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Purpose: Radiological imaging and image interpretation for clinical decision making are mostly
specific to each body region such as head and neck, thorax, abdomen, pelvis, and extremities. In this
study, we present a new solution to trim automatically the given axial image stack into image volumes
satisfying the given body region definition.
Methods: The proposed approach consists of the following steps. First, a set of reference objects is
selected and roughly segmented. Virtual landmarks (VLs) for the objects are then identified by using
principal component analysis and recursive subdivision of the object via the principal axes system.
The VLs can be defined based on just the binary objects or objects with gray values also considered.
The VLs may lie anywhere with respect to the object, inside or outside, and rarely on the object sur-
face, and are tethered to the object. Second, a classic neural network regressor is configured to learn
the geometric mapping relationship between the VLs and the boundary locations of each body
region. The trained network is then used to predict the locations of the body region boundaries. In
this study, we focus on three body regions — thorax, abdomen, and pelvis, and predict their superior
and inferior axial locations denoted by TS(I), TI(I), AS(I), AI(I), PS(I), and PI(I), respectively, for any
given volume image I. Two kinds of reference objects — the skeleton and the lungs and airways, are
employed to test the localization performance of the proposed approach.
Results: Our method is tested by using low-dose unenhanced computed tomography (CT) images of
180 near whole-body 18F-fluorodeoxyglucose-positron emission tomography/computed tomography
(FDG-PET/CT) scans (including 34 whole-body scans) which are randomly divided into training and
testing sets with a ratio of 85%:15%. The procedure is repeated six times and three times for the case
of lungs and skeleton, respectively, with different divisions of the entire data set at this proportion.
For the case of using skeleton as a reference object, the overall mean localization error for the six
locations expressed as number of slices (nS) and distance (dS) in mm, is found to be nS: 3.4, 4.7, 4.1,
5.2, 5.2, and 3.9; dS: 13.4, 18.9, 16.5, 20.8, 20.8, and 15.5 mm for binary objects; nS: 4.1, 5.7, 4.3,
5.9, 5.9, and 4.0; dS: 16.2, 22.7, 17.2, 23.7, 23.7, and 16.1 mm for gray objects, respectively. For the
case of using lungs and airways as a reference object, the corresponding results are, nS: 4.0, 5.3, 4.1,
6.9, 6.9, and 7.4; dS: 15.0, 19.7, 15.3, 26.2, 26.2, and 27.9 mm for binary objects; nS: 3.9, 5.4, 3.6,
7.2, 7.2, and 7.6; dS: 14.6, 20.1, 13.7, 27.3, 27.3, and 28.6 mm for gray objects, respectively.
Conclusions: Precise body region identification automatically in whole-body or body region tomo-
graphic images is vital for numerous medical image analysis and analytics applications. Despite its
importance, this issue has received very little attention in the literature. We present a solution to this
problem in this study using the concept of virtual landmarks. The method achieves localization accu-
racy within 2–3 slices, which is roughly comparable to the variation found in localization by experts.
As long as the reference objects can be roughly segmented, the method with its learned VLs-to-
boundary location relationship and predictive ability is transferable from one image modality to
another. © 2019 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.13376]
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1. INTRODUCTION

1.A. Background

To fully harness the power of Quantitative Radiology in
numerous applications, body-wide localization and delin-
eation of objects is becoming increasingly important. An “ob-
ject” here may denote an organ, a lymph node zone, a tissue
mass or region (such as intrathoracic adipose tissue), or a
body region (such as thorax). For developing generalizable
methods that operate body-wide, for meaningful use of quan-
titative information, and for standardized clinical operation,
standardized definitions of these objects become essential.
For example, without a precise definition of the boundaries
of the thoracic body region and intrathoracic adipose tissue
region, standardized quantification of intrathoracic fat
becomes impossible.1–3 Standardized object definitions can
also facilitate enriching and sharpening prior knowledge that
is encoded into and utilized in methods for localizing objects
body-wide4,5 and distinguishing different patient groups.6,7

In this spirit, body region definition becomes just as impor-
tant as or even more important than objects contained in the
body region. Some objects that cross body regions depend
directly on precise body region definition for their accurate
specification. For example, the superior and inferior bound-
aries of thoracic esophagus and thoracic spinal cord are
decided by the superior–inferior boundaries of the thoracic
body region. In our previous work on body-wide Automatic
Anatomy Recognition (AAR),4,5 standardized definitions
were employed for objects and body regions. However, body
regions were located manually in the given computed tomog-
raphy (CT)/magnetic resonance imaging (MRI)/positron
emission tomography/computed tomography (PET/CT) data
sets by specifying their superior and inferior axial boundaries.
Subsequently, the AAR algorithms localized objects con-
tained in the body region automatically. In this paper, we
address the first problem of automatically determining the
body regions — thorax, abdomen, and pelvis — in given
whole-body image data sets. The solution trivially extends
also from whole-body images to acquired image data sets of
specific body regions.

1.B. Related works

Published works directly addressing the above problem
are quite sparse.8–10 In fact, we did not come across any pub-
lication that directly dealt with the specific problem of identi-
fying body regions as addressed in this paper. As to specific
body region localization, in order to detect lymphoma
regions automatically in the thresholded whole-body PET/CT
images, Bi et al.8 used an adaptive thresholding method to
estimate the section of lungs, and then partition roughly PET/
CT images into three sections — above lungs, lungs, and

below lungs to reduce the search space. More recently, Bai
et al.9 proposed an automatic thoracic body region localiza-
tion method using a neural network regression learning tech-
nique, following the body region definition formulated in the
AAR system. Perhaps the most relevant paper relating to the
problem we tackle in this work is Ref. [10] where the authors’
goal is segmentation and quantification of intrathoracic adi-
pose tissue based on PET/CT scans. The authors employ the
definition of the thoracic body region formulated in Ref. [4]
and propose a method to automatically localize thusly
defined top and bottom slices of abdominal and thoracic
regions based on one shot learning. Deep learning (Convolu-
tional Neural Network features) was employed to avoid con-
fusion between similarly appearing slices.10

Investigations that are peripherally related to the speci-
fic problem we address are those11–17 whose aim is to
localize an anatomic organ such as liver, spleen, vertebral
bodies, etc., or an anatomic feature such as iliac crest. For
example, Rohr et al.11,12 introduced a deformable model
and subsequent three-dimensional (3D) parametric intensity
models to estimate position of the 3D point landmarks of
the human head. The models can detect tip-like, saddle-
like, and sphere-like anatomical structures efficiently by
considering more global image information. It is demon-
strated that the approach significantly improves the local-
ization accuracy of the ventricular horns, the zygomatic
bone, and the eyes. Yao et al.13 proposed an approach for
simultaneously localizing rectangular boxes bounding ele-
ven organs such as liver, spleen, etc., in abdominal CT
images. They use a probabilistic atlas of organs to guide
the selection of candidate organ locations by matching the
local eigen-organ spaces and the global eigen-space which
are constructed using principal component analysis (PCA)
from training samples. Criminisi et al.14,15 introduced ran-
dom decision forests and random regression forests for
automatic detection and localization of anatomical struc-
tures from 3D CT volume scans. This kind of discrimina-
tive classification approach is shown to be better suited to
multiclass problems. Multiple anatomical organs such as
head, heart, eyes, kidney, lung, and liver could be local-
ized simultaneously with attractive accuracy. Chu et al.16

proposed a similar solution for automatic localization of
vertebral body from 3D CT/MR images. They first obtain
a probability map of the vertebral body center using ran-
dom forest regression, and then define a target region of
interest from regularized operation of the probability map
using Hidden Markov Model (HMM). For this supervised
classification technique, a manual annotation to prepare
the labeled ground-truth database and exemplars (e.g., a
3D bounding box centered on each organ) is required.
Potesil et al.17 proposed a parts-based graphical model to
localize 22 specific anatomical landmarks in the human
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upper body in 3D CT scans. The method adopts dense
matching of the parts-based graphical models to accurately
and reliably localize standard anatomical landmarks.

While some of the above methods, particularly those on
finding bounding boxes encasing specific anatomic features,
may be adapted to the problem formulated in this paper, it is
not obvious how this generalization can be done or what level
of accuracy can be expected.

2. MATERIALS AND METHODS

We will follow the schematic in Fig. 1 to describe our
approach.

Our approach to the problem of parcellation of body
into body regions on whole-body low-dose CT images of
PET/CT acquisitions, as explained in Section 2, consists
of two stages — a training stage and a testing stage —
each further consisting of two steps. See Fig. 1 for a sche-
matic illustration. We assume that a fixed definition of
each body region of focus in this paper — Thorax, Abdo-
men, and Pelvis — is available in the form of their supe-
rior and inferior anatomic axial boundaries in the cranio-
caudal direction, and denote these axial locations on an
image I by TS(I), TI(I), AS(I), AI(I), PS(I), and PI(I),
respectively. We then determine a set of easily (roughly)
identifiable reference objects such as lung space and skele-
tal structures in the CT image of the CT data set. In the
training stage, first a set of Virtual Landmarks (VLs) is
computed for the reference objects in each training data
set. Roughly speaking, VLs are points in the anatomic
space that are tethered to the reference objects and may
lie anywhere with respect to the objects — inside, outside,

or on the boundary. Just the binary images constituting
the reference objects or the binary images together with
the gray values may also be used to determine the VLs.
Then, a neural network is trained to regress the relation-
ship between the VLs and the known true locations of TS
(I), TI(I), AS(I), AI(I), PS(I), and PI(I) over all training
images I. In the testing stage, given a PET/CT data set,
first the reference objects are roughly identified on the CT
image and their VLs are computed. Subsequently, the
trained neural network is employed to predict the locations
of the six body region boundaries in the CT image. We
evaluate our approach utilizing 180 PET/CT data sets as
described in Section 3 and summarize our conclusions
from this work in Section 4.

An early version of this work was presented at the SPIE
Medical Imaging Conference in 2017.9 The paper published
in the proceedings of that conference differs in major ways
from this work as follows. (a) That paper focused only on the
thoracic body region. Here, we generalize the approach to
include multiple body regions. (b) The conference report
dealt with binary images only for computing VLs. In this
work, we generalize from binary only to binary and gray
images. (c) We consider a much larger number of data sets in
this work and a more comprehensive evaluation strategy than
the earlier work. (d) Here, we present a full review of related
research which was not included in the SPIE conference
paper.

2.A. Data sets and notations

In this study, we use 18F-fluorodeoxyglucose (FDG)-PET/
CT scans from 180 patients already existing in our health sys-
tem patient image database. We obtained approval for data
usage from the Institutional Review Board at the Hospital of
the University of Pennsylvania along with a Health Insurance
Portability and Accountability Act waiver. Subjects include
near-normal cases and patients with different types of disease
conditions where all scans were administered for clinical rea-
sons only. Of these 180 scans, 34 were scans covering the
entire body from head to feet (typically comprising of 465
axial slices) and the remaining 146 were near whole-body
scans extending from neck to feet (each comprising of close
to 300 axial slices). At present, we use only the low-dose CT
portion of these data sets (see Discussion for further com-
ments). The voxel size in these CT data sets is roughly
1 9 1 9 4 mm3; the slice spacing varied from 3 to 5 mm:
139 studies with 4 mm, 37 with 3 mm, and 4 with 5 mm,
their weighted average being 3.8 mm. It is important to keep
in mind this clinical slice spacing (~4 mm) in understanding
the accuracy of our results.

We will use the following notations throughout. I : Our
collection of CT image data sets. IT : The subset of I used
for training our methods. I t: The subset of I used for testing
our approach. I: a given image data set of a patient. TS(I), TI
(I), AS(I), AI(I), PS(I), PI(I): Known true superior and inferior
boundary locations of the thorax, abdomen, and pelvis,
respectively, in image I. ts(I), ti(I), as(I), ai(I), ps(I), and pi(I):

FIG. 1. A schematic illustration of the proposed approach for predicting body
region boundaries TS(I), TI(I), AS(I), AI(I), PS(I), PI(I).
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Superior and inferior boundary locations of the thorax, abdo-
men, and pelvis, respectively, in image I predicted by our
approach.

2.B. Definition of body regions

In medical practice, the human body is divided into sev-
eral regions in the cranio-caudal direction: head, neck, upper
extremities, thorax, abdomen, pelvis, and lower extremities.
In this study, we focus on three body regions— thorax, abdo-
men, and pelvis, and reuse in this paper their definitions for-
mulated in our previous work.4,5 Table I summarizes the
definitions. We define a body region by two axial slices: one
denotes the superior axial limit or boundary and the other
denotes the inferior axial boundary. Given a scan or image I,
we denote the location of the superior axial slice of the thorax
in I by TS(I) and the location of its inferior axial slice by TI(I)
as defined in Table I. Similarly, we denote the superior and
inferior axial locations of the abdominal and pelvic regions
by AS(I), AI(I), PS(I), and PI(I), respectively, per Table I.
Locations in all images are specified with reference to a fixed
scanner coordinate system.

Note that, per our definition, AI(I) = PS(I). Note also how
the abdominal and thoracic regions overlap. This is inevitable
since the boundaries are defined through axial planes, and
some of the axial planes passing through the thorax contain
abdominal tissue regions. In Fig. 2, we show a close-up pic-
torial view of the definitions by displaying slices containing
the features (encircled in the figure) that are used to deter-
mine true slice boundaries. Note how the distinguishing fea-
ture for AI is very subtle. Of course, our method does not
look for these features but is based only on the relationship
between VLs and the true boundary slice locations.

In Fig. 3, we display exemplar boundary slices from two
subjects. There exist substantial differences in the appearance
of slices at the same boundary location among different sub-
jects. Depending on the thickness and spacing of the axial
slices, there is some “digital ambiguity” as to which precise
slice is to be selected to denote a specific boundary location.
For example, for AI(I), where to call the exact slice where the
abdominal aorta bifurcates into common iliac arteries is
ambiguous by one or two slice. Thus, even when experts
identify boundary slice locations manually, there can be a
variation by about two slices. The difference in appearance of

boundary slices among subjects also suggests that it may be
difficult to automatically locate boundary slices based only
on intensity information. For all data sets in our collection I
and for all body regions, we have identified the true body
region boundary locations TS(I), TI(I), AS(I), AI(I)/PS(I), and
PI(I) manually via slice visualization under the guidance of
the radiologist in our team (Torigian). These locations will be
used as true locations for training our methods and for testing
the accuracy of the locations predicted by our approach.

Our problem is: Given any PET/CT image I of a whole
body, to find automatically the predicted locations ts(I), ti(I),
as(I), ai(I), ps(I), and pi(I) of respectively TS(I), TI(I), AS(I),
AI(I), PS(I), and PI(I) that are close to these true locations.
We assume that the slices of I are organized axially and the
region of the body it covers properly includes the body
regions to be identified in I. For whole-body PET/CT ima-
gery, this condition is always met. If this is not the case, the
location predicted by our method will extend beyond the
body region covered by I and will be in correct relationship
with that data set and the subject although the corresponding
slice may not be found in I.

2.C. Training: binary/gray-valued objects and their
virtual landmarks

In this section, we will first explain how the reference
objects are obtained and then the concept of virtual land-
marks (VLs) for binary objects and its generalization to
objects with gray values.

2.C.1. Reference objects and their segmentation

An object selected as a reference object should satisfy
three key conditions: (C1) It should be segmentable reliably
fully automatically and simply. (C2) It should not be confined
within some small space in the body. (C3) It is manifested
with roughly the same form and shape in all subject data sets
when derived by the segmentation strategy satisfying C1. In
our experience, objects that satisfy these conditions are:
skeleton and lungs including trachea and bronchi. These
objects can be segmented by thresholding (in CT images)
owing to their distinct Hounsfield Unit (HU) ranges, the val-
ues we used being: [176, 3071] and [�894, �424] in HU,
respectively. We will show results for these objects and

TABLE I. Definition of body regions and their boundary locations.

Body
region Boundaries Description Definition

Thorax TS Thoracic superior axial boundary location 15 mm above the apex of the lungs

TI Thoracic inferior axial boundary location 5 mm below the base of the lungs

Abdomen AS Abdominal superior axial boundary location Superior-most aspect of the liver

AI Abdominal inferior axial boundary location Point of bifurcation of the abdominal aorta into common iliac arteries

Pelvis PS Pelvic superior axial boundary location Inferior boundary of the abdominal region

PI Pelvic inferior axial boundary location Inferior-most aspect of the ischial tuberosities of the pelvis
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discuss their pros and cons. We emphasize that after the
thresholding operation, we perform an automated operation
to remove any isolated voxels. Thus, the segmentation will
correspond to the main reference object bulk. Otherwise, the
segmentation does not have to be perfect as long as it is simi-
lar in all patients (condition C3).

2.C.2. Virtual landmarks

The idea of VLs is illustrated with a two-dimensional (bi-
nary) example in Fig. 4. Given a binary image representing
the object, PCA of the entire binary object is first carried out
to find the four principal axes directions, denoted in the fig-
ure in green by A1,1, A1,2, A1,3, A1,4, emanating from the geo-
metric centroid of the object indicated by P1,1,0 (small circle).
Along these axes, we find points P1,1,1, P1,1,2, P1,1,3, and P1,1,4
that indicate the extent of the object in those directions. These
five points form the first level landmarks, where the first sub-
script denotes level number, second denotes quadrant num-
ber, and the third indicates point number. These points and
the axes subdivide the shape into four pieces in the four quad-
rants. For each piece, we perform PCA again and find the
20 s level landmarks denoted P2,1,0, P2,1,1, . . ., P2,1,4, P2,2,0,
. . ., P2,4,4. The five points P2,4,0, . . ., P2,4,4 obtained for the
4th quadrant are shown in the figure for illustration (2nd level
principal axes are shown in red). The process continues up to
a specified level. Since the points are ordered, each point has
a unique label. This allows us to specify the VLs we need by
their label for representing a given shape. For example, we
may use just the 8 points P1,1,0, P1,1,1, P1,1,2, P1,1,3, P1,1,4,
P2,4,1, P2,4,2, and P2,4,4 (which already denote the shape
roughly). Note how the points tend to move closer to the

object surface at higher levels. Points at early levels capture
overall form and add details at later levels.

The total number N(x) of VLs for a d-dimensional object
derived from x levels will be NðxÞ ¼ Px

n¼1 ð2d þ 1Þ2dðn�1Þ.
If we consider only the geometric centroids (points identified
by 0 value for their 3rd subscript index such as P2,2,0), the
total number of points will be

Px
n¼1 2

dðn�1Þ: The approach
readily generalizes to multiple objects — either by finding
VLs for each object separately and pooling the VLs together,
or by first pooling the objects into one object and finding its
VLs. The sets of resulting VLs in the two cases may not be
the same. For objects with gray CT values, the gray pixel val-
ues in the shape are used as a weight factor in PCA computa-
tion. Now, the shape as well as the gray values of the object
influence the location of the VLs relative to the object. Obvi-
ously gray-value-based VLs also generalize straightforwardly
from single object to multiple objects and even to vector-
valued images.

Note that the VLs may lie anywhere with respect to the
object. In fact, in our experience with several anatomic
objects, VLs are rarely located exactly on the object bound-
ary. The number of VLs rises rapidly with the number of
levels. For example, for a 3D object, N(1) = 7, N(2) = 63,
and N(3) = 511. If we consider only geometric centers, N
(1) = 1, N(2) = 9, and N(3) = 73. Unlike methods of finding
landmarks on object boundaries, the concept of VLs general-
izes to spaces of any finite dimension directly and easily.
Usually, 50–100 VLs are sufficient to describe a large object.
For an early report on the concept of VLs and their general
properties, see Ref. [19]. In this paper, we will not study these
matters and focus only on the application of VLs for localiz-
ing body regions. After the reference objects are segmented,

(a)
(b) (c)

(d) (e)

FIG. 2. Illustration of features (circled) used for defining region boundary planes. The slices displayed do not necessarily correspond to boundary planes per se.
(a) A slice at the superior-most aspect of the lung (circled). TS is located 15 mm above the level shown. (b) A slice at the superior-most aspect of the liver (cir-
cled) = location of AS. (c) A slice at the inferior-most aspect of the lung (circled). TI is located 5 mm below this level. (d) A slice showing just when the abdom-
inal aorta bifurcates into common iliac arteries (see magnified inset showing two roughly circular cross sections) = location of AI. (e) A slice showing the
inferior-most aspect of the ischial tuberosities (circled) = location of PI. [Color figure can be viewed at wileyonlinelibrary.com]
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their VLs are computed automatically following the above
recursive subdivision algorithm. We will test the prediction
performance of our approach using different reference objects
and both binary and gray-valued versions of the objects.

2.D. Training: Learning the relationship between
VLs and body region boundaries

For this stage, input is the set of VLs of the chosen refer-
ence objects in the training image set IT and the set of true
boundary locations TS(I), TI(I), AS(I), AI(I), PS(I), and PI(I)
for each image I in IT . The outcome of this stage is a trained
neural network. Input-vector-output-vector pairs (u(I), v(I))
used for network training are as follows: [u(I), v(I)], for all I
in the training image data set IT , where u(I) = [P1,1,0(I),
P1,1,1(I), P1,1,2(I), . . ., PL,8,0(I), . . ., PL,8,6(I)]

t and v(I) = [TS
(I), TI(I), AS(I), AI(I), PS(I), PI(I)]t. All locations here are
expressed in terms of coordinates with respect to the scanner
coordinate system associated with image I. Note that each VL
is described by its three coordinates and each boundary loca-
tion TS(I), TI(I), . . ., PI(I) is described by one coordinate,
namely the coordinate in the cranio-caudal direction.

FIG. 3. Illustration of the boundary locations of the three body regions and examples of axial slices at those locations selected from two patient computed tomog-
raphy data sets. Illustration on left reproduced with permission from Ref. [18]. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. Illustration of the process of defining virtual landmarks for a two-
dimensional binary shape. [Color figure can be viewed at wileyonlinelibra
ry.com]
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We employed a neural network regressor20 (Neural Net-
work Toolbox, Version 9.0, of MATLAB, Version R2016a) to
learn the relationship between VLs and boundary locations.
This toolbox provides a convenient platform to design an
application-oriented neural network. Relevant details pertain-
ing to our application are as follows.

2.D.1. Choice of neural network architecture and
configuration

As we want to solve a nonlinear mapping problem, a mul-
tilayer architecture with a single hidden layer would be suffi-
cient. Here, we follow the layer designation of MATLAB’s
Neural Network Toolbox. As shown in Fig. 5 a layer of neu-
rons includes the weights, multiplication, and summing oper-
ations. It is common for the number of inputs to a layer to be
different from the number of neurons. In our application, the
input is presented as a set of vectors {u(I), I 2 IT}. The
number of elements in each input vector is N 9 3 where N is
the number of VLs employed. The number of neurons,
denoted as S in the hidden layer, is adjusted to minimize the
localization errors. S is not necessarily equal to N. The num-
ber of elements in the output vector is M = 6 (strictly speak-
ing, 5).

2.D.2. Choice of training parameters

For each neuron, there are three operations — the weight
function (matrix multiplication), the net input function (sum-
mation), and the transfer function. Here, we adopt the
“Hyperbolic Tangent Sigmoid” transfer function in the hid-
den layers, and the “Linear” transfer function in the output
layer (which are denoted as “tansig” and “purelin” in
MATLAB’s toolbox, respectively). The “Bayesian Regular-
ization” training algorithm is employed to prevent overfit-
ting.21,22 We employ two stopping criteria, namely, a fixed
number of iterations and the gradient of the performance
index to control the iterative procedure. The training

performance index is selected as Mean Squared Error (which
is denoted as “MSE” in the toolbox).

2.E. Testing: predicting body region boundary
locations

In this stage, given an image I, first the reference objects
employed in the previous stage are identified in I by using the
same segmentation strategy as employed in the previous
stage. Then, the same specific set of VLs of the reference
objects as utilized for training the network is computed.
These VLs are fed to the neural network whose output vari-
ables correspond to the six predicted boundary locations of
the three body regions.

2.F. Evaluation

To evaluate the performance of this approach, we compare
the predicted boundary locations to the “true” expert deter-
mined locations and express the deviation in terms of number
of slices, nS, and the distance, dS (in mm), between the two
locations. Our evaluations will involve several different divi-
sions of the data set I into training and testing subsets IT

and I t and multiple folds (different repetitions of this divi-
sion) and use four reference objects — skeleton and lungs —
in both binary and gray forms. We have also experimented
with different numbers of VLs — 9, 17, 25, and 73. All VLs
considered here are geometric centers only and are confined
to the first three levels. In our notation, these points are iden-
tified by Pi,j,0 (see Fig. 4). The set with 9 points corresponds
to all VLs of this type from the first two levels (1 from 1st
level + 8 from 2nd level). The set with 73 points corresponds
to all VLs of this type from the first three levels (1 + 8+64).
Sets with 17 and 25 VLs are formed by selecting all VLs from
the first two levels and different subsets from the third level.
One other variable involved in our experiments is the number
of coordinates considered for the VLs — all three coordinates
(x, y, z) and only the third coordinate (z) in the cranio-caudal

FIG. 5. Illustration of the neural network architecture, employed from MATLAB’s Neural Network Toolbox, used as a regressor in our method. The architecture
shows one hidden layer.
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direction. The idea for a single coordinate stems from the
consideration that we are interested in predicting only the z-
level of the boundary slices.

3. RESULTS

In Fig. 6, we depict via 3D renditions the (set of 73) VLs
derived from binary and gray versions of sample reference
objects obtained from one subject. Notably many VLs lie out-
side the object. VLs that are interior to the object are not visi-
ble in the display. The animations with translucent surface
displays available at the link in Ref. [23] depict more vividly
the spatial distribution of VLs that are interior and exterior to
the objects, where the virtual landmarks from both binary
image and gray images for the two reference objects are
shown.

Sample results (good and poor) of identified slices for the
region boundaries are displayed in Fig. 7, where the true
slices are also shown. Tables II and III summarize mean pre-
diction errors resulting when Skeleton and Lungs, respec-
tively, are used as reference objects. The tables include
results for different settings— binary and gray objects, differ-
ent numbers of VLs, different selections of coordinates, and
different numbers of hidden layers employed in the network.

We randomly divided our data samples into training and test-
ing data sets with the ratio 0.85:0.15 and repeated the experi-
ments six times for the case of using lungs as the reference
object on the 146 near whole-body scans and three times (at
the same ratio) for the case of using skeleton as the reference
object on the 34 whole-body scans. Figure 8 shows scatter
plots of the mean prediction errors (nS) listed in Tables II and
III using Skeleton and Lungs as reference objects and
employing (x, y, z) and (z) coordinates. To study the differ-
ence in prediction accuracy among different scenarios, we
performed t tests pairwise between different scenarios. P val-
ues from such comparisons using binary vs gray images are
summarized in Table IV. To understand the accuracy of our
method, we conducted an experiment to study the variability
in body region boundary localization by knowledgeable oper-
ators. Table V summarizes the variability found between two
operators in labeling all six boundary locations in all 180 CT
data sets.

4. DISCUSSIONS

We make the following inferences from Tables II–V.

(a)For a given region boundary, prediction accuracy varies
with gray/binary objects utilized for deriving VLs, the

(a)

(b)

FIG. 6. Three-dimensional renditions of the reference objects. (a) Skeleton, (b) Lungs, along with the associated VLs derived from binary (left) and gray (right)
objects. [Color figure can be viewed at wileyonlinelibrary.com]
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number of VLs used, coordinate selection, number of hidden
layers in the network, and the actual reference object. For
example, in Table II, for virtual landmarks from binary mask
and gray image, with the same number of hidden layers (2)
and virtual landmarks (25), the average prediction error is 4.2
and 16.8 for nS and dS, receptively for binary mask and 4.8
and 19.1 for gray image. We can also observe a similar differ-
ence in Table III. Figure 8 shows scatter plots of the mean
prediction errors for nS listed in Tables II and III, where the
different experimental scenarios are also indicated. For exam-
ple, “Binary-xyz-HL2-VLs9” denotes the situation of using
binary object, (x,y,z) coordinates, two hidden layers, and nine
virtual landmark points. Two observations can be made from
the scatter plots. The spread of error for localizing AS(I)
seems to be the smallest among all boundaries. Also,
although the errors themselves are larger, the spread of the
errors seems to be the smallest for the case of using Lungs
with z-coordinate only.
(b)Our observations from Table IV (and other similar
comparisons) can be summarized as follows. (a) When
using the skeleton as the reference object with smaller
number of hidden layers (≤5) and VLs (≤17) the mean
prediction error (nS ~ 4) is lower (P < 0.02) than when
using larger number of hidden layers and VLs (nS ~ 5).
With lung as the reference object (binary or gray), in
almost all scenarios with the same number of hidden lay-
ers but using different number of VLs, the prediction error
was statistically significantly (P < 0.001) greater when
using smaller number of VLs. (c) The difference in accu-
racy between (x, y, z) vs z over all was not statistically

significant (not shown in Table IV). (d) Comparing
between the two reference objects, the best accuracy
achieved with skeleton (bold in Table II) is better than the
best accuracy achieved with lungs (bold in Table III) but
not with statistical significance (P = 0.10).
(c)From Table V, we observe that expert variability is the
smallest for TS(I) and AS(I), intermediate for TI(I) and PI(I),
and notably the largest for AI(I) = PS(I). The best accuracy
achieved (shown in bold in Tables II and III) is variable
among the different region boundaries and follows the trend
in variability in expert localization of the boundaries. That is,
when expert localization variability is greater so is the error
in automatic localization. AI(I) is the most challenging to
localize for our method as well as for experts. The best over-
all mean localization accuracy (error) for our method is
nS = 4.1 and dS = 15.5 mm for the case of using lungs as
the reference object, and nS = 3.2 and dS = 12.7 mm for the
case of using skeleton as the reference object. There is only
one paper10 we came across that addressed the problem of
body region localization as formulated in this paper. The
error reported in that study is ~47 mm for localizing the tho-
racic body region following the definition shown in Table I.
The focus of that study was to detect white and brown adi-
pose tissues automatically from PET/CT scans. A rough ini-
tial boundary estimation seems enough for that application
and it does not require very precise body region localization.
Furthermore, their application, data sets, and study scope
were different from ours.
(d)Some region boundaries are more challenging than others
for accurate localization (recall Fig. 2). As seen from

FIG. 7. Exemplar true and predicted region boundary slices for a good case (top two rows; nS < 2) and a poor case (bottom two rows; nS of 3–5 slices). Please
see Table I for body region boundary definitions.
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Tables II and III, TI, AI = PS, and PI seem to have less accu-
racy than the locations in the superior portion of the thorax.
This may be due to large motion of the inferior thorax and
abdominopelvic regions compared to the upper parts of the
thorax.
(e)Dependence of accuracy on reference object size and
shape is hard to decode. Objects that have larger spatial cov-
erage seem to fare better than spatially confined objects.
What seems to matter most is the precision of the relationship
between the chosen VLs and region boundaries. Generally,
the skeleton as the reference object seems to fare better than
lungs, notably for PI, AI = PS, and TI.
(f)In principle, gray values bring in an additional subtlety to
VL definition from image intensity pattern details. However,
similar localization accuracies are obtained for VLs from

gray objects and binary versions as graphically illustrated in
Fig. 9 which displays errors in nS for the different cases of
objects and gray/binary versions of VLs. The vertical inter-
vals indicate one standard deviation on either side of the
mean.
(g)VLs with just their z coordinates seem to regress their rela-
tionship to region boundaries just as well as or better than all
three coordinates taken together. Figure 10 graphically illus-
trates the differences. This suggests that the location of the
VLs on the slice plane is less important than their slice loca-
tion in the cranio-caudal direction. As mentioned in (d)
above, the precision of the relationship to region boundaries
is perhaps better for z alone vs all coordinates collectively.
(h)Variability in localization error (expressed by SD values in
the tables) seems to be generally smaller for gray-value-based

TABLE II. Mean and SD (second entry in each cell) of prediction errors nS and dS (in mm) over all tested data sets for the different region boundaries when using
Skeleton as the reference object. The column Mean shows mean error over all region boundaries over all tested data sets. Bold entries indicate the setting with the
best result.

Object
Train/test/

folds
(x, y, z)
or (z)

Hidden
layers VLs

ts(I) ti(I) as(I) ai(I) = ps(I) pi(I) Mean

nS dS nS dS nS dS nS dS nS dS nS dS

Binary 29/5/3 (x, y, z) 2 9 3.0 12.0 4.2 16.6 3.7 14.9 5.5 22.0 3.8 15.0 4.0 16.1

2.5 10.0 3.1 12.5 2.7 10.7 2.9 11.6 2.8 11.1

1 17 3.0 12.2 4.4 17.5 3.6 14.3 5.8 23.4 4.8 19.1 4.3 17.3

1.9 7.7 3.0 12.0 2.9 11.7 4.3 17.0 4.0 15.8

2 25 2.4 9.7 4.3 17.0 4.2 16.8 6.0 23.9 4.2 16.6 4.2 16.8

2.2 8.9 2.9 11.6 3.0 11.9 3.4 13.5 2.1 8.3

3 73 2.6 10.5 5.2 20.8 3.5 14.0 5.2 20.7 3.1 12.4 3.9 15.7

1.5 6.1 3.1 12.3 2.3 9.2 3.1 12.4 2.2 8.6

(z) 2 9 4.7 18.7 5.4 21.5 4.6 18.5 4.4 17.5 3.4 13.7 4.5 18.0

2.9 11.7 3.5 14.2 3.3 13.2 3.2 12.7 1.8 7.2

1 17 3.5 13.9 4.9 19.7 4.3 17.3 5.2 20.8 4.5 18.0 4.5 17.9

2.6 10.5 3.0 12.0 2.5 10.1 4.4 17.4 4.1 16.3

1 25 3.8 15.0 5.2 20.8 5.0 19.9 5.0 20.1 4.1 16.4 4.6 18.4

2.8 11.0 3.2 13.0 2.7 10.8 4.4 17.6 3.1 12.5

3 73 3.8 15.4 4.3 17.3 4.0 16.1 4.6 18.3 3.1 12.5 4.0 15.9

3.4 13.5 3.5 13.9 1.5 6.1 3.0 11.8 2.3 9.2

Gray 29/5/3 (x, y, z) 1 9 3.8 15.2 5.5 22.0 3.9 15.6 6.0 24.0 5.2 20.8 4.9 19.5

3.0 12.1 4.3 17.3 2.2 8.7 4.4 17.7 3.5 13.8

5 17 4.7 18.8 7.0 28.1 3.0 12.2 7.2 28.6 4.1 16.2 5.2 20.8

2.9 11.5 4.5 18.0 2.0 8.1 4.1 16.3 2.2 8.9

2 25 2.9 11.8 5.5 21.9 4.7 18.8 6.1 24.4 4.7 18.7 4.8 19.1

2.3 9.3 3.3 13.1 3.0 12.1 3.8 15.4 2.3 9.2

3 73 2.6 10.6 5.4 21.6 3.3 13.0 5.0 19.9 3.1 12.4 3.9 15.5

1.5 5.9 3.3 13.1 2.2 8.9 3.4 13.7 2.8 11.4

(z) 2 9 6.1 24.5 6.5 26.1 5.2 20.6 5.7 22.7 4.2 16.9 5.5 22.2

4.5 18.0 4.8 19.1 3.3 13.0 5.6 22.4 4.2 17.0

5 17 5.6 22.3 7.7 30.9 5.6 22.5 8.0 31.8 3.8 15.1 6.1 24.5

2.5 10.1 5.3 21.1 4.7 18.8 4.3 17.3 3.1 12.4

1 25 4.0 15.8 4.6 18.5 5.1 20.3 5.5 22.1 4.6 18.3 4.8 19.0

2.0 7.8 4.2 16.7 2.9 11.4 4.3 17.1 3.7 14.7

4 73 2.7 10.9 3.0 12.1 3.7 14.7 3.9 15.8 2.5 10.2 3.2 12.7

1.8 7.1 3.0 12.0 1.9 7.7 3.2 12.7 1.8 7.4
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VLs than for their binary counterpart. A similar trend can be
observed for the locations which are affected by the larger
motion of the thoraco-abdominal junction.

4.A. Computational considerations

Time for VL computation on an Intel(R) Core(TM) i7-
7700K Processor (4-cores) computer with 64 GB RAM
under Ubuntu 16.04 OS is in the range of 150–230 s per data
set. When a large number of VLs with all (x, y, z) coordinates
are employed, more neurons in the hidden layer will be
needed and consequently, the training time goes up. For
example, when dealing with 73 lung VLs with (x, y, z) coor-
dinates, the training time is 4169 s, while the prediction time
per data set for any configuration is ~0.3 s.

5. CONCLUDING REMARKS

Automatic localization of human body regions in clinical
images can facilitate image reading, reporting, and quantifi-
cation. More importantly, this becomes essential in systems
designed for automatic recognition of anatomic organs and
zones such as lymph node stations when such systems
employ precise definitions of body regions, organs, and
zones. In this paper, we presented a novel strategy for accom-
plishing this task based on the concept of virtual landmarks
and learning their relationship to boundary locations of body
regions via a neural network. The method can be utilized for
carving out precisely (within about 3 slices) a specific body
region or multiple body regions from a whole-body scan.
This approach is generalizable provided reliable segmenta-
tion can be obtained across subjects, regardless of the

TABLE III. Mean and SD (second entry in each cell) of prediction errors nS and dS (in mm) over all tested data sets for the different region boundaries when
using Lungs as the reference object. The column Mean shows mean error over all region boundaries over all tested data sets. Bold entries indicate the setting with
the best result.

Object Train/test/folds (x, y, z) or (z) Hidden layers VLs

ts(I) ti(I) as(I) ai(I) = ps(I) pi(I) Mean

nS dS nS dS nS dS nS dS nS dS nS dS

Binary 153/27/6 (x, y, z) 4 9 4.0 15.0 5.0 18.6 3.8 14.3 6.2 23.5 6.6 25.1 5.1 19.3

3.5 13.3 5.3 19.5 3.7 14.0 5.2 20.0 5.6 21.2

1 17 4.5 17.2 4.6 17.1 4.9 18.4 5.6 21.5 6.5 24.8 5.2 19.8

3.7 14.2 5.3 19.7 3.8 14.6 5.0 18.9 4.8 18.2

10 25 4.6 17.3 7.9 29.7 5.2 19.6 8.5 32.2 8.1 31.0 6.9 26.0

4.2 15.8 7.7 28.5 5.0 18.9 6.9 26.3 6.8 25.6

10 73 6.8 25.3 8.3 31.1 6.7 25.0 12.0 45.1 11.8 44.2 9.1 34.1

7.2 26.8 8.1 30.1 6.3 23.8 10.9 41.1 10.2 38.0

(z) 4 9 2.6 9.7 3.9 14.6 3.0 11.2 5.7 21.7 6.5 24.8 4.3 16.4

2.7 10.5 4.4 16.3 2.9 10.9 5.0 19.0 5.0 19.2

5 17 2.7 10.3 4.0 15.0 2.8 10.8 5.7 21.9 6.5 24.6 4.3 16.5

2.7 10.3 4.6 16.8 2.8 10.6 5.0 19.1 4.9 18.9

8 25 2.7 10.3 3.9 14.7 2.8 10.4 5.5 21.1 5.9 22.3 4.2 15.7

2.8 10.7 4.5 16.6 2.7 10.4 4.8 18.3 4.6 17.7

3 73 4.0 15.2 4.5 16.8 3.4 12.9 6.0 22.9 6.9 26.0 5.0 18.8

3.5 13.5 5.1 18.9 3.2 12.1 5.4 20.4 5.1 19.3

Gray 153/27/6 (x, y, z) 4 9 3.7 13.8 4.4 16.7 3.2 12.2 6.3 24.0 6.7 25.5 4.9 18.4

3.5 13.1 5.1 18.9 3.1 12.0 5.2 19.9 5.5 20.9

2 17 4.6 17.3 4.8 18.0 3.9 14.8 6.3 23.8 6.9 26.3 5.3 20.0

4.1 15.7 5.2 19.0 3.4 12.8 5.2 20.1 5.3 20.4

7 25 4.6 17.3 7.7 28.8 4.6 17.2 9.8 36.9 9.6 36.1 7.3 27.3

4.5 16.8 8.4 31.5 4.5 17.0 8.4 31.8 8.5 32.1

20 73 7.7 28.9 10.3 38.7 6.7 24.9 11.9 44.8 11.1 41.9 9.5 35.8

6.0 22.6 9.6 36.1 6.1 22.8 10.9 41.4 9.9 37.3

(z) 4 9 2.3 8.8 3.8 14.1 2.8 10.7 5.8 22.0 6.7 25.3 4.3 16.2

2.6 9.8 4.4 16.2 2.8 10.7 5.0 19.0 5.2 20.0

5 17 2.3 8.8 3.8 14.3 2.4 9.1 5.5 21.1 6.4 24.3 4.1 15.5

2.5 9.6 4.4 16.0 2.4 9.3 4.9 18.8 5.0 19.2

7 25 2.5 9.4 3.9 14.7 2.5 9.4 6.0 22.8 6.6 24.9 4.3 16.2

2.7 10.2 4.5 16.4 2.4 9.0 5.3 20.0 5.5 20.7

6 73 3.3 12.5 4.2 15.8 3.0 11.3 5.9 22.6 6.5 24.8 4.6 17.4

3.3 12.6 4.9 18.2 2.9 11.2 5.1 19.3 4.8 18.5
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modality, although in this paper we demonstrated its perfor-
mance on low-dose CT images of PET/CT acquisitions.

There are several potential applications of virtual land-
marks in image and object analytics. One avenue we are cur-
rently pursuing is in organ localization (recognition). We are
also examining the use of multiple objects simultaneously,
instead of individually as investigated in this paper, for poten-
tially improving accuracy. We believe that not all VLs behave
the same way, and so weeding out those VLs that show large

subject-to-subject variation in their relationship (particularly
in z value) to boundary locations may improve performance.
On diagnostic CT scans, which are typically performed on
individual body regions and not the whole body, performance
may be better than on the low-dose CT scans we studied in
this paper, specifically when gray-valued objects are used for
computing VLs. A separate investigation is needed to study
this task of individual body region localization on individual
body region scans. We are also developing deep learning
methods to localize region boundaries without the use of
VLs. As we pointed out earlier, higher level landmarks corre-
spond to fine structures and tend to be patient dependent.
The issue of how to capture fine granularity via higher level
VLs and describe differences in objects at that level over a
population is another interesting topic of study for the future.

There are some potential limitations of this approach
related to the need for a reference object and the use of PCA.
The method will not work if the field of view of the scan does
not include the full body region on slices (as it may often
happen in MRI acquisitions) since such honed-in acquisitions
may also affect reference objects due to their partial coverage.

FIG. 8. Scatter plots of the mean prediction errors (nS) listed in Tables II and III using Skeleton (Row 1) and Lungs (Row 2) as reference objects and employing
(x, y, z; left column) and (z; right column) coordinates. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE IV. P values from t tests comparing prediction errors over all boundary locations by using VLs from binary mask vs VLs from gray region.

Skeleton as reference object Lungs as reference object

(x, y, z) or (z)
Hidden layers
(binary/gray)

VLs
(binary/gray)

Mean prediction error
(nS) (binary/gray) P value

(x, y, z)
or (z)

Hidden layers
(binary/gray)

VLs
(binary/gray)

Mean prediction
error (nS) (binary/gray) P value

(x,y,z) 2/1 9/9 4.0/4.9 0.0122 (x,y,z) 4/4 9/9 5.1/4.9 0.0069

1/5 17/17 4.3/5.2 0.0518 1/2 17/17 5.2/5.3 0.5634

2/2 25/25 4.2/4.8 0.0062 10/7 25/25 6.9/7.3 0.1498

3/3 73/73 3.9/3.9 0.7845 10/20 73/73 9.1/9.5 0.2865

(z) 2/2 9/9 4.5/5.5 0.0211 (z) 4/4 9/9 4.3/4.3 0.1465

1/5 17/17 4.5/6.1 0.0027 5/5 17/17 4.3/4.1 0.0002

1/1 25/25 4.6/4.8 0.4623 8/7 25/25 4.2/4.3 0.1257

3/4 73/73 4.0/3.2 0.0030 3/6 73/73 5.0/4.6 0.0058

TABLE V. Mean (and SD) of the variability in nS and dS observed in bound-
ary localization by two operators.

TS(I) TI(I) AS(I) AI(I) = PS(I) PI(I)

nS 0.10 1.04 0.14 3.19 0.76

0.29 0.81 0.42 1.99 0.64

dS (mm) 0.4 4.16 0.56 12.76 3.04

1.16 3.24 1.68 7.96 2.56
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However, if the skin outer boundary falls fully within the
field of view, then rough segmentation of the body region
(the interior of the skin boundary as a solid mask) is not diffi-
cult and then skin may be used as a reference object. Skeleton
is easy to be achieved from CT images and can be used as a
good reference object for computing VLs. From our observa-
tions on 34 whole-body PET/CT scans where skeleton is used
as a reference object for VLs, we find that the effects of
metallic artifacts or positive contrast agents may still share
similar attenuation values with skeletal structures.

Another issue may arise from stray voxels which are iso-
lated and/or fall outside the body region. They need to be
removed; otherwise PCA may be influenced and the resulting
VLs may not be reliable. For skeleton, this is usually not an
issue. However, for lung object, in case of extreme pathology,
automatic rough segmentation may not be acceptable. In our
approach, after the reference object is roughly segmented, we
detect and automatically remove such extraneous voxels by
connectivity and morphological operations.
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