
raphy (PET/CT) images of thorax based on DCNN. We also compared 
our method to other published papers that perform LN segmentation on 
CT or PET/CT volumes. 

In this paper, the definitions of the cross-entropy loss function and 
focal loss function are first introduced. Then, the materials are intro
duced in Section 2.1 and a novel cosine-sine (CS) loss function is pro
posed in Section 2.2.1. Two variants of the DiSegNet architecture that 
employ the MS-ASPP are introduced in section 2.3.2. In part 3 and part 
4, the experiments and discussion will be shown. Finally, the conclusion 
is provided. 

2. Materials and methods 

2.1. Materials 

This retrospective study was conducted following approval from the 
Institutional Review Board at the University of Pennsylvania (UPenn) 
along with a Health Insurance Portability and Accountability Act 
waiver. The data set was retrospectively selected from our health system 
patient image database by a board-certified radiologist (D.A.T), which 
consists of 63 18F-fluorodeoxyglucose (FDG) PET/CT image data sets 
from 63 subjects with either Hodgkin lymphoma or diffuse large B-cell 
lymphoma (DLBCL). Each CT image data set utilized in this study con
sisted of an average of 70 axial slices covering the entire thorax, with a 
mean pixel size of 1.14 mm × 1.14 mm and a mean slice spacing of 3.75 
mm without intravenous contrast material. Each PET image data set 
utilized in this study consisted of an average of 70 axial slices covering 
the entire thorax, with a mean pixel size of 4 mm x 4 mm and a mean 
slice spacing of 4 mm. We resized all PET images to CT size by using 
linear interpolation in order to match images and voxels from PET and 
CT. Abnormal LN delineations in the thorax on the PET/CT data sets 
were first performed to serve as ground truth, where abnormal LNs were 
initially identified from PET and CT images by a board-certified radi
ologist (co-author D.A.T), and then LN masks were subsequently created 
by interactive thresholding on the PET images followed by manual 
adjustment using information from the accompanying CT images. Note 
that only the abnormal LNs in the mediastinal and hilar portion of thorax 
were included in our study, which has 176 LNs and 38 LNs respectively. 

In this study, four-fold cross-validation was performed on 63 PET/CT 
data sets for all different network architectures, such as FCN, U-Net and 
DiSegNet. In each experiment, 10 data sets were selected randomly for 
testing and the other 53 for training. Moreover, we did not use a vali
dation set for early stopping of optimization. 

Pathological LN segmentation can be divided into two tasks: LN zone 
recognition and LN segmentation in LN zones. A strength of LN zone 
recognition is that it excludes much irrelevant territory that does not 
include LNs, thereby reducing the amount of required computation for 
LN segmentation. In our prior work, thoracic LN zones are recognized by 
using our automatic anatomy recognition (AAR) method proposed in 
(Udupa, 2014) and (Xu et al., 2018). In the current work, we will only 
focus on the second task, namely pathological LN segmentation in the 
recognized thoracic LN zones. For more details of AAR, please see 
(Udupa, 2014; Xu et al., 2018). 

2.2. Methods 

In this section, we will investigate different loss functions such as 
cross-entropy and focal loss. Then, the definition of the proposed cosine- 
sine (CS) loss function is introduced. 

2.2.1. Definition of loss function 
The cross-entropy (CE) loss for binary classification is as follows: 
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CE(p, y) =
{

− log(p), if y = 1
− log(1 − p), otherwise (1) 

Here, the above y ∈{1, 0} means a class label of LNs and background, 
and p ∈{1, 0} is the model’s estimated probability of the LN class label. 
For notational convenience, we define pt: 

pt =

{
p ify = 1

1 − p otherwise (2) 

There, we can rewrite CE(p,y) = CE(pt) = -log(pt). The CE loss 
function is shown in Fig. 1. 

In (Lin et al., 2017), the authors introduced a focal loss function to 
deal with the imbalance of object detection problem. The definition of 
focal loss is as follows: 

FL(pt) = − (1 − pt)
γlog(pt) (3) 

It is a variant of cross-entropy loss function that incorporates a 
modulating factor. It can down-weight easily classified examples and 
focus training on hard-to-classify examples. The FL loss function can be 
seen in Fig. 1 with γ = 2. 

We extend the idea of the focal loss function and propose a new loss 
function called cosine-sine (CS) loss function in this paper. The cosine- 
sine (CS) cross-entropy loss function is designed to address the class 
imbalance (e.g., 1:2000 in one slice) problem in the number of voxels 
between the foreground (LNs) and background classes during the 
training process. We introduce the CS loss starting from the definition as 
follows: 

CS(pt) = − γ(cos(pt) − αsin(pt) )log(pt) (4) 

The CS loss is shown in Fig. 1 withα = 0.64 and γ = 2. Compared to 
the CE and FL loss functions, there are two properties of the CS loss. (1) 
When a voxel is misclassified and the estimated probability is small, it 
will increase the loss value with γ greater than 1. Therefore, the training 
network could focus on the misclassified examples (voxels). However, as 
the probability increased, the loss for these well-classified examples 
(voxels) will be decreased in terms of CE loss. Meanwhile, the CS loss 
will not reduce so quickly for the well-classified examples compared to 
the FL loss. This indicates that the training network is still able to reduce 
the loss value from well-classified examples (2) The modulating 
parameter γ is flexible for use in different situations. For example, if γ is 
less than 1, the CS loss will become the FL loss form. The CS loss can be 
seen for several values of γ in Fig. 2 below. 

2.2.2. Multi-stage atrous spatial pyramid pooling (MS-ASPP) and DiSegNet 
Firstly, we will introduce the concept of dilated convolution and then 

show how to use it in the SegNet architecture. In a one-dimensional 
space, the output of dilated convolution is defined as: 

y[i] =
∑K

k=1
x[i + r⋅k]w[k] (5)  

where x[i] is the 1-D input signal, y[i] is the output signal, and w[k] 
represents a filter with the length K. The rate parameter r corresponds to 
the dilated rate. The filter will become the standard convolution with the 

Fig. 3. Illustration of dilated convolution. Left: Standard convolution with kernel size 3 × 3; Right: Dilated convolution with the kernel size 3 × 3, a dilation rate r =
2, which will enlarge the reception filed with 5 × 5. The dark blue boxes will insert zeros when performing dilated convolution (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article). 

Fig. 1. Cross-entropy (CE) loss function, focal loss (FL) function with γ = 2, and 
cosine-sine (CS) loss function with γ = 2. 

Fig. 2. The CE loss and CS loss with different modulating parametersγ. It can be 
seen that CS loss will reduce the relative loss for well-classified examples. 
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rate r = 1. 
In the LN segmentation system, 2-D dilated convolution is performed 

by inserting zeros between filter values. For a convolution kernel with 
size k × k, the size of the resulting dilated filter is kd x× kd, where kd = k 
+ (k - 1) × (r - 1). The illustration of dilated convolution is shown in 
Fig. 3 below with kernel size 5 × 5, the light blue color with red points 
indicating the kernel values and the dark blue color indicating insertions 

of zeros. The dilated convolution offers an elegant way to control the 
receptive field and maintain the high resolution of feature maps by the 
dilated rate of the corresponding layer, which can also obtain the result 
after the max-pooling operation. 

Here, we introduce a multi-stage Atrous-spatial-pyramid-pooling 
(MS-ASPP) sub-module that can be integrated seamlessly into the orig
inal SegNet architecture to improve the final LN segmentation perfor
mance. MS-ASPP is composed of Atrous-spatial-pyramid-pooling (ASPP) 
module, which can be seen in Fig. 4. 

Compared to the original ASPP proposed in (Chen et al., 2018), we 
introduced a 1 × 1 convolution kernel from the Inception module 
(Szegedy et al., 2015), which includes a smaller number of more 
spatially spread out clusters than other larger convolution sizes. More
over, we reduce the rate to 2 and 4 by considering the size of LNs in 
PET/CT. 

The ASPP can also deal with the “gridding” effect from the dilated 
convolution as reported in (Chen et al., 2018). In our study, we use ASPP 
in the multi-stage after max-pooling of the SegNet framework. The ASPP 
can extract more local contextual information in the previous stage at a 
different dilation rate, and can also extract more global contextual in
formation in the subsequent stage after max-pooling, which could help 
to recover LN boundaries in the decoder part. Another benefit of 
MS-ASPP is that it can use arbitrary dilation rates in different stages in a 
parallel way to train network, which will not increase training time. 
Moreover, the MS-ASPP can be integrated with other semantic networks 

Fig. 5. An illustration of two DiSegNet architectures which add multi-stage atrous spatial pyramid pooling.  

Fig. 4. The structure of ASPP. It contains one 1 × 1 convolution kernel with the 
rate 1, and three 3 × 3 convolution kernels with the rate 1, 2, and 4, 
respectively. 
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like U-Net and FCN which use the same encoder and decoder structure. 
In this study, we designed two kinds of architecture that use MS- 

ASPP in SegNet, named DiSegNet-1 and DiSegNet-2 in order to study 
their differences from the original SegNet. The DiSegNet is inspired by 
SegNet (Badrinarayanan et al., 2017) which is composed of encoder and 
decoder modules. The encoder part performs object recognition, (for 
example, LNs), by a convolutional network, which includes convolution, 
batch normalization, rectified-linear unit (ReLU), and max-pooling. The 
decoder part completes the delineation task of objects, which is 
composed of upsampling, convolution, batch normalization, and ReLU, 
where softmax is employed in the last layer. The architecture can be seen 
in Fig. 5 below. In DiSegNet-1, two ASPP modules are employed after 
max-pooling. The output feature maps from ASPP are concatenated with 
the feature maps after the corresponding upsampling operation in the 
decoder. In DiSegNet-2, the feature maps from two ASPPs are processed 
by 1 × 1 convolution and transposed convolution, and recover the size 
256 × 256 of each feature map which is equal to the output of the last 
upsampling operation from the decoder. Then, the feature maps from 
two ASPPs and one upsampling operation are concatenated which help 
LN segmentation by providing more contextual information in the 
decoder. 

In summary, the main difference of DiSegNet and SegNet lies in the 
multi-stage ASPP modules that are added in to the network as shown in 
Fig. 5. We use Atrous-spatial-pyramid-pooling (ASPP) after the max- 
pooling operation to extract features on two different resolution 
feature maps from max-pooling layer. The output feature maps of MS- 
ASPP combined with the feature maps from the upsampling operation 
are used for boundary delineation in the decoder module. Compared to 
U-Net which passes the feature maps of the encoder directly into the 
decoder, our proposed DiSegNet make use of an ASPP module which 
helps to extract more contextual information from the encoder. 

3. Results 

In this work, we utilize the VGG16 framework by discarding the fully 
connected layers combined with MS-ASPP module in the encoder part. 
The stochastic gradient descent with momentum optimizer is used. The 
momentum value, the initial learning rate, and the minimum batch size 
are 0.9, 0.001 and 4, respectively. The proposed cosine-sine (CS) loss 
function is employed as the objective function for training the network, 
and the cross-entropy loss, focal loss, and dice loss functions are used as 
control groups. Considering the imbalance of the class labels between LN 
voxels and the background, we use median frequency balancing (Eigen 
and Fergus, 2015), where the weight assigned to the loss function is 
calculated by the median of class frequencies divided by the class fre
quency from the training set. The augmentation strategy is also 
employed with random translation in the horizontal and vertical di
rections ranging from -10 to 10 voxels. The MSRA method described in 
(Kaiming et al., 2015) is employed for weight initialization. We itera
tively updated models for 40 epochs, where each epoch refers to a block 

of iterations throughout the whole training set. 
We use SegNet, FCN16 s, and DeepLabv3+ as benchmark for com

parison with DiSegNet under different loss functions. Two variants of 
DiSegNet were designed in order to test how to layout ASPP in the 
SegNet. The architecture of DiSegNet-1 is shown in Fig. 5(a). The 

Fig. 6. The training accuracy of DiSegNet-2 using different loss functions 
including cross-entropy (CE) loss, cosine-sine (CS with γ = 10 and α = 0.64) 
loss, focal loss (FL with γ = 2), and Dice loss (DL). 

Fig. 7. The mean sensitivity after different epochs on one-fold 10 testing 
data sets. 

Table 1 
Comparison of different networks with various loss functions for 40 epochs. The 
mean and SD of Dice similarity coefficient (DSC) are displayed.  

Loss  CE DL FL CS 

Network  DSC DSC DSC DSC 

SegNet 
Mean 0.71 0.65 0.56 0.72 
SD 0.04 0.04 0.09 0.01 

FCN16s Mean 0.60 0.68 0.53 0.69 
SD 0.03 0.08 0.04 0.06 

DeepLabv3+
Mean 0.74 0.71 0.75 0.74 
SD 0.08 0.07 0.07 0.01 

DiSegNet-1 
Mean 0.75 0.74 0.71 0.77 
SD 0.06 0.04 0.05 0.05 

DiSegNet-2 
Mean 0.71 0.74 0.68 0.72 
SD 0.07 0.05 0.07 0.04  Fig. 8. The mean DSC after different epochs on one-fold testing data sets.  
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architecture of DiSegNet-2 is seen in Fig. 5(b) where we put the two 
ASPP modules into the last convolution layers after concatenation to the 
feature maps from the last up-sampling layer. It should be noted that we 
use 1 × 1 convolution and transpose convolution after ASPP to make the 
size of feature map equal to the output mask. 

Dice similarity coefficient (DSC) is utilized to evaluate the perfor
mance of the LN segmentation in terms of voxel level and region level. 
The DSC is calculated as follows: 

DSC =
2TP

2TP + FP + FN
(6) 

The four-fold cross validation strategy is employed with 10 mutually 
exclusive data sets in each fold used for testing, namely leave-10-cases- 
out validation. Note that we did not use validation set for early termi
nation of optimization. The mean and standard deviation (SD) of DSC 

under different architectures are shown in Table 1 below. 
Comparing the different loss functions within the same network ar

chitecture (every row in Table 1), the proposed CS loss function ach
ieved the best result in terms of DSC. The network architecture that used 
multi-stage Atrous-spatial-pyramid-pooling (MS-ASPP) achieves good 
performance of DSC compared to other network architectures, indi
cating that the MS-ASPP added to the SegNet architecture could reduce 
false positive voxels while maintaining a good performance for true 
positive voxels. 

We used the first 200 iterations of the DiSegNet-2 to compare the 
training performance using different loss functions. The accuracy of the 
training stage was assessed to see the changes based on the various loss 
functions as seen in Fig. 6 below. 

The accuracy was the highest with use of the CS loss function in the 
training stage, which means that the time for training for the neural 

Fig. 9. shows one single representative axial slice of the LN segmentation results by using different networks with different loss functions.  
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network can be reduced by using the CS loss function. Experiments were 
also performed by calculating the testing performance of one fold in 
different epochs, where an epoch refers to a unit of iterations throughout 
the whole training set. Here, we compare SEN (Sensitivity) and DSC 
(Dice similarity coefficient) for CE and CS as the loss functions by using 
the architecture of DiSegNet-2 as seen in Figs. 7 and 8below. SEN was 
much more stable by using the CS loss function compared to the CE loss 
function. Meanwhile, the performance as per DSC is better with CS than 
with CE. 

Fig. 9: The first row shows single CT and PET image slices along with 
abnormally enlarged FDG-avid lymph nodes in the mediastinum (pre
vascular and right paratracheal stations) and bilateral axillae. The 
abnormal mediastinal lymph node segmentation results using SegNet, 
FCN16 s, DiSegNet-1, and DiSegNet-2 are shown in the second through 
fifth rows, respectively. The blue contours indicate the ground truth 
boundaries of selected mediastinal lymph nodes, and the red contours 
indicate segmentation results. The segmentation results utilizing CE, DL, 
FL, and CS loss functions are shown in the first column through fourth 
columns, respectively. 

The segmentation results following use the proposed CS loss function 
were more stable comparing to CE, DL and FL loss function, which 
demonstrated in the last column. Moreover, the results from the DiS
egNet which used MS-ASPP are more competitive, especially the 
DiSegNet-2. In summary, the DiSegNet with CS loss function can achieve 
better performance than other combinations, which can be seen in the 
Fig. 9. 

In Table 2, we compare the results of our approach with other pub
lished methods for automatic LN segmentation. To the best of our 
knowledge, there are no previously published works regarding the 
automatic pathological LN segmentation on PET/CT studies using 
DCNNs in thorax. Moreover, it is worth noting that the CT data sets from 
PET/CT are typically acquired as low dose unenhanced CT images. In 
summary, our approach does segmentation of pathologic LNs of thorax 
on low dose CT and PET images. The previous methods in (Bouget et al., 
2019) and (Tang et al., 2019; Barbu et al., 2012b; I. N. B et al., 2003; 
Moe et al., 2019) did not make use of multi-scale information to help LNs 
segmentation. Yet, our approach integrate Atrous-spatial- 
pyramid-pooling (ASPP) module into SegNet architecture with novel 
CS loss function, which shows that it can help LNs segmentation. 

4. Discussion 

In this paper, we aim two issues, which are not addressed by the 
previous LNs segmentation. The first is the imbalance of voxel classes 
and the second is the lack of multi-scale information from feature map of 
SegNet. Keeping this in mind, we proposed a novel deep convolutional 
neural network (DCNN) named DiSegNet to overcome these two issues. 

Firstly, the proposed CS loss function could up-weight the loss from 
misclassified voxels. The idea is similar to the AdaBoost(Freund and 
Schapire, 1995), which emphasize the misclassified examples (voxels) 
and try to improve the performance in the next training iteration. It 
makes the neural network focus on the misclassified voxels. Meanwhile, 
the CS loss function will also down-weight the loss from well-classified 
voxels compared to CE loss function. It will reduce the relative loss for 
well-classified examples, giving more focus on misclassified examples 
further. Compared the performance by using FL, which only 
down-weight the well-classified examples, the proposed CS loss function 
enables training highly accurate and fast DCNN for LNs segmentation in 
the presence of large number of background examples (Non LN voxels). 
Considering the location prior of LNs, for example, LNs cannot be inside 
any organ in the mediastinum, some anatomical structures can be 
excluded, which could relieve the imbalance of training classes in the 
further way. 

Second, we integrate the module atrous spatial pyramid pooling 
(ASPP) into SegNet architecture which used multiple parallel atrous 
convolutional layer with different sampling rates. The multi-scale 
feature information could be extracted from feature maps by using 
ASPP, which will increase feature resolution to help LNs segmentation in 
the decoder part of the network. Here, we designed two ways that 
integrate the ASPP into SegNet (named DiSegNet-1 and DiSegNet-2) in 
order to explore the optimal way to make use of multi-scale feature 
information from dilated operation. Compared to the final segmentation 
results, we found that the DiSegNet-1 can achieve better DSC than 
DiSegNet-2. The main reason may lie in the mode of the multi-scale 
information organization. In the DiSegNet-1, the multi-scale feature 
maps passed to the each layer of the decoder part, which may contain 
more information for improving the DSC performance. 

Despite the novelties discussed above, there are also some limitations 
in this work. Firstly, we did not explore the performance that trained by 
single modalities, e.g., CT or PET. Second, the shape and location in
formation are of LN have not integrated into the proposed DiSegNet 
architecture, which may help LNs segmentation task. 

5. Conclusion 

In this work, we proposed a simple but effective cosine-sine (CS) loss 
function as an objective function for training different networks to deal 
with the imbalance class problem for LN segmentation. The CS loss 
function can focus on learning the hard-to-classify (misclassified) voxels 
(examples) and down-weight the well-classified voxels (examples) at the 
same time. Our experimental results show that the proposed loss func
tion can achieve good results for automatic abnormal LN segmentation 
in PET/CT images. 

Moreover, we designed a multi-stage Atrous spatial pyramid pooling 
(MS-ASPP) sub-module that can be integrated into the SegNet archi
tecture to improve the semantically accurate predictions and detailed 
segmentation along LN boundaries owing to the ability of multi-scale 
feature learning. 

The proposed CS loss function and DiSegNet can also be used in other 
applications, such as natural images, and the encoder module can be 
replaced by using other network structures such as ResNet, or AlexNet, 
which can be studied in future research. 
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Table 2 
Comparison with other methods on CT or PET/CT images for automatic lymph 
node segmentation. The standard deviation values are shown in parentheses. 
DSC = Dice similarity coefficient.  

Method Body Region DSC Data sets 

Bouget et al. 
(2019) 

Thorax 0.409 ±
9.67 

15 lung cancer CT data sets 

Tang et al. (2019) Thorax +
Abdomen 

0.825 ±
0.112 

176 lymphadenopathy CT data 
sets 

Barbu et al. 
(2012b) 

Axilla 0.80 ±
0.126 

131 lymphadenopathy CT data 
sets 

Pelvis +
Abdomen 

0.76 ±
0.127 54 lymphoma CT data sets 

Nogues et al. (I. N. 
B et al., 2003) 

Thorax +
Abdomen 

0.82 ±
0.096 

171 lymphadenopathy CT data 
sets 

(Moe et al. (2019) Head and 
neck 

0.75 ±
0.12 

197 tumor and pathologic 
lymph nodes PET/CT data sets 

Ours (DiSegNet-1 
with CS) 

Thorax 0.77 ±
0.05 

63 lymphoma PET/CT data sets  
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