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Purpose: Automatic identification of consistently defined body regions in medical images is vital in
many applications. In this paper, we describe a method to automatically demarcate the superior and
inferior boundaries for neck, thorax, abdomen, and pelvis body regions in computed tomography
(CT) images.
Methods: For any three-dimensional (3D) CT image I, following precise anatomic definitions, we
denote the superior and inferior axial boundary slices of the neck, thorax, abdomen, and pelvis body
regions by NS(I), NI(I), TS(I), TI(I), AS(I), AI(I), PS(I), and PI(I), respectively. Of these, by definition, AI
(I) = PS(I), and so the problem reduces to demarcating seven body region boundaries. Our method con-
sists of a two-step approach. In the first step, a convolutional neural network (CNN) is trained to classify
each axial slice in I into one of nine categories: the seven body region boundaries, plus legs (defined as
all axial slices inferior to PI(I)), and the none-of-the-above category. This CNN uses a multichannel
approach to exploit the interslice contrast, providing the neural network with additional visual context at
the body region boundaries. In the second step, to improve the predictions for body region boundaries
that are very subtle and that exhibit low contrast, a recurrent neural network (RNN) is trained on features
extracted by CNN, limited to a flexible window about the predictions from the CNN.
Results: The method is evaluated on low-dose CT images from 442 patient scans, divided into train-
ing and testing sets with a ratio of 70:30. Using only the CNN, overall absolute localization error for
NS(I), NI(I), TS(I), TI(I), AS(I), AI(I), and PI(I) expressed in terms of number of slices (nS) is (mean
� SD): 0.61 � 0.58, 1.05 � 1.13, 0.31 � 0.46, 1.85 � 1.96, 0.57 � 2.44, 3.42 � 3.16, and
0.50 � 0.50, respectively. Using the RNN to refine the CNN’s predictions for select classes
improved the accuracy of TI(I) and AI(I) to: 1.35 � 1.71 and 2.83 � 2.75, respectively. This model
outperforms the results achieved in our previous work by 2.4, 1.7, 3.1, 1.1, and 2 slices, respectively
for TS(I), TI(I), AS(I), AI(I) = PS(I), and PI(I) classes with statistical significance. The model trained
on low-dose CT images was also tested on diagnostic CT images for NS(I), NI(I), and TS(I) classes;
the resulting errors were: 1.48 � 1.33, 2.56 � 2.05, and 0.58 � 0.71, respectively.
Conclusions: Standardized body region definitions are a prerequisite for effective implementation of
quantitative radiology, but the literature is severely lacking in the precise identification of body regions.
The method presented in this paper significantly outperforms earlier works by a large margin, and the
deviations of our results from ground truth are comparable to variations observed in manual labeling by
experts. The solution presented in this work is critical to the adoption and employment of the idea of
standardized body regions, and clears the path for development of applications requiring accurate demar-
cations of body regions. The work is indispensable for automatic anatomy recognition, delineation, and
contouring for radiation therapy planning, as it not only automates an essential part of the process, but
also removes the dependency on experts for accurately demarcating body regions in a study. © 2020
American Association of Physicists in Medicine [https://doi.org/10.1002/mp.14439]
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1. INTRODUCTION

1.A. Background

An important step toward effective implementation of
quantitative radiology is the recognition and delineation of
objects in the human body. An essential part of this task is
standardizing definitions for such objects, which may be
organs, tissue regions, or well-defined body regions,1,2 in
order to develop generalizable body-wide methods,

standardize clinical operations, and use the quantitative infor-
mation meaningfully. With this ideology in mind, the stan-
dardization of body region boundaries is an equally
important task, especially for objects that span body regions
such as the thoracic spinal cord, the boundaries of which
clearly depend on the definition of the thoracic region.

Our previous work on Automatic Anatomy Recognition
(AAR)2 to localize and/or delineate organs, tissue regions,
and lymph-node zones uses standardized body region
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definitions, but the body regions were located manually by
specifying the superior and inferior axial slices for each body
region. In this paper, we use the standardized body region
definitions as described by Udupa et al.2 and Wang et al.3

and propose and substantiate a two-step approach for auto-
matically locating the body region boundaries almost as accu-
rately as knowledgeable human operators. Automation of this
task is a vital step in minimizing the need of a radiological
expert every time a framework like AAR is used. This work
also helps in taking a step forward in the acceptance of stan-
dardized body region boundaries universally by providing an
easy-to-use implementation for locating these boundaries in a
volumetric image, the accuracy of which is remarkably close
to human-level performance. The proposed methodology
works regardless of whether the input volumetric computed
tomography (CT) image spans the entire body or only a por-
tion of the body.

1.B. Related works

Bai et al.1 tackle our exact problem by using a system of
virtual landmarks employing principal component analysis
and recursive subdivision of objects, and subsequently using
a neural network for mapping the virtual landmarks to bound-
ary locations. Hussein et al.4 propose a one-shot deep learn-
ing solution for automatically localizing the boundaries for
the abdominal and thoracic regions by locating the superior
and inferior boundaries of the abdomen and thorax, respec-
tively, as a step in segmenting and quantifying intrathoracic
adipose tissue in positron emission tomography/CT (PET/
CT) images. In a more abstract sense of localization, Bai
et al.5 use an adaptive thresholding model to partition a PET/
CT scan into three sections: above lungs, lungs, and below
lungs. Criminisi et al.6 use random forest regression for auto-
matically detecting and localizing anatomical structures in
CT images and predict bounding walls (and subsequently, the
centroids) of various organs.

Operating on the slice level, Lee and Chung7 segment
each slice in a volumetric CT image into disconnected
regions using a neural network and use the common informa-
tion between adjacent slices and fuzzy rules based on spatial
relationships for recognizing various organs in each slice. In
a similar spirit as our work, Wang et al.8 classify slices in vol-
umetric CT images as either belonging/not belonging to the
abdominal area using a convolutional neural network (CNN).
They treat the problem as a binary classification problem
considering each slice independently and using a one-dimen-
sional median filter to smooth the results to remove spatial
inconsistencies. de Vos et al.9 use CNNs to localize anatomi-
cal structures in 3D images by detecting their presence in 2D
image slices, using a single CNN to detect the presence of
anatomical structures in axial, coronal, and sagittal slices
from a 3D image and combining the outputs to create 3D
bounding boxes.

None of the above works tackle the problem of body
region localization as formulated in this paper, namely: Given
a 3D image I comprising a stack of transaxial slices which

represent a contiguous portion of the human body covering
any of the four body regions — head and neck (H&N), tho-
rax, abdomen, and pelvis — or any combination of them,
Objective 1 (O1): to partition the slices of I into the body
regions to which they belong, Objective 2 (O2): label each
actual body region identified, and Objective 3 (O3): report a
message if the slices do not fully cover a body region at either
end. For example, let I consist of 150 slices (numbered in the
increasing order cranio-caudally) where in the superior and
inferior boundaries of the H&N region are at slices 10 and
60, the superior boundary of the thorax is at slice 70, and
slice 150 falls short of the inferior boundary of the thorax by
10 slices. Our system BRR-Net is designed to perform all
three output actions O1-O3 and output the following: Supe-
rior boundary of H&N: slice 10; inferior boundary of H&N:
slice 60; H&N body region: slices 10-60; superior boundary
of thorax: slice 70; inferior boundary of thorax: not in I; tho-
rax body region: incomplete. Bai et al.1 focus on three body
regions – thorax, abdomen, and pelvis, and do not consider
H&N, although it is possible to extend their method to H&N.
Hussein et al.4 consider only the thorax and abdomen. More
important than the smaller number of body regions consid-
ered by both works, their behavior becomes unpredictable (or
not described/demonstrated in the papers) if I does not
include the slices they aim to detect. The ability to perform
O1-O3 has important consequences in practice where BRR-
Net forms the front end of the application. We will provide
three illustrations. (a) Standardized anatomy definition: In
numerous applications, body-wide or body region-wide
organ segmentation is required. Radiation therapy planning is
an example. Unfortunately, none of the existing segmentation
frameworks start off with a precise definition of the body
region and the organs included in them, the AAR methodol-
ogy2,3,10 being an exception. Without such a definition, the
segmentation problem and comparative evaluation of meth-
ods become ill-defined. For example, what is the definition
of long objects such as esophagus, spinal cord, descending
aorta, etc. that cross body regions? The AAR framework has
demonstrated that standardized definitions have conceptual
and algorithmic advantages. For example, by modeling object
geographic relationship information with respect to the body
region, objects can be quickly placed in an image based
purely on prior knowledge. (b) Body composition analysis:
Quantification of bodily tissues,4,11 especially subcutaneous
and visceral adipose components, has been shown to be use-
ful as biomarkers in the study of various disease and treat-
ment processes such as obstructive sleep apnea,12 lung
transplant surgery,13 acute kidney injury in trauma,14 etc.
Without a precise definition of the body regions, standardized
assessment of these tissues by body region becomes mean-
ingless. (c) Disease quantification: It has been demonstrated
recently15 that body-wide, body region-wide, and organ-wide
disease quantification can be performed via PET/CT images
just following localization of these entities without having to
perform their explicit delineation or the delineation of the dis-
ease sites. Again, without a precise definition and subsequent
localization of the objects, this quantification has no
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meaning. The outputs of BRR-Net are crucial in facilitating
these practical applications.

1.C. Outline of the approach

We assume that the four body regions discussed in this
paper — H&N, thorax, abdomen, and pelvis — are defined
by their superior and inferior axial boundaries in the cranio-
caudal direction. Our goal is to classify each slice of the input
image into one of eight categories — the eight region bound-
ary slices plus another category which constitutes nonbound-
ary slices. The process is divided into two stages, training
and testing, each of which is further divided into three steps.
In both the training and testing stages, the first step is the pre-
processing step where each slice in a stack of axial slices is
rescaled to 224 � 224 pixels and is combined with its neigh-
boring slices to create compound five-channel images (Sec-
tion 2.C). This provides additional appearance context to the
model. The training stage has two more steps: training a deep
CNN (Section 2.D) and training a recurrent neural network
(RNN) (Section 2.H). The two networks work in a cascading
manner with the RNN improving upon the predictions of the
CNN for the body region boundaries which generally have
high error rates. The RNN is trained on sequences of features
extracted from an intermediate layer of the CNN, with the
sequences defined by windows centered around the predic-
tions from the CNN. Both the preprocessing step creating the
five-channel images and the RNN exploit the inherently
sequential nature of the axial stack of slices. In the testing
stage, the first step is the same preprocessing step as in the
training stage, and the other two steps are: drawing inference
from the CNN, and improving its performance for the classes
known to have high error rates by using the RNN. Our exper-
iments involve 442 low-dose CT data sets from whole-body
PET/CT scans and an additional 213 diagnostic CT scans of
the H&N region, as described in Section 3. Our concluding
remarks are summarized in Section 4.

2. MATERIALS AND METHODS

2.A. Data sets and notations

For this study, we use PET/CT scans from 442 patients
obtained from the database of the Hospital of the University of
Pennsylvania. Approval for data usage was obtained from the
Institutional Review Board at the Hospital of the University of
Pennsylvania along with a Health Insurance Portability and
Accountability Act waiver. Subjects include near-normal cases
and patients with different types of disease conditions where all
scans were obtained for clinical reasons only. Of the 442 scans,
262 were from head to pelvis, 39 from head to toe, and 17 from
neck to toe. The mean voxel size for the low-dose CT images
was 1:13�1:13�3:77mm3 and the slice spacing varied from
2 to 5 mm: two images with slice spacing of 2 mm, 129 images
with slice spacing of 3 mm, 1 image with slice spacing of
3.26 mm, 7 images with slice spacing of 3.27 mm, 266 images
with slice spacing of 4 mm, 1 image with slice spacing of

4.25 mm, and 36 images with slice spacing of 5 mm. Apart
from these 442 scans, diagnostic CT scans of the head and neck
region were obtained for 213 patients for additional testing in a
different scenario. The mean voxel size for these images was
1:10�1:10�2:05 mm3 and the slice spacing varied from 1 to
3 mm: one image with slice spacing of 1 mm, 27 images with
slice spacing of 1.5 mm, 158 images with slice spacing of
2 mm, 3 images with slice spacing of 2.5 mm, and 24 images
with slice spacing of 3 mm.

For an image Iin the data set, we denote the true superior
and inferior boundaries of the neck, thorax, abdomen, and
pelvis, respectively, as NS(I), NI(I), TS(I), TI(I), AS(I), AI(I),
PS(I), and PI(I). For each volumetric image, these boundary
locations were labeled manually under the guidance of a radi-
ologist (Torigian) following our strict definition of the four
body regions.2,3

2.B. Definition of body regions

For this study, we use the body region definitions
described in our previous work.2,3 We focus on four body
regions: neck, thorax, abdomen, and pelvis, defining each
body region by two boundary slices: the slice representing
the superior boundary and the slice representing the inferior
boundary. The definitions of these body region boundaries
are tabulated in Table I, and the distinguishing features for
each body region boundary are illustrated in Fig. 1. Note that,
per our definitions, AI(I) = PS(I).

The important point to note here is that some defining fea-
tures have a high contrast with respect to their surrounding vox-
els (e.g., the apex of the lung for TS(I) appears as two, or in
some cases one, dark circular objects in the axial slice, with the
slice immediately superior to this slice not having the dark cir-
cular objects, and the slice immediately inferior having two
slightly larger dark circular objects), while some defining fea-
tures are very subtle and exhibit very low contrast with respect
to their surrounding voxels (e.g., the bifurcation of the abdomi-
nal aorta into the common iliac arteries as the distinguishing
feature for AI(I)). This is an important observation which serves
as motivation for the network design involving a two-step pre-
diction process to improve only some of the predictions from
the first step in the second step of our approach.

It is also important to note that there is often some degree
of digital ambiguity present in the process of manual labeling
of the ground truth for this study, arising largely due to the
discrete nature of the axial stack, unlike the continuous nature
of the human anatomy. For example, in the case of AI(I), the
slice where abdominal aorta bifurcates into the common iliac
arteries may be marked differently by different experts, albeit
within one to two slices of each other. This observation is
important to keep in mind when analyzing and interpreting
the results of this study.

2.C. Preprocessing

Each volumetric image is separated into its constituent
slices. Each slice is resized from 512 × 512 to 224 × 224
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pixels. For each slice, a five-channel compound image is cre-
ated with the slice in question as the third channel. The first
and second channels are the two slices immediately inferior
to the slice in question, and the fourth and fifth channels are
the two slices immediately superior to the slice in question.
This is done to provide BRR-Net with additional visual con-
text which is crucial to the classification task. This aids in
accurately classifying body region boundaries by exploiting
the contrast among the channels due to the nature of the defi-
nition of the boundaries. For example, for locating the apex
of the lung, the axial slice immediately superior to the slice
with the apex of the lung will not contain any dark circular
objects (lungs) while the axial slice immediately inferior to
the slice with the apex of the lung will contain slightly larger
dark circular objects (lungs); in the case of locating the slice
with the inferior-most aspect of the ischial tuberosities of the
pelvis, the slice immediately inferior to this slice will not con-
tain any bright bony objects of the pelvis while the slice
immediately superior will have a larger representation of the

bright ischial tuberosities than the slice with the inferior-most
aspect.

Each five-channel image is then zero-center normalized
by subtracting the entire data set’s mean image from the
five-channel images. Thus, each slice is now represented
by a five-channel image. For cases where two slices are
not available either before or after the slice, zero padding
is used.

2.D. Convolutional neural networks

Convolutional neural networks16 employ convolution oper-
ations on the input with weights and introduce nonlinearity.
They are suited for processing spatial information through
the spatial arrangement of convolution operations, local
connectivity, parameter sharing, and pooling operations.
CNNs have shown great promise in processing spatial data,
especially in tasks like image classification and image
segmentation.

TABLE I. Definition of body regions and their boundary locations.

Body region Boundaries Description Definition

Neck NS Neck superior axial boundary location Superior-most aspect of the mandible

NI Neck inferior axial boundary location Level of bifurcation of the superior vena cava into left and right brachiocephalic veins

Thorax TS Thoracic superior axial boundary location 15 mm superior to the apex of the lungs

TI Thoracic inferior axial boundary location 5 mm inferior to the base of the lungs

Abdomen AS Abdominal superior axial boundary location Superior-most aspect of the liver

AI Abdominal inferior axial boundary location Level of bifurcation of the abdominal aorta into common iliac arteries

Pelvis PS Pelvic superior axial boundary location Inferior boundary of the abdominal region

PI Pelvic inferior axial boundary location Inferior-most aspect of the ischial tuberosities

(a) (b) (c) (d)

(e) (f) (g)

FIG. 1. Distinguishing features (marked in green) for each body region boundary. Note that not all of these slices correspond to boundaries. The slices shown
depict: (a) The superior-most aspect of the mandible; (b) The apex of the lung; the TS(I) slice exists 15 mm above this slice; (c) The level of bifurcation of the
superior vena cava into left and right brachiocephalic veins; (d) The superior-most aspect of the liver; (e) The base of the lungs; the TI(I) slice is located 5 mm
below this slice; (f) The level of bifurcation of the abdominal aorta into common iliac arteries; (g) The inferior-most aspect of the ischial tuberosities of the pelvis.
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For the task of classification (the goal of our application),
many network architectures have been proposed and tested in
literature. A few most prominent ones include VGG-16,17

AlexNet,16 and GoogLeNet.18 In this paper, we use the Goo-
gLeNet architecture owing to its efficiency, both in terms of
number of operations needed for a single inference and the
space required for the storage of the parameters.19 The Goo-
gLeNet architecture is modified to accept five-channel
images as input and classify the input image into one of the
nine categories — seven categories corresponding to the
seven body region boundaries (recall that AI(I) = PS(I)), an
eighth category called Legs which comprises of all the slices
below PI(I), and a ninth category denoting the remaining
nonboundary locations. The GoogLeNet architecture is
shown in Fig. 2, where each “Inception Block” is a network
of layers shown in Fig. 3.

2.E. Training the convolutional neural network

The data set containing 442 volumetric images is parti-
tioned into the training + validation data set (containing 70%
of the images) and the testing data set (containing 30% of the
images). As mentioned earlier, for each volumetric image, all
slices below the PI(I) slice are labeled as Legs; all other slices
that do not belong to any of the seven body region boundary
classes or the Legs class are termed none-of-the-above
(NOTA). The Legs class is defined in order to reduce the vari-
ance in the NOTA class. From the training + validation data
set, the seven body region boundary images are over-sampled
to twice the number of samples in each class, and the Legs and
NOTA classes are heavily under-sampled to create a relatively
balanced data set. As our data ensemble is relatively small and
over-sampling is employed, data augmentation was performed
on the training + validation data set. Each image is:

a Randomly horizontally flipped with a probability of
50%.

b Rotated by x degrees where x is a random number
between −15 and 15.

c Translated along the horizontal axis by y pixels where y
is a random integer between −15 and 15.

d Translated along the vertical axis by z pixels where z is a
random integer between −15 and 15.

The training data set was resampled every 10 epochs to
have a healthy representation of the Legs and NOTA classes,
and to reaugment the data set for more effective training.

2.F. Improving training for the convolutional neural
network

During inference for any volumetric image I, multiple con-
secutive slices in I may have high probabilities for any body
region boundary because of their similarity of appearance.
These are the slices that are in the vicinity, both superior and
inferior, of the ground truth slice for the body region bound-
ary under consideration. In order to (a) localize these high-
probability predictions and (b) take into account marginal
labeling errors (to the order of one slice), the trained network
is fine-tuned using a subset of the entire training data set.
This subset contains only the slices which are in the vicinity
of the ground truth slice. For each body region boundary
label, five images on either side, inferior and superior, are
considered, resulting in 11 images per body region boundary
label. Of these ten neighboring images (each image being a
five-channel compound image, consisting of five axial
slices), the two images immediately adjacent to the ground
truth slice, one superior and one inferior, are also marked as
the ground truth for that label, effectively extending the
ground truth for each body region boundary label to three
slices for this stage of refined training.

2.G. Recurrent neural networks (RNNs)

The performance of the above CNN model is not uni-
formly accurate for all boundary slices. The goal for design-
ing an RNN is to improve the predictions for the classes
which did not perform well, that is, for those classes which
had relatively large errors in the predictions from the CNN.

FIG. 2. The GoogLeNet architecture (Szegedy et al., 2015).

FIG. 3. An inception block with dimension reductions.18
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In order to exploit the inherently sequential nature of a
stack of axial slices and the contiguity of appearance, RNNs
were employed on the features extracted from the CNN.
Recurrent neural networks are types of artificial neural net-
works which are used to process sequential information.
These types of networks have connections between their
nodes to form a sequence of connected neural networks.
RNNs have proved to work exceedingly well in processing
temporal sequences like audio and video data.20 However, in
practice, traditional RNNs are often difficult to train because
during training, the gradients tend to either vanish or, in rare
cases, explode, making gradient-based optimization difficult.
Long short-term memory (LSTM)21 units tackle this problem
by using a modification of the simple RNN architecture in
which the hidden state is allowed to be updated, be reset, or
be propagated without modification using learned gates.22

If an axial stack of slices is considered analogous to a
video, and each individual slice in the axial stack is identified
with a frame in a video, an RNN seems like a natural choice
of architecture for its processing. We use an architecture com-
prised of bi-directional LSTM cells, drop-out layers, and fully
connected layers for our task. Thus, we implement a two-step
process to solve the problem. The CNN model gives the pre-
dictions for each body region boundary, and we use the RNN
model to improve upon the predictions that are not very accu-
rate.

The input for the RNN is the 1024-dimensional feature
vector from the last max pooling layer of the GoogLeNet
architecture (Figs. 2, 3). The RNN model is trained sepa-
rately for each of the classes that did not perform well. The
network architecture is shown in Fig. 4.

2.H. Data and labels for RNN

For each class that did not perform well, a window (con-
tiguous sequence) of 31 slices is defined centered around the
ground truth slice in each axial stack. In each window, all
slices before the ground truth label are labeled 0 and all other
slices are labeled 1. Then, to simulate the error produced dur-
ing inference by the CNN, each window is offset by a random
number generated by a normal distribution with the mean and
standard deviation equal to the mean and standard deviation,
respectively, of the errors for each of the underperforming
classes from the CNN predictions on the validation set. For

each slice in this window, a 1024-dimensional feature repre-
sentation is extracted from the last max-pooling layer of the
CNN. At the end, for each axial stack (image I), we have a 31
x 1024-dimensional vector which is treated as a sequence of
length 31, together with a 31-dimensional binary-valued vec-
tor which holds the labels, either 0 or 1, corresponding to
each feature vector in the window. Such sequences are gener-
ated for each image I in the data set, and the set of sequences
along with their binary-valued label vectors are used to train
the RNN.

At inference time, a sequence of 31 1024-dimensional vec-
tors corresponding to a 31-slice window centered around the
slice whose classification is predicted by the CNN is given as
input to the RNN. A corresponding sequence of length 31
consisting of 0s and 1s is predicted by the RNN, and the ele-
ment after the one where the sequence changes from 0 to 1 is
marked as the predicted slice location. In case there are <15
slices on either side (inferior or superior) of the slice being
predicted by the CNN, the window is truncated to include all
the slices from that side, and a sequence of <31 slices
(thereby making the window size flexible) is used as input,
and the corresponding predicted sequence is processed in the
same manner as described before.

2.I. The final BRR-Net architecture

We call the tandem CNN–RNN architecture formed as
described above BRR-Net. The complete architecture is dis-
played in Fig. 5.

At the time of inference, each slice in the given axial stack I
is scaled to 224 � 224 pixels and is converted into a com-
pound five-channel image as described in Section 2.C. Each
slice is then sequentially fed into the CNN as the input image,
and the probability of that image belonging to one of the body
region boundary classes is obtained. The slice that is taken as
the predicted slice at the CNN stage should satisfy two condi-
tions: It should have the highest probability for the predicted
class among all classes and it should be in the right sequential
order of the slice numbers with respect to other body region
boundaries. The latter check is not implemented for all body
region boundary classes, and is used only for those classes that
pose a risk of being wrongly predicted by a large number of
slices (enough to erroneously cross other body region boundary
locations in either direction) due to their defining features

FIG. 4. Network architecture of the recurrent neural network used.
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resembling anatomical structures elsewhere in the body. To
clarify, consider an example: The defining feature for AS(I) —
the superior-most aspect of the liver — sometimes resembles
the superior-most aspect of the skull. This is because while
moving in the caudo-cranial direction, the superior-most
aspects of both the liver and the skull appear to be high-density
masses on low-density backgrounds, with the high-density
masses in both cases exhibiting a convex circular shape. Infre-
quently, this causes the slice containing the superior-most
aspect of the skull to be predicted as the slice with the highest
probability for the AS(I) class. In order to mitigate this ten-
dency, the prediction for AS(I) is always compared against the
predictions for NS(I) and/or NI(I), neither of which demonstrate
a tendency to be wrongly predicted by a large margin (i.e., even
when they are inaccurate, they are always in close vicinity of
the actual NS(I) and NI(I) slices, respectively. Please refer
Tables IX and X). If the predicted slice number for AS(I) lies
superior to the predicted slice of either of the body region
boundaries for neck, then that prediction is ignored and the
slice with the second highest probability is marked as the pre-
diction, and so on.

As mentioned in the example, only those classes that are
predicted with high accuracy and which do not demonstrate
any tendency for being outliers are used as "anchors" for
checking for correctness of anatomical order. In our study,
only AS(I) was found to require such a check, but this
methodology may be extended for any class that exhibits such
properties, provided that the classes used for checking for the
correctness of anatomical order (“anchors”) are known to not
be outlier-prone.

For classes that are known to underperform with the CNN,
the predicted slice is fed into the RNN by creating sequence
of feature vectors about that slice, each vector having been
obtained from an intermediate layer of the CNN as described
in Section 2.H, and the refined prediction is obtained. Thus,
the final output of BRR-Net for a given axial stack of slices is
obtained as the slice numbers corresponding to each of the
classes representing the seven body region boundaries.

3. EXPERIMENTS, RESULTS, AND DISCUSSION

3.A. Computational considerations

The training and testing of the two components of BRR-
Net were performed as follows. The computing platform had
an i7-5930K CPU clocked at 3.50 GHz, 16 GB of RAM, and
a NVIDIA Titan Xp GPU with 12 GB of memory. We used
MATLAB for training the CNN and python + keras with
TensorFlow backend for training the RNN. The MATLAB
model was converted to a TensorFlow-compatible model
using ONNX. One epoch of training the CNN took about
150 s and one epoch of training the RNN took about 3 s (ex-
cluding the feature extraction from CNN). The learning rate
was adjusted using learning rate schedulers. For the CNN
training, the learning rate was reduced by a factor of 10 every
10 epochs. The batch size of 32 was kept constant while
training. While training the RNNs, the learning rate was
reduced by a factor of 10 every 20 epochs, and the batch size
used was 256 and was kept constant throughout the training.
Prediction time for a single study varies from 5 to 10 s
depending on the number of axial slices in the image.

3.B. Ground truth and its precision

Before examining the results presented henceforth, it is
important to examine the variations in human performance in
the task of labeling the body region boundaries. In a previous
work1 (Bai et al., 2019), the TS(I), TI(I), AS(I), AI(I), and PI
(I) classes were labeled for 180 volumetric images by an
expert. For this study, the images were labeled again, by a dif-
ferent expert. The mean and standard deviations for the abso-
lute difference in the labels by the two experts are tabulated
in Table II. It is clear that the variation in slice location for
the class AI(I) = PS(I) is much larger than that for other
classes and is quite considerable with a mean of ~4 slices.
This is largely due to the ambiguous nature of the defining
feature of the AI(I) class. For all other classes, the mean varia-
tion is less than one slice.

FIG. 5. Architecture of BRR-Net.
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3.C. Prediction results

The results from the initial CNN are tabulated in Tables
III–V. In Table III, each cell represents the percentage of total
number of cases that were within (≤) the absolute error men-
tioned in the first column which is expressed in terms of
number of slices. Table IV shows the mean and standard
deviation of the prediction errors with respect to the ground
truth expressed in terms of number of slices and mm. Table V
shows the mean and standard deviation of the prediction
errors with respect to the ground truth expressed in mm for
images with slice spacing equal to 3, 4, and 5 mm separately.

The results from the fine-tuned CNN (henceforth referred
to as just “CNN”) are tabulated in Tables VI–VIII. In Table
VI, each cell represents the percentage of total number of
cases that were within (≤) the absolute error mentioned in the
first column which is expressed in terms of number of slices.
Table VII shows the mean and standard deviation of the pre-
diction errors with respect to the ground truth expressed in
terms of number of slices and mm. Table VIII shows the

mean and standard deviation of the prediction errors with
respect to the ground truth expressed in mm for images with
slice spacing equal to 3, 4, and 5 mm separately.

As is evident, the model performs exceptionally well
except for classes AI(I) and TI(I). This is predominantly due
to the nature of the defining features of these two classes. For
the case of AI(I) the defining feature, the level of bifurcation
of the superior vena cava into the left and right brachio-
cephalic veins, is sometimes difficult to locate accurately. For
the case of TI(I), the defining feature, the base of the lungs,
often appears as a mere sliver of black (low image intensity),
making it difficult to observe in some cases.

As explained in Section 2.G, the RNN model is employed
only for those classes which have relatively higher errors.
Classes AI(I) and TI(I) are empirically chosen on the basis of
Tables VI and VII to employ the RNN. The RNN was trained
on these classes as described in Section 2.H, and the results
from the CNN, followed by the RNN for them are tabulated
in Tables IX–XI. In Table IX, each cell represents the per-
centage of total number of cases that were within the absolute
error mentioned in the first column. Table X shows mean and
standard deviation of the prediction errors with respect to the
ground truth expressed in terms of number of slices and mm.
Notable improvements can be seen for both AI(I) and TI(I)
classes, which have benefitted from the sequential processing
of their neighboring slices. Table XI shows the mean and
standard deviation of the prediction errors with respect to the
ground truth expressed in mm for images with slice spacing
equal to 3, 4, and 5 mm separately.

TABLE II. Mean and standard deviation (SD) of absolute difference expressed
in number of slices (first row) and mm (second row) in the labels assigned by
two different experts.

TS TI AS AI = PS PI

Number
of slices

0.1 � 0.7 0.4 � 1.0 0.1 � 0.4 4.1 � 5.3 0.7 � 0.6

mm 0.6 � 2.6 1.3 � 3.5 0.6 � 1.7 15.5 � 20.8 2.8 � 2.4

TABLE III. Results after training the modified GoogLeNet on all classes.

Abs. Err. NS NI TS TI AS AI = PS PI

1 81.37 61.90 97.74 49.62 93.23 30.08 100

2 96.08 83.81 98.50 65.41 94.74 46.62 100

3 100 92.38 99.25 75.19 96.99 59.40 100

4 100 95.24 100 84.96 97.74 68.42 100

5 100 98.10 100 87.97 97.74 77.44 100

TABLE IV. Mean and standard deviation (SD) of the error from the ground truth in the prediction of the classes via the modified GoogLeNet, expressed in number
of slices (first row) and mm (second row).

NS NI TS TI AS AI = PS PI

Number of slices 0.9 � 0.8 1.5 � 1.4 0.4 � 0.6 2.4 � 2.5 0.6 � 2.6 3.8 � 3.5 0.4 � 0.5

mm 3.2 � 3.1 5.6 � 4.9 1.5 � 2.3 8.4 � 8.0 2.2 � 8.1 13.6 � 11.7 1.7 � 1.9

TABLE V. Mean and standard deviation (SD) of the error from the ground truth in the prediction of the classes via the modified GoogLeNet, expressed in mm, for
images with different slice spacings.

Slice spacing NS NI TS TI AS AI = PS PI

3 mm 2.9 � 2.3 5.5 � 4.8 1.4 � 2.3 9.0 � 8.5 3.9 � 13.9 17.1 � 13.7 1.5 � 1.5

4 mm 3.3 � 3.2 5.8 � 5.0 1.5 � 2.3 8.4 � 8.0 1.3 � 3.6 12.2 � 10.8 1.6 � 2.0

5 mm 5.0 � 7.1 2.5 � 2.9 2.5 � 2.9 5.0 � 4.1 7.5 � 9.6 13.8 � 9.5 3.8 � 2.5

TABLE VI. Results after training the convolutional neural network on all
classes.

Abs. Err. NS NI TS TI AS AI = PS PI

1 95.10 80.95 100 53.38 96.24 30.83 100

2 100 93.33 100 78.95 97.74 48.12 100

3 100 95.24 100 84.96 98.50 61.65 100

4 100 97.14 100 91.73 98.50 74.44 100

5 100 99.05 100 94.74 98.50 80.45 100
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Of course, the accuracy of this algorithm depends entirely
on how precisely the ground truth has been labeled, but the
results in Table X establish BRR-Net’s ability to closely
mimic an expert’s labels. An important point to note here,
perhaps, would be that during the labeling of the data, the
expert must maintain consistency in their methodology for
labeling ambiguous cases and that visual ambiguities must be
handled in the same manner for all subjects in the data set.
This ensures homogeneity in the labeled slices, which is criti-
cal to achieving high accuracy in our classification task.

3.D. Display examples

Samples of results, both good (within one slice of the
ground truth) and not-as-good (more than one slice from the
ground truth and labeled as “poor”) are shown in Fig. 6.
“Poor” examples for classes TS(I) and PI(I) were not avail-
able as the error was within one slice for all test cases for
these classes.

Even though our models were trained on low-dose CT
images, tests were carried out to see if they can be used on
diagnostic CT images as well in an “as-is” condition. As
described in Section 2.A, 213 diagnostic CT images of the
neck region with an average voxel size of
1.10 × 1.10 × 2.05 mm3 were obtained and labeled for three
classes: NS(I), NI(I), and TS(I). The results from the final
two-step BRR-Net model are tabulated in Tables XII–XIV.
Table XIV shows the mean and standard deviation of the pre-
diction errors with respect to the ground truth expressed in
mm for images with slice spacing equal to 1.5, 2.5, and
3 mm separately. Samples of results for diagnostic CT images
are shown in Fig. 7.

TABLE VII. Mean and standard deviation (SD) of the error from the ground truth in the prediction of the classes via CNN, expressed in number of slices (first
row) and mm (second row).

NS NI TS TI AS AI = PS PI

Number of slices 0.6 � 0.6 1.1 � 1.1 0.3 � 0.5 1.8 � 2.0 0.6 � 2.4 3.4 � 3.2 0.5 � 0.5

mm 2.2 � 2.1 3.8 � 3.9 1.2 � 1.8 6.8 � 6.8 2.0 � 7.5 12.7 � 11.7 1.9 � 1.9

TABLE VIII. Mean and standard deviation (SD) of the error from the ground truth in the prediction of the classes via CNN, expressed in mm, for images with dif-
ferent slice spacings.

Slice spacing NS NI TS TI AS AI = PS PI

3 mm 1.9 � 1.9 4.3 � 4.6 0.8 � 1.4 7.6 � 8.1 3.5 � 13.6 12.1 � 10.4 2.1 � 1.7

4 mm 2.4 � 2.2 3.5 � 3.2 1.3 � 1.9 6.4 � 6.3 1.2 � 1.9 12.8 � 12.3 1.8 � 2.0

5 mm 2.5 � 2.9 3.8 � 7.5 1.3 � 2.5 7.5 � 2.9 7.5 � 6.5 16.3 � 9.5 2.5 � 2.9

TABLE IX. Results after training the convolutional neural network on all
classes followed by RNN (BRR-Net) for AIðIÞ and TI Ið Þ.

Abs. Err. NS NI TS TI AS AI = PS PI

1 95.10 80.95 100 70.68 96.24 35.34 100

2 100 93.33 100 86.47 97.74 57.14 100

3 100 95.24 100 92.48 98.50 69.92 100

4 100 97.14 100 93.98 98.50 81.20 100

5 100 99.05 100 96.99 98.50 89.47 100

TABLE X. Mean and standard deviation (SD) of the error from the ground truth in the prediction of the classes via BRR-Net, expressed in number of slices (first
row) and mm (second row).

NS NI TS TI AS AI = PS PI

Number of slices 0.6 � 0.6 1.1 � 1.1 0.3 � 0.5 1.4 � 1.7 0.6 � 2.4 2.8 � 2.7 0.5 � 0.5

mm 2.2 � 2.1 3.8 � 3.9 1.2 � 1.8 5.4 � 5.6 2.0 � 7.5 10.8 � 9.9 1.9 � 1.9

TABLE XI. Mean and standard deviation (SD) of the error from the ground truth in the prediction of the classes via BRR-Net, expressed in mm, for images with
different slice spacings.

Slice spacing NS NI TS TI AS AI = PS PI

3 mm 1.9 � 1.9 4.3 � 4.6 0.8 � 1.4 6.5 � 7.6 3.5 � 13.6 12.0 � 9.8 2.1 � 1.7

4 mm 2.4 � 2.2 3.5 � 3.2 1.3 � 1.9 4.9 � 4.6 1.2 � 1.9 10.3 � 10.1 1.8 � 2.0

5 mm 2.5 � 2.9 3.8 � 7.5 1.3 � 2.5 6.3 � 2.5 7.5 � 6.5 8.8 � 6.3 2.5 � 2.9
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One interesting point to note here is that the performance
on diagnostic CT seems worse in terms of error expressed in
number of slices than that on the low-dose CT images. How-
ever, the mean interslice separation in the diagnostic CT

images is almost half of that of low-dose CT images, meaning
that even though the error is higher in number of absolute
slices, it is quite comparable to the performance on low-dose
CT images in absolute distance from the ground truth. This is
quite remarkable considering the fact that we did not retrain
BRR-Net on diagnostic CT images.

3.E. Comparison with methods from the literature

As mentioned in Section 1.B, the only other works that
tackled the problem addressed in this paper in a much-limited
sense are Bai et al.1 and Hussein et al.4 Bai et al. focused on
localizing TS(I), TI(I), AS(I), AI(I) = PS(I), and PI(I) in low-
dose CT of PET/CT acquisitions as well. Using a different
concept of virtual landmarks and neural networks for predic-
tion, they report errors (mean � SD, in number of slices) of,
respectively, 2.7 � 1.8, 3.0 � 3.0, 3.7 � 1.9, 3.9 � 3.2, and
2.5 � 1.8 for these five body region boundaries. BRR-Net
results (Table X) are better for all classes with statistical

FIG. 6. Display examples for low-dose computed tomography images. Sample true (Row 1) and predicted (Row 2) slices for a “good” case for each class (error 1
slice) and a “poor” case (Rows 3— true and 4— predicted) for each class (error > 1 slice).

TABLE XII. Results from the final model on diagnostic computed tomogra-
phy images.

Abs. Err. NS NI TS

1 60.56 35.89 93.43

2 83.10 57.42 97.65

3 92.96 73.68 99.53

4 96.24 81.82 100

5 99.06 89.95 100

6 99.53 93.78 100

7 99.53 97.61 100

8 99.53 99.04 100

9 100 99.52 100

10 100 100 100

TABLE XIII. Mean and standard deviation (SD) of the error from the ground
truth in the prediction of the classes TS(I), NS(I), and NI(I) for diagnostic CT
images via BRR-Net, expressed in number of slices (first row) and mm (sec-
ond row).

NS NI TS

Number of slices 1.5 � 1.3 2.6 � 2.1 0.6 � 0.7

mm 2.9 � 2.5 5.1 � 3.9 1.2 � 1.4

TABLE XIV. Mean and standard deviation (SD) of the error from the ground
truth in the prediction of the classes TS(I), NS(I), and NI(I) for diagnostic
computed tomography images via BRR-Net, expressed in mm, for images
with different slice spacings.

Slice spacing NS NI TS

1.5 mm 2.6 � 2.9 5.8 � 4.0 1.5 � 1.4

2 mm 3.1 � 2.4 5.0 � 3.9 1.0 � 1.2

3 mm 1.9 � 1.7 4.6 � 3.8 1.6 � 2.2

Medical Physics, 0 (0), xxxx

10 Agrawal et al.: Body region recognition by CNN–RNN pair 10



significance (P < 0.05) and by 2.4, 1.7, 3.1, 1.1, and 2 slices,
respectively. Notably, BRR-Net achieves tighter predictions
with considerably lower standard deviation (except for AS
where it is comparable), suggesting that it is overall more
robust. Hussein et al. report an error of ~47 mm, which is
considerably higher than our error, in localizing the thoracic
region boundaries following the same body region definitions
as we have used (Table I). It is to be noted that (a) their
study’s scope, data set, and application were different from
ours and (b) the nature of their algorithm required only a
rough initial estimation and precise localization was not nec-
essary in their study.

4. CONCLUDING REMARKS

Automatically localizing body regions in medical images
by locating their superior and inferior axial boundaries is an
important step toward the acceptance and subsequent applica-
tion of standardized body region definitions. It is also
increasingly important in developing applications based on

this ideology, especially the systems designed for anatomical
regions which depend on the precise boundaries. In this
work, we have described a novel technique to automatically
locate the axial body region boundaries of four body regions
— neck, thorax, abdomen, and pelvis — within one slice for
a majority of the locations, and within at most three slices
overall. If additional body regions are defined or if existing
body region definitions are modified in the future, this model
can be retrained to learn the representations of their defining
features. The models trained on low-dose CT images also
work remarkably well on diagnostic CT images. Due to the
nature of the algorithm, this approach can be generalized to
other imaging modalities, as well, such as MRI, although in
this work we have demonstrated its performance only on low-
dose CT and diagnostic CT images.

In a production-mode set up, a BRR-Net-type system
becomes indispensable for the reasons we explained in
Section 1.B with the application example of RT planning.
The AAR methodology fully exploits the facility of precisely
defining body regions (and the objects contained in them) to

FIG. 7. Display examples for diagnostic CT images. Sample true (Row 1) and predicted (Row 2) slices for a “good” case for each class (error 1 slice) and a “poor”
case (Rows 3— true and 4— predicted) for each class (error > 1 slice).
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reduce population variations in the geographic layout of
objects and thus to improve the accuracy of object delin-
eation, and quantification. A question that remains for AAR-
type methods is what level of accuracy is required or error is
tolerable in locating body region boundaries by methods such
as BRR-Net. Given that expert localization has its own vari-
ability, will computerized localization be more accurate than
manual methods for AAR and its applications? We are inves-
tigating such questions in the context of using BRR-Net as
the front end of such applications.
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