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ABSTRACT   

Lesion segmentation has remained a challenge in different body regions. Generalizability is lacking in published 
methods as variability in results is common, even for a given organ and modality, such that it becomes difficult to 
establish standardized methods of disease quantification and reporting. This paper makes an attempt at a generalizable 
method based on classifying lesions along with their background into groups using clinically used visual attributes. 
Using an Iterative Relative Fuzzy Connectedness (IRFC) delineation engine, the ideas are implemented for the task of 
liver lesion segmentation in computed tomography (CT) images. For lesion groups with the same background properties, 
a few subjects are chosen as the training set to obtain the optimal IRFC parameters for the background tissue 
components. For lesion groups with similar foreground properties, optimal foreground parameters for IRFC are set as the 
median intensity value of the training lesion subset. To segment liver lesions belonging to a certain group, the devised 
method requires manual loading of the corresponding parameters, and correct setting of the foreground and background 
seeds. The segmentation is then completed in seconds. Segmentation accuracy and repeatability with respect to seed 
specification are evaluated. Accuracy is assessed by the assignment of a delineation quality score (DQS) to each case. 
Inter-operator repeatability is assessed by the difference between segmentations carried out independently by two 
operators. Experiments on 80 liver lesion cases show that the proposed method achieves a mean DQS score of 4.03 and 
inter-operator repeatability of 92.3%.   
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1. INTRODUCTION  
As liver cancer is among five cancers causing the most deaths worldwide, and metastatic lesions are common in the liver, 
a precise analysis of liver lesions is needed to exactly evaluate lesional properties and burden and to guide possible 
applicable therapies1. However, to segment liver lesions in computed tomography (CT) images is a challenging task due 
to a number of factors, including the irregularity of lesion shape, the inhomogeneity of lesion tissues, and the similarities 
between the image characteristics of lesions with a variable number of surrounding normal tissues. A common approach 
is for a trained operator to manually segment the lesions, which is time-consuming and subjective due to the differences 
of skill, expertise, and experience among operators2. Since the diversity and complexity of liver lesions make it 
inadequate to perform lesion segmentation automatically3, the semi-automatic approach is more feasible and suitable to 
accomplish the task.  

In the past ten years, many semi-automatic methods1-6 have been developed for segmentation of various types of liver 
lesions from CT scans by applying some basic image segmentation algorithms, such as thresholding, region growing, 
level set, and watershed. By combining adaptive thresholding with model-based morphological processing, Moltz et al.4 
present a semi-automatic algorithm for segmentation of liver metastases in CT scans. By using the watershed algorithm 
first for liver contour extraction, and region growing and level-set based surface smoothing methods for segmentation 
refinement, a semi-automatic technique based on a minimum cross-entropy multi-thresholding algorithm1 is developed 
for liver tumor segmentation. Based on 2D region growing with knowledge-based constraints, Wong et al.2 propose a 
semi-automatic method to segment liver tumors from constituent 2D slices obtained from 3D CT images. Based on a 
marker-controlled watershed transformation, a semi-automatic method developed by Yan et al.5 can accurately segment 
3D liver metastases in volumetric CT images. In addition, for the segmentation of complicated liver lesions, a local 
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multiphase C-V level set algorithm integrated with multilevel Otsu threshold selection method is proposed6. Although 
these methods achieve good segmentation performance, they are effective only for the specific types of liver lesions on 
which they have been validated. Most existing methods also require a region of interest (ROI) to be specified around the 
lesion or prior information about the boundary of the liver. 

The goal of this paper is to develop a general strategy to segment all (or most) types of liver lesions. The premise of the 
approach is that by classifying the lesions into groups based on their clinically employed visual attributes and the 
attributes of their background, and by determining the group with which a lesion is identified, they can be segmented by 
using an effective delineation engine based on parameters preset for the group. This study is an instance from a larger 
project to develop a similar general strategy to segment lesions body-wide based on standardized grouping of lesions 
employing clinically used visual attributes.  

 

2. METHOD 
The group-based method for lesion segmentation consists of two main steps: classifying lesions into groups and 
segmenting the grouped lesions using an Iterative Relative Fuzzy Connectedness (IRFC) algorithm as the delineation 
engine7. The segmentation performance is assessed by accuracy and repeatability with respect to seed specification.  

2.1 Lesion classification  

An overview of the lesion classification approach is shown in Figure 1. Consider N subjects whose livers contain M 
lesions, labeled L1, L2, …, LM. Generally, the number of lesions M is much larger than N. The clinically used visual 
attributes commonly considered for lesion description can be categorized into two classes – C1: those that are geometric 
(spherical, ovoid, polygonal, etc.), morphological (extensive, small, etc.), spatial/geographical (central, peripheral, etc.), 
and topological (solitary, multiple, etc.), and C2: those that are image appearance related (focal, diffuse, homogeneous, 
heterogeneous, gas-filled, fatty, cystic, etc.). Since many lesions have the same attributes (within the same organ or 
anywhere in the body), M lesions can be classified and merged into T groups, where T is much smaller than M.  Since 
properties in C1 matter much less than those from C2 from the viewpoint of lesion delineation, we use the lesion 
appearance property, denoted lap, as the primary basis for grouping. In addition, considering the fact that background 
objects can be quite diverse, we take the lesion occupation property, denoted lop, as the secondary consideration for 
classification. To keep the grouping concise, we consider only two situations. The simple case of the lesions being 
situated in the organ interior proper is represented by lop = 0, which means that the possible background co-objects or 
tissues for the lesion are just the normal tissues in that organ. For lesions in the vicinity of the organ boundary, there are 
other background co-objects or tissues adjacent to the organ, such as bone, muscle, and fat, which play an important role 
in deciding the segmentability of the lesions. For this case we assign lop = 1.   

S1 SNS2

L1 L2 Li+j LM-k+1Li… Li+1 Li+2 LM-k+2 LM… … 

… 

Grp(1, lop) Grp(2, lop) Grp(T, lop)… 

… … … … 

… … … 
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Grp(1, 0) Grp(1, 1) Grp(2, 0) Grp(2, 1) Grp(T, 0) Grp(T, 1)… 

… 
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Figure 1. A schematic representation of the lesion classification approach.  
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2.2 Lesion segmentation 

For actual delineation, the IRFC engine is used, which constitutes a top-of-the-line algorithm in the fuzzy connectedness 
(FC) family. The framework we describe here may use any other effective delineation engine properly tuned to the 
framework in place of IRFC. IRFC relies on correctly identifying all relevant background tissue components that are 
distinct and that constitute topological neighbors of the lesion under consideration. These are the only background tissues 
that matter for delineation. At the core of IRFC (and any FC) method is what is referred to as an affinity function8-10, 
which can be described completely by the mean (μ) and standard deviation (σ) of each background tissue component and 
the lesion itself. Since the number of distinct (normal) tissue types and their appearance patterns in CT imagery is small, 
lesions which have similar intensity attributes can be further grouped based on their background configuration. This 
strategy allows categorizing lesions based on their own image attributes into groups and subdivided into finer groups 
based on background tissues. 

For lesions in any group Grp(lap, lop), lap =1, 2, 3, …, T, lop∈{0, 1}, which have similar background properties, the 
background parameters (μbi, σbi) for each background tissue type i are estimated from a sufficient number of normal 
tissue samples taken from regions of tissue i. The background configuration for lesions in the organ interior is related to 
only the tissue type appearing in that organ. On the other hand, when the lesions are located near or at the organ 
boundary, the number of background tissue types increases due to other adjacent normal tissues. For lesions in any group 
Grp(lap, lop), lap∈{1, 2, 3, …, T}, lop = 0, 1, which have similar lesion properties, the foreground parameters (μf, σf) 
are optimized by taking the median values of μ and σ in the set {(μ, σ): (μ, σ) are the mean and standard deviation of 
image intensities of lesions from a training set of lesions in the group}. Averages taken over all lesions for μ and σ are 
not as representative of the lesion characteristics as the median values. Generally, the number of lesion types T and the 
within-class distances between types are decided based on prior learning from a sufficiently large number of images 
containing lesion pathology.  

For delineating a lesion in a given test image, first the correct group is identified. This is at present done manually by an 
operator who has been trained on the above lesion categorization process. The rest of the interactive operations required 
for completing the 3D delineation of the lesion are loading the foreground and background parameters for that identified 
group, and specifying at least one seed voxel in each background tissue region and the foreground region of the lesion. 
Delineation is then completed within a couple of seconds. 

2.3 Segmentation evaluation  

The above framework has been implemented in the CAVASS software system11. We performed two types of 
evaluations, one for testing the repeatability of delineations and another for testing their accuracy. The theoretical 
robustness property of IRFC (and all FC methods) to seeds guarantees the same delineation result if different seeds are 
placed in the “same” tissue regions and lesion. Since the interpretation of “same” regions can have inter-operator 
variations, we tested this inter-operator component by having two operators specifying seeds. If A and B represent binary 
delineations in two trials, repeatability or precision r is defined as r = |A∩B| / |A∪B| where |X| denotes volume of X.  

Assessment of accuracy of the delineation of lesions is very challenging because of the inherent difficulty associated 
with establishing reliable surrogates of the ground truth idea that resides only in the collective qualitative wisdom of 
experts. Although several ideas have been published on this issue, no common method has evolved. Therefore, we took 
the approach of scoring the quality of the delineations on a 1-5 delineation quality scale, DQS. The higher the DQS 
score, the better is the segmentation result. A board certified radiologist (co-author Torigian) scored all tested lesions. To 
judge the quality of the delineations, each segmented lesion was visualized as a colored overlay over the CT image slice 
display with a mouse click “on” “off” option for helping to examine the segmentation as well as the underlying intensity 
pattern. A fixed preset gray-level mapping corresponding to soft tissues was used for all image displays in this visual 
quality scoring experiment. 

 

3. RESULTS 
This retrospective study was conducted following approval from the Institutional Review Board at the Hospital of the 
University of Pennsylvania along with a Health Insurance Portability and Accountability Act waiver. The utilized 
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pathological abdominal CT data sets consist of 40 subjects (age: 24-83 years), which include 22 male and 18 female 
subjects. The voxel size in these contrast enhanced images was about 0.83 x 0.83 x 5.00 mm3.  

Since the intensities of the normal abdominal tissues vary considerably in different subjects, we first classify the 
background objects into three intensity levels. (Based on our observation, this variation is much less in other body 
regions, especially the thorax, and hence the number of groups can be much smaller in those regions.) Due to the large 
range of intensities, the liver lesions from each intensity level are aggregated into 3 or 4 different types. Subsequently, 
we chose 5 lesions and 5 subjects as the training subset for estimating the affinity parameters for each lesion type and 
background objects in that intensity range. Note that the intensities of the liver vessels and the renal cortices are set as the 
same value due to their high similarity. Based on the above analysis, we arrived at 22 liver lesion groups in total, as 
shown in Table 1.  

 

Table 1. Lesion and background types and the corresponding parameters expressed in Hounsfield Units. 

Background 
intensity level 1 

Lesion 
properties 

(μf1, σf1) (-9, 17) 

(μf2, σf2) (11, 17) 

(μf3, σf3) (36, 16) 

Background 
properties 

{(μb0i, σb0i)} Liver (66, 17); liver vessels (122, 20). 

{(μb1i, σb1i)} 
Bones (440, 188); peripheral tissue of kidneys (122, 20); 
liver (66, 17); muscle (38, 19); fat (-108, 16); gallbladder 
(9, 17); lung and air (-811, 109). 

Background 
intensity level 2 

Lesion 
properties 

(μf1, σf1) (-3, 18) 

(μf2, σf2) (28, 17) 

(μf3, σf3) (47, 18) 

(μf4, σf4) (67, 11) 

Background 
properties 

{(μb0i, σb0i)} Liver (105, 19); liver vessels (179, 24). 

{(μb1i, σb1i)} 
Bones (483, 195); peripheral tissue of kidneys (179, 24); 
liver (105, 19); muscle (48, 20); fat (-111, 17); gallbladder 
(9, 18); lung and air (-810, 109). 

Background 
intensity level 3 

Lesion 
properties 

(μf1, σf1) (19, 22) 

(μf2, σf2) (52, 25) 

(μf3, σf3) (86, 20) 

(μf4, σf4) (128, 14) 

Background 
properties 

{(μb0i, σb0i)} Liver (153, 14); liver vessels (241, 19). 

{(μb1i, σb1i)} 
Bones (503, 222); peripheral tissue of kidneys (241, 19); 
liver (153, 14); muscle (60, 16); fat (-97, 14); gallbladder 
(28, 12); lung and air (-795, 124). 

 

After creating the above lesion group library, each liver lesion to be segmented is assigned to the most suitable lesion 
group. Figure 2 shows 6 common liver lesions and their corresponding delineation results. Note that for the case in 
column 3, we consider only the large homogeneous lesion. Their grouping information is listed in Table 2.   

Clearly the lesions in columns (1) and (5) are segmented perfectly by the group-based IRFC method, their DQS score 
was given as 5. The lesions in columns (2) and (3) also can be segmented with good accuracy, despite the missing of a 
small part of lesion region with relatively large deviations. Their DQS score was set to 4. The segmentation of the lesions 
in columns (4) and (6) are not so good due to a slightly larger difference of lesion properties between the actual value 
and the most suitable parameters in lesion group library. In these cases, the score was 3. 
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Figure 2. Examples of lesion delineations where the result is overlaid on the original CT slice for six lesions. Columns: 1, 2, 
3, 4 – focal cysts, peripheral in columns 1, 2, and 4 and central in 3. Columns 5, 6 – focal, peripheral, heterogeneous, and 
malignant lesions.  

 

Table 2.  Group information of lesions in Figure 2.  

Image Background intensity level Lesion group 

Column 1 2 Grp(2, 0) 

Column 2 2 Grp(1, 1) 

Column 3 3 Grp(1, 0) 

Column 4 1 Grp(1, 1) 

Column 5 3 Grp(3, 1) 

Column 6 2 Grp(3, 1) 

 

Table 3.  Accuracy assessment: DQS score distribution.  

DQS score  Number of lesions % 

5 36 45.00 

4 21 26.25 

3 14 17.50 

2 7 8.75 

1 2 2.50 

 

Table 4.  Assessment of repeatability of delineations. 

Lesion |A∩B| |A∪B| Repeatability r Lesion |A∩B| |A∪B| Repeatability r 

L1 45 51 0.88 L6 2707 2708 1.00 

L2 71 113 0.63 L7 74 75 0.99 

L3 17 17 1.00 L8 218 298 0.73 

L4 72 72 1.00 L9 92 92 1.00 

L5 1667 1667 1.00 L10 77 77 1.00 

Proc. of SPIE Vol. 9786  978623-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/29/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 

 

We randomly selected 80 liver lesions from 20 subjects to assess the accuracy via DQS score following the above 
scoring principle. As shown in Table 3, 88.75% of the lesions are segmented by the proposed method at or above a score 
of 3, and 71.25% of the lesions can be segmented at or above a score of 4. The method achieved a mean DQS score of 
4.03 over the 80 lesions. 

The assessment of repeatability is performed on 10 liver lesion segmentation cases. Table 4 shows that the proposed 
method has high repeatability with an average value of r = 0.92.   

 

4. CONCLUSIONS 
Lesion segmentation has remained a challenge in different body regions. Generalizability is lacking in published 
methods as variability in results is common, even for a given organ, such that it becomes difficult to establish 
standardized methods of disease quantification and reporting. This paper makes an attempt at a generalizable method 
based on classifying lesions with their intensity and location properties, which are usually expressed by visual qualitative 
attributes in CT images as well as the characteristics of background tissue regions in their neighborhood. To our 
knowledge, such an effort has not been made to date. The idea is demonstrated and implemented on liver lesions in CT 
images. Based on preset parameters derived for each liver lesion group from a few training samples, the IRFC-based 
delineation method can segment most of the liver lesions effectively wherein the operator identifies seeds as per group 
protocol to identify the lesion and background tissue regions. Our experimental evaluation shows that the proposed 
method can be used to segment liver lesions in this standardized manner with a mean DQS score of 4.03 and inter-
operator repeatability of 92.3%.  

Though there are still some complicated cases which cannot be handled effectively, such as multiple liver lesions with 
high density in the same CT slice, and highly heterogeneous liver lesions, other lesion attributes may be usefully added 
for auxiliary segmentation in such cases. In addition, refinement of the parameters of the lesion group library and 
automation of the current manual group selection operation may reduce false negative regions (under-segmentation 
problem) and improve the implementation efficiency. We are also extending this methodology body-wide to other 
organs.         
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