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Purpose: Quantification of body tissue composition is important for research and clinical purposes,
given the association between the presence and severity of several disease conditions, such as the
incidence of cardiovascular and metabolic disorders, survival after chemotherapy, etc., with the quan-
tity and quality of body tissue composition. In this work, we aim to automatically segment four key
body tissues of interest, namely subcutaneous adipose tissue, visceral adipose tissue, skeletal muscle,
and skeletal structures from body-torso-wide low-dose computed tomography (CT) images.
Method: Based on the idea of residual Encoder–Decoder architecture, a novel neural network design
named ABCNet is proposed. The proposed system makes full use of multiscale features from four
resolution levels to improve the segmentation accuracy. This network is built on a uniform convolu-
tional unit and its derived units, which makes the ABCNet easy to implement. Several parameter
compression methods, including Bottleneck, linear increasing feature maps in Dense Blocks, and
memory-efficient techniques, are employed to lighten the network while making it deeper. The strat-
egy of dynamic soft Dice loss is introduced to optimize the network in coarse-to-fine tuning. The pro-
posed segmentation algorithm is accurate, robust, and very efficient in terms of both time and
memory.
Results: A dataset composed of 38 low-dose unenhanced CT images, with 25 male and 13 female
subjects in the age range 31–83 yr and ranging from normal to overweight to obese, is utilized to
evaluate ABCNet. We compare four state-of-the-art methods including DeepMedic, 3D U-Net, V-
Net, Dense V-Net, against ABCNet on this dataset. We employ a shuffle-split fivefold cross-valida-
tion strategy: In each experimental group, 18, 5, and 15 CT images are randomly selected out of 38
CT image sets for training, validation, and testing, respectively. The commonly used evaluation met-
rics— precision, recall, and F1-score (or Dice) — are employed to measure the segmentation quality.
The results show that ABCNet achieves superior performance in accuracy of segmenting body tissues
from body-torso-wide low-dose CT images compared to other state-of-the-art methods, reaching 92–
98% in common accuracy metrics such as F1-score. ABCNet is also time-efficient and memory-effi-
cient. It costs about 18 h to train and an average of 12 sec to segment four tissue components from a
body-torso-wide CT image, on an ordinary desktop with a single ordinary GPU.
Conclusions: Motivated by applications in body tissue composition quantification on large popula-
tion groups, our goal in this paper was to create an efficient and accurate body tissue segmentation
method for use on body-torso-wide CT images. The proposed ABCNet achieves peak performance in
both accuracy and efficiency that seems hard to improve any more. The experiments performed
demonstrate that ABCNet can be run on an ordinary desktop with a single ordinary GPU, with practi-
cal times for both training and testing, and achieves superior accuracy compared to other state-of-the-
art segmentation methods for the task of body tissue composition analysis from low-dose CT images.
© 2020 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.14141]
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1. INTRODUCTION

1.A. Background

Assessment of body tissue composition body-wide is
important for various clinical and research applications.1 It is
widely accepted that body composition can independently
influence health.2 Bone, adipose tissue, and muscle occupy
more than three-quarters of whole-body weight,3 which
makes them particularly amenable to body composition anal-
ysis. For instance, the mass and distribution of adipose tissues
can significantly influence the incidence of various cardio-
vascular and metabolic disorders and of various cancers,4 as
well as the clinical outcome of patients with lung transplanta-
tion.5,6 Obesity is strongly associated with the risk of acute
kidney injury in trauma7 and obstructive sleep apnea syn-
drome.8 Muscle mass has been shown to correlate with
important clinical outcomes such as postoperative mortality,
survival after chemotherapy, and non-ventilator status.9 The
quality of bone tissue is directly related to osteoporosis as
well as to noncancer death in men with prostate cancer.10

Emerging research11,12 also shows that the same type of tissue
but distributed in different anatomical locations, such as the
subcutaneous adipose tissue (SAT) and visceral adipose tis-
sue (VAT), may have different effects on health and in the set-
ting of disease states, which make it necessary to analyze
those tissues separately. Therefore, an accurate, efficient,
practical, and production-mode method of segmentation and
quantification of body tissue composition has potentially far-
reaching consequences. Our work aims at finding such a
method to quantify the four main tissues of interest, including
adipose tissues (SAT and VAT separately), skeletal muscle tis-
sue, and skeletal structures (including cortical bone, trabecu-
lar bone, and bone marrow) on body-torso-wide CT images.

1.B. Related work

There have been many previously published approaches to
quantify body tissue composition in various applications, as
reviewed in Refs. [2,13-15]. Anthropometry, including body
mass index (BMI), skinfold thickness, waist circumference,
etc., is the easiest technique to perform and is widely used to
assess obesity, as discussed.13 However, this kind of method
does not provide information about the individual contributions
of each tissue type to body composition. Bioelectrical impe-
dance analysis (BIA) and air displacement plethysmography
(ADP) are two other noninvasive methods with better accuracy
than anthropometric methods. Although BIA has been consid-
ered as a simple and reliable method for assessment of body
composition, as discussed in Ref. [14], its accuracy has been
questioned.2,15 Air displacement plethysmography has a strict
requirement for the subject to fully exhale, which requires
patient coaching and which may be difficult to achieve in

children and in other patients who are unable to cooperate.
Regardless of the degree of accuracy, none of the above meth-
ods permit regional body tissue quantification, such as quantifi-
cation of the SAT and VATcomponents of adipose tissue.

Medical imaging techniques, including dual-energy x-ray
absorptiometry (DXA), magnetic resonance imaging (MRI),
and computed tomography (CT), make the in vivo imaging of
anatomic organs and tissues possible. Assessment of body
composition on these 2D or 3D images is more intuitive,
flexible, and accurate compared to other noninvasive meth-
ods. DXA has been regarded as the reference standard for
body composition analysis.16 However, DXA is not useful for
assessment of most clinical diagnoses. Therefore, if applied
for body composition quantification, it requires additional
radiation exposure.14,17 The accuracy of assessment based on
DXA is also being questioned since it is difficult to evaluate
3D volume from a 2D projected image.18 Computed tomogra-
phy and MRI are routinely acquired in many clinical scenar-
ios, and thus can be utilized opportunistically to quantify
body composition with little-added healthcare cost. However,
compared with CT, MRI is more expensive, slower in terms
of image acquisition time, and is less widely available.18

Moreover, the signal intensities of cortical bone and other
connective tissues such as ligaments and tendons overlap on
MRI and pose challenges for accurate segmentation, which
makes it difficult to quantify bone tissues accurately. There-
fore, to accurately assess SAT, VAT, skeletal muscle tissue,
and skeletal structure tissue, CT is an ideal modality. There-
fore, our work will focus on CT images, and in particular
low-dose CT images. Different from the diagnostic CT tech-
nique, the low-dose CT technique utilized in PET/CT allows
for a reduced radiation exposure, which facilitates whole-
body CT imaging and makes this an attractive modality for
performing direct whole-body composition analysis.

Manual segmentation of tissues of interest on CT images by
experienced readers is the commonly used method for quantify-
ing body composition.6–8 Unfortunately, it is labor-intensive,
time-consuming, and prone to inter-reader variability, limiting
its practical application for assessment of large numbers of
datasets. Owing to these limitations, most existing reports of
body composition assessment on CT use a single slice or a few
slices to estimate the whole mass or volume of tissues of inter-
est.19–23 These methods assume a strong correlation and predic-
tive ability between tissue properties in the selected slices and
the whole body. As such, they are prone to inaccuracy since
they assume that all subjects have a uniform and same body
composition distribution. These assumptions are tenuous and
cannot be guaranteed to be valid in most applications. Further-
more, the optimal selection of slices of interest to be assessed
for particular tissues of interest is still controversial.24 Addition-
ally, even when the correlation is strong, it does not imply high
accuracy of predicting tissue composition in the whole body.
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Popuri et al.25 proposed a finite element method to automati-
cally recognize the region of interest (ROI) in CT images. This
algorithm cannot separately quantify SAT and VAT in abdomi-
nal and thoracic regions. Irmakci et al.26 proposed a segmenta-
tion framework based on fuzzy connectivity utilizing three
different MRI contrasts, separately. Although this method is
fully automated and data-driven, the SAT and VAT components
cannot be separated and skeletal muscle cannot be extracted.

As compared to 2D and interactive methods, automated 3D
methods have been reported recently.27,28 Kim et al. 27 used
the Convex Hull algorithm and a coordinate correction strategy
to detect closed paths strictly surrounding muscle and bone.
Although the accuracy reported of this method is relatively
high, it is still assessed on a single 2D slice in each CT image.
Hussein et al.28 proposed an unsupervised method to segment
SAT and VAT from CT images based on appearance and geo-
metric information. The methodology reported in this study is
the state of the art; however, it is focused on segmentation of
only adipose tissues in the abdominal region, where other tis-
sue types and other body regions were not assessed.

Recent advances in deep learning, in particular, convolu-
tional neural networks (CNN), have shown dominant perfor-
mance in the medical image analysis field. U-Net29 brought
the residual Encoder–Decoder technique, which was first pre-
sented by fully convolutional network (FCN)30 for the pur-
pose of semantic image segmentation, into medical image
segmentation and added shortcut connections between the
corresponding downsampling and upsampling layers. Those
connections can help to transform feature information and
gradients in multiple paths, during forward and backward
propagations. There are some emerging studies employing
U-Net31–33 and FCN34 for body composition tissue segmenta-
tion in CT and MR images. However, those networks still
maintain 2D segmentation on slices, which makes directly
applying them for capturing 3D spatial information difficult.
As discussed in Ref. [31], 3D analysis of body composition is
more accurate than 2D approximations. Besides the above
methods, there have been a number of CNNs that were ini-
tially designed for segmenting medical images, which have
an objective similar to body tissue composition assessment
and can be potentially directly applied to this task.35–38 But
these networks have the disadvantages of heavy computa-
tional cost or high model complexity and their utility on body
tissue composition analysis needs to be demonstrated.

1.C. Contributions

With the goal of addressing the above technical gaps, in
this paper, we present a practical residual Encoder–Decoder
network, named ABCNet*, for body composition

quantification on body-torso-wide low-dose CT images. The
contribution of this work is threefold: (a) This network is
basically built on a basic convolutional unit named Basic-
Conv as well as its variations. One particular type of Basic-
Conv with kernel size of 13, called Bottleneck, is frequently
employed to compress parameters; a special Dense Block,
which contains multiple Dense Layers with feature map lin-
early increased, is utilized to make the network deeper, and
an memory-efficient technique is used to further decrease the
storage requirement. These designs make ABCNet become a
very deep network with relatively a small number of parame-
ters. (b) The strategy of dynamic soft Dice loss is applied to
optimize the network, requiring two steps of adjustment
where coarse-to-fine tuning helps to improve the segmenta-
tion accuracy. (c) ABCNet is the first 3D CNN designed to
automatically and practically perform body composition anal-
ysis. In summary, the above innovations have led to a seg-
mentation algorithm that is accurate, robust, and very
efficient in terms of both time and memory, as we demon-
strate in this paper.

2. MATERIALS AND METHODS

Adipose tissues (SAT and VAT separately), skeletal mus-
cles, and skeletal structures, especially body-wide, are differ-
ent from typical organs as 3D objects in that they have much
larger volumes, more complex shapes (such as VATwhich is
amorphous), and much larger spatial extents. In our earlier
work,17 we used precise definitions of the craniocaudal extent
of the body torso and the different body regions, namely tho-
rax, abdomen, and pelvis and the SAT, VAT, skeletal muscle,
and skeletal structure regions in each of them. Without such
definitions, the quantification of SAT and VAT and other tis-
sues in a standardized manner will not be possible and com-
parison among different methods becomes meaningless. We
employ the same definitions and abbreviations in this paper
as illustrated in Table I.

Figure 1 illustrates some sample low-dose axial CT slices
from three different (Plv, Abd, and Thx) levels in the body
torso of a subject with color overlays that depict manual seg-
mentations of the four tissues of interest. It can be seen that
different tissue types and organs appear very similar and are
tightly packed within the body region. More importantly,
some of them have similar or even the same intensity values.
For instance, SAT and VAT are normally very similar to each
other in terms of attenuation values on CT. Msl and other
solid organs (such as the liver and spleen shown in the middle
image in the upper row of Fig. 1) have fairly similar soft tis-
sue attenuation values on CT. As such, these challenges for
segmentation of the four tissues of interest cannot be over-
come through simply utilizing intensity or texture informa-
tion. The information from localization and context also
needs to be utilized.

The residual Encoder–Decoder type of CNN has been
proven to be effective in medical image segmentation.30,37,39

Its success ensues largely from the wide receptive field of the
downsampled feature maps. Our new network is inspired by

*ABCNet denotes “A Body Composition Network.” The expression
“ABC” also connotes “basic” to reflect our belief that, for parcella-
tion of other types of tissues in a different body region (e.g., within
the calvarium) or within a single anatomic object (“bone,” e.g., con-
sisting of cortical bone, trabecular bone, and bone marrow), such an
approach can be utilized.
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those previous studies30,37,39 but with practical improve-
ments. ABCNet can achieve a very deep structure, a large
receptive field, and therefore an accurate segmentation per-
formance even for these objects of very complex shape and
confounding appearance, but with a relatively low number of
parameters. In this network, Bottleneck and feature map
recomputing techniques are widely utilized.

The architecture of ABCNet is shown in Fig. 2. It consists
of mainly five types of components, including normal convo-
lution, Bottleneck, Dense Block, downsampling, and upsam-
pling. Downsampling is utilized to create lower resolution
layers of feature maps, and upsampling is used for recovering
all feature maps into the original resolution. At each resolu-
tion level of the feature map, the Dense Block (which is com-
posed of Dense Layers) is employed to extract deep features.
Bottlenecks are frequently used since they can compress the

feature maps and the parameters. After each upsampling,
Bottlenecks are also employed to fuse the feature maps from
different resolution levels. Subsequently, the softmax classi-
fier is employed to make the final decision. The details of
ABCNet and its implementation are described in the follow-
ing sections.

2.A. Basic convolution block

ABCNet is built on a basic convolution block, named
BasicConv. Except for the first convolutional layer at the
beginning of this network and the upsampling, all other com-
ponents of ABCNet are derivatives of the BasicConv. As
shown in Fig. 3, those components in Fig. 2 are formed from
the BasicConv with different kernel sizes or from the con-
catenation of derivatives of it. The BasicConv consists of four
modules, including optional concatenation, batch normaliza-
tion, activation, and convolution, in sequence. The structure
of BasicConv is shown in Fig. 3. Although convolution is the
key operation in ABCNet, other assistant modules are also
indispensable. Concatenation is the first operation in each
BasicConv since the input feature maps are likely obtained
from multiple previous BasicConv operations such as the
Bottlenecks after each upsampling and the Dense Layers in
Dense Blocks, as can be observed from the multiple connec-
tions in Fig. 2. Yet, it is not always necessary to have all lay-
ers, which make concatenation an optional operation in
BasicConv. Batch normalization can avoid the vanishing gra-
dient and exploding gradient issues,40 which make this opera-
tion necessary for BasicConv. It should be noted that both
batch normalization and activation are performed before con-
volution. We apply pre-activation instead of post-activation,
which has previously shown a superior ability to improve the
performance of networks.41,42 The employed activation func-
tion is ReLU.43 Then, a conventional convolution layer with
padding is utilized to obtain the deeper feature maps with the
same size as the inputs.

TABLE I. Definitions of body regions and tissue regions (objects) in the body
torso.

Abbreviation Definition

Thx Thoracic region extending from 5 mm inferior to the bases of
the lungs to 15 mm superior to the lung apices.

Abd Abdominal region extending from the point of bifurcation of
the abdominal aorta into common iliac arteries to the
superior aspect of the liver.

Plv Pelvic region extending from the inferior aspect of the ischial
tuberosities to the point of bifurcation of the abdominal aorta
into common iliac arteries.

BT Body torso extending from the inferior aspect of the pelvic
region to the superior aspect of the thoracic region.

Msl All skeletal musculature in the body torso region.

Sk All skeletal structures in the body torso region.

SAT Subcutaneous adipose tissue in the body torso region.

VAT Visceral adipose tissue (internal to Msl) in the body torso
region.

FIG. 1. From left to right are sample axial slices selected from the Plv, Abd, and Thx aspects of the body torso in one subject. Both original low-dose CT images
(upper row) and manually delineated masks of the four tissue regions of interest (lower row) are shown (where blue = SAT; red = VAT; green = Msl;
orange = Sk). [Color figure can be viewed at wileyonlinelibrary.com]
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2.B. Bottleneck

Regular convolution has the drawback of a large number
of parameters. Especially for 3D image processing, the num-
ber of parameters will increase dramatically when the size of
the convolution kernel becomes large. Hence, with only
BasicConv, the network will become very complex while it
gets deep. The popularly utilized Bottleneck, which is a con-
volution with the kernel size of 1 9 1, can reduce the dimen-
sionality of feature maps.44,45 Recently, it has been reported
to help CNNs to become increasingly deeper.46 We employ
this convolution in ABCNet to compress the network, except
that it is a derivative of BasicConv with a kernel of 13, as
seen from Fig. 3. Because of the relatively complex structure,
Bottleneck in ABCNet has more powerful and wider usages.
It can not only reduce the number of parameters of the net-
work but also fuse the feature maps which come from differ-
ent pathways. Combined with the advantages from batch
normalization and pre-activation, this Bottleneck fusion is
comparable to normal size convolution. This point will be
further discussed in the experimental and discussion sections.
With these advantages, Bottlenecks are widely utilized in

ABCNet, including embedding in the Dense Layer and down-
sampling, as well as independently, as seen from Fig. 2.

2.C. Dense layer and dense block

The Dense Block idea was put forward by Huang et al. in
DenseNet,39 which is applied to alleviate the vanishing gradi-
ent problem. In a Dense Block, the prior layer connects with
each of the following layers. This architecture can strengthen
feature propagation and encourage feature reuse. Gibson
et al.37 utilized Dense Block in their Dense V-Net for medical
image segmentation. Since the medical tomographic images
are 3D, the feature maps, as well as convolution kernels, are
usually much larger than in networks for 2D imagery. Thus,
directly utilizing the Dense Block of Dense V-Net will pose
computational and memory challenges.

In ABCNet, we present a special component to form Dense
Block, which is named Dense Layer. As shown in Fig. 2, the
proposed Dense Layer consists of a Bottleneck followed by a
BasicConv with a kernel size of 33. Bottleneck is employed to
compress the parameters and reduce feature maps (Fig. 4). It
concatenates the feature maps from previous layers, reduces

FIG. 2. The architecture of ABCNet. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 3. Five components in ABCNet.
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the number of feature maps, and then inputs them into subse-
quent BasicConv. Bottleneck is a crucial step since both
parameters and feature maps can be compressed in the Dense
Layer, which improves efficiency and memory requirements.
The union structure of Dense Layer allows the Dense Block to
contain more Dense Layers and thus makes the network go
deeper. Different from previous strategies for going deeper,37,45

the Bottlenecks in ABCNet contain normalization and activa-
tion operations as well, which make them no longer just simple
compress tools but also feature extraction layers. As we
demonstrate in our experiments, the feature extraction capabil-
ity of Bottelenecks is comparable to that of BasicConvs with
normal size convolution. Furthermore, this character makes
Bottleneck an independent convolutional layer in ABCnet.

Assume that k0 feature maps will input into a Dense Block
and that each layer will output k feature maps, where k is
known as the growth rate of this Dense Block. Thus, for the
lth layer in a Dense Block, k0 + k 9 (l-1) feature maps will
be input. If we apply only normal convolution in each layer,
such as the 33 convolution,37 then [k0 + k 9 (l-1)] 9 k 9 33

convolutional parameters will be needed in this layer. How-
ever, when Bottleneck is used, assuming kbn feature maps are
being output from the Bottleneck, we need [k0 + k 9 (l-
1)] 9 kbn + kbn 9 k 9 33 or kbn 9 [k0 + k 9 (l-
1) + k 9 33] convolutional parameters. Obviously, Bottle-
necks can significantly reduce the number of parameters,
especially when Dense Blocks get deeper.

2.D. Downsampling and Upsampling

Similar to other FCN methods, ABCNet also has downsam-
pling to capture features at different levels of feature resolution,
followed by upsampling to recover those downsampled feature
maps into the initial resolution. Downsampling consists of a Bot-
tleneck followed by a BasicConv with a kernel size of 23 and a
stride of 2. Similar to the Dense Layer, the Bottleneck is applied
to concatenate feature maps obtained from the upper resolution
level and more importantly to compress the parameters. Different
from the often used pooling operations, convolution with a stride
of 2 is employed to downsample the feature maps. For upsam-
pling, the untrained trilinear interpolation is applied, which can
further reduce the number of parameters. This free-of-training
technique has been reported as an alternative upsampling method
and has been used in previous studies.30,37 Benefiting from down-
sampling, ABCNet extracts extensive features from various reso-
lution levels. Benefiting from upsampling, ABCNet can achieve
accurate segmentation at the voxel level. The components of
downsampling and upsampling are illustrated in Fig. 3.

2.E. Dynamic soft dice loss

Recently, Dice Coefficient-based loss functions have
become popular in medical image segmentation.36–37,47 We
use a probabilistic Dice-based loss function for multiclass
segmentation, named Soft Dice Loss (SDL). For C classes in
the segmentation problem, the Softmax layer will output C
probability maps which have the same size as that of the input

patch/image. Assume the input patch/image contains N vox-
els. Let pcn 2 ½0; 1� denotes the output probability of the nth

voxel belonging to class c and gcn 2 f 0,1g denotes whether
or not the nth voxel belongs to class c in ground truth labels.
Then, the SDL is defined as

SDL ¼ 1� 1
C

XC
c¼1

2
PN

n¼1 p
c
n � gcn

� �þ ePN
n¼1 p

c
n þ

PN
n¼1 g

c
n

� �þ e

" #
; (1)

where e is a small constant to avoid the numerical issue of
dividing by 0. Essentially, SDL is equivalent to 1 minus the
mean of the probabilistically evaluated Dice similarity coeffi-
cients over all segmented classes.

In ABCNet, we apply a dynamic SDL strategy for coarse-
to-fine tuning of the network. For the first several epochs, the
background is considered as an additional object class, which,
in our case of four tissue types, implies C = 5. When the
model becomes relatively steady, the background will cease to
be counted as an object, which means C will be treated as 4
then on. This strategy is employed to prevent the network from
going toward an undesirable state of getting trapped at a local
optimum at the beginning and to assist the network to
approach the optimal model in the end. If the background (in-
cluding air and other uninteresting tissues) is not included at
the beginning of training, then it becomes easy for the network
to seek an undesirable state where all four tissues of interest
are over-segmented (resulting in high false-positive rates).
This occurs because of the inherent bias in the Dice metric,
which favors over-segmentation over under-segmentation due
to its known higher sensitivity to false negatives than false pos-
itives.48 Therefore, we compute the SDL based on all five
objects to roughly train the network, and then exclude the
background in the SDL for refined training. In our implemen-
tation, the number of objects will be changed while SDL is
lower than 0.2 (or when mean of all Dice values is > 0.8). This
threshold is set based on our observation that the Dice values
for one or more classes will tend to 0 when the network is
trapped at a local optimum. Therefore, SDL < 0.2 can ensure
that for none of the five classes, Dice is 0.

2.F. Implementation

Because of the large size of CT images, it is difficult for
typical FCN structures to be directly implemented. Thou-
sands of feature maps will be generated during the forward
and backward propagations, which create challenges for both
memory and computational complexity. Therefore, we apply
patch-wise training and memory-efficient techniques in
ABCNet. The learning rate is changed according to the
cosine annealing method.49

2.F.1. Patch-wise training

Similar to V-Net (which uses patches of
128 9 128 9 64 voxels) and Dense V-Net (which uses
patches of 72 9 72 9 72 voxels), we also apply patch-wise
training with a patch size of 72 9 72 9 72 voxels (which
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equals the size of 8.64 9 8.64 9 28.8 cm3 under the spatial res-
olution of our dataset). We randomly harvest those patches from
the training dataset on-the-fly. There is no ROI specified in the
training stage, whichmeans that all patches are randomly selected
from the original CT images. Mini-batch gradient descent with a
batch size of 4 is utilized to reduce the data bias effect in opti-
mization. Similar to other residual Encoder–Decoder models,
after training, ABCNet can achieve an end-to-end segmentation
for much larger patches. The network is trained for 10,000 itera-
tions (50 epochs), and the initial learning rate is 0.01, which is
reduced by the cosine annealing strategy49 for each epoch with a
minimum learning rate of 0.00001.

2.F.2. Memory-efficient technique

The cost of the memory-efficient technique is a little extra
computational time in order to save significantly in memory
storage.41 The main idea of this technique is to drop some of
the middle results during forward propagation and to recom-
pute them while executing backward propagation. The
selected intermediate results have to satisfy two conditions,
namely, they are easy to compute but expensive storage-wise.
In ABCNet, the concatenation and batch normalization opera-
tions are easy to compute but consume a lot of memory to keep
the feature maps for the subsequent backward propagation. Thus,
we choose these two layers for dropping middle results. Assume
a Dense Block has a growth rate of k and has lDense Layers in it.
Without memory conservation, at least k 9 l 9 (l + 1)/2 feature
maps need to be stored in a Dense Block. However, it has to store
only k 9 l feature maps if we adopt this frugal technique.
Through efficient use of memory in this manner, we can handle
much larger patches and make the network much deeper, at the
cost of a little additional computational time.

2.F.3. Detailed network structure

The majority of the architecture of ABCNet is already pre-
sented in Fig. 2. The only missing details are the structures

of the Dense Blocks. As we mentioned previously, localiza-
tion (positional information) is very important in body tissue
composition segmentation. The Dense Blocks of low-resolu-
tion feature maps are crucial to providing global locational
information. Therefore, Dense Blocks at lower resolution
should contain deeper Dense Layers to extract deep features.
Fortunately, this is easy to realize since the lower the feature
map resolution, the smaller will be the feature map size,
which consequently allows more layers and feature maps to
be contained in the Dense Block. In our implementation,
from top to bottom, four Dense Blocks contain 6, 12, 14, and
16 Dense Layers and have growth rates of 8, 12, 14, and 16,
respectively. The Bottleneck components produce
minðinput; 4kÞ feature maps to compress the network, where
k is the growth rate in Dense Blocks. It means that if the input
to Bottleneck is less than 4k (the first several layers in a
Dense Block) or the Bottleneck is independent, it will output
as many as input feature maps; otherwise, the Bottleneck will
compress the feature maps to 4k. Table II demonstrates the
detailed layout of ABCNet through defined components
shown in Fig. 2.

3. EXPERIMENTS AND RESULTS

To demonstrate the superior performance of ABCNet for
body composition analysis, several state-of-the-art medical
image segmentation methods, including DeepMedic,35 V-
Net,36 and Dense V-Net,37 are employed for comparison.
Although those methods were not primarily developed for
quantifying body composition, the similar application for
segmentation makes them the most suitable comparison
methods, since, to the best of our knowledge, there are few
algorithms that can automatically segment all four tissue
regions of interest from whole-body-wide low-dose CT
images for assessment of body composition. Although Wes-
ton et al.31 employed the U-Net structure to segment all four
body composition tissues, only one slice at the level of the L3
vertebra was selected to quantitatively evaluate their method.

FIG. 4. Architecture of Dense Block. [Color figure can be viewed at wileyonlinelibrary.com]
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As they reported in their article through qualitative analysis,
the segmentation of the 3D image is more accurate than the
2D approximation for tissue quantification. Thus, we directly
employ the 3D U-Net,38 which is known as the 3D expansion
version of U-Net, as one of the compared methods.

All compared DL methods are tested through their publicly
available implementations. For DeepMedic, we use the authors’
version at https://biomedia.doc.ic.ac.uk/software/deepmedic/.
For the other three methods, we apply their reimplements in
Niftynet platform50 at https://niftynet.io/, which are imple-
mented based on their original presentation. Most of the param-
eters of these methods are at default setting according to the
description in the papers, and we adjust only certain key param-
eters which may influence performance in our task. In Dense
V-Net, the explicit spatial prior information is not applied since
the four tissues are distributed body-wide, and the rough spatial
prior information brings negative effect to the segmentation
accuracy. In addition, we do not utilize the loss function as well
as the adjustment strategy presented in Dense V-Net since the
four tissues do not present extreme class imbalance. Instead,
we apply the Dice loss presented in V-Net but extended to mul-
tiple classes, which was also considered in the study of Dense
V-Net. In V-Net, the above loss function is also applied so that
it can perform segmentation on multiple tissues. For fair com-
parison, we iteratively train the V-Net and Dense V-Net with
the same number of patches as utilized in ABCNet, for exam-
ple, 40000, which are balanced and selected on-the-fly from
the training dataset randomly. For 3D-UNet and DeepMedic,
we use 80,000 and 120,000, respectively, to achieve optimal
performance. In our experiments, all losses for these networks
remain relatively stable under the above strategies.

Recently, there have been some studies focused on particu-
lar tissue type,28 or that have evaluated tissue mass based on
specific slices,20 which are all reported as state-of-the-art
algorithms in their domains. In our current study, we also
provide a quantitative comparison based on the performance
reported in those studies.

In addition, we analyze the performances of different
variations of ABCNet illustrated in Table II. ABCNet-Lite
is a simplified ABCNet with fewer Dense Blocks as well
as fewer Dense Layers in the Dense Block. In ABCNet-
Rm-BN, all of the Bottlenecks in Dense Blocks are
removed, which will increase the number of parameters in
the network. ABCNet-Skip-BN is the network where all
Bottlenecks after Dense Blocks are replaced by BasicConv
with a kernel size of 33.

3.A. Datasets, evaluation metrics, and experiments

This retrospective study was conducted following approval
from the Institutional Review Board at the Hospital of the
University of Pennsylvania along with a Health Insurance
Portability and Accountability Act waiver. The image dataset
included low-dose unenhanced CT images from 38 subjects
who previously underwent 18F-2-fluoro-2-deoxy-D-glucose
(FDG) PET/CT imaging without administration of intra-
venous contrast material on a 16-detector row LYSO PET/CT

scanner with time-of-flight capabilities (Gemini TF, Philips
Healthcare, Bothell, WA). The CT images had been acquired
using a kVp of 120, an effective mAs of 50, a gantry rotation
time of 0.5 msec, and a voxel size of 1.2 9 1.2 9 4 mm3.
The images were selected from our hospital patient image
database by a board-certified radiologist (co-author Torigian).
The patient cohort consists of 25 male and 13 female subjects
in the age range 31–83 yr and in the BMI range from 17.27 to
38.28 kg/m2, and is composed of 31 minimally abnormal
subjects and 7 cancer patients. Manual ground truth segmen-
tations of the four tissue regions were generated via CAVASS
software51 by well-trained operators and verified by the
above-mentioned radiologist. The segmentation methods uti-
lized included iterative live wire,52 thresholding, and manual
painting and correction.

TABLE II. The structural details of ABCNet and its variations.

Component ABCNet
ABCNet-

Lite
ABCNet-
Rm-BN

ABCNet-
Skip-BN

Convolution Conv(33)

Dense Block
(1)

DL 9 6,
k = 8

DL 9 6,
k = 5

BC(33) 9 6,
k = 8

DL 9 6,
k = 8

Downsampling
(1)

BN

Conv(23), St-ride = 2

Dense Block
(2)

DL 9 12,
k = 12

DL 9 8,
k = 8

BC
(33) 9 12,
k = 12

DL 9 12,
k = 12

Downsampling
(2)

BN

Conv(23), Stride = 2

Dense Block
(3)

DL 9 14,
k = 14

DL 9 10,
k = 16

BC
(33) 9 14,
k = 14

DL 9 14,
k = 14

Downsampling
(3)

BN – BN

Conv(23),
Stride = 2

Conv(23), Stride = 2

Dense Block
(4)

DL 9 16,
k = 16

– BC
(33) 9 16,
k = 16

DL 9 16,
k = 16

Skip
Bottleneck (4)

BN 9 4 – BN 9 4 BC
(33) 9 4

Upsampling (4) Interpolation – Interpolation

BN BN BC(33)

Skip
Bottleneck (3)

BN 9 3 BC
(33) 9 3

Upsampling (3) Interpolation

BN BC(33)

Skip
Bottleneck (2)

BN 9 2 BC
(33) 9 2

Upsampling (2) Interpolation

BN BC(33)

Skip
Bottleneck (1)

BN BC(33)

Final
Convolution

BN 9 2 BC
(33) 9 2

DL denotes Dense Layer, BN denotes Bottleneck, BC(33) denotes BasicConv
with kernel size 33, and Conv(33) and Conv(23) denote convolutional operation
with kernel sizes of 33 and 23, respectively. k is the growth rate.
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In our experiments, we adopt the commonly used evalua-
tion metrics — precision, recall, and F1-score, to measure the
segmentation quality. Precision is the fraction of segmented
results that constitute true positives, while recall is the frac-
tion of ground truth that represent true positives. F1-score is
the harmonic mean of precision and recall and is equivalent
to the other commonly used metric called Dice Coefficient.
To compare with existing body composition quantification
methods,20 mean percent prediction error (%PE) as used in
that report, calculated as (|(ground truth – predicted)|/|pre-
dicted|) 9 100, where the variables represent sets and |.|
denotes the number of voxels in the set, was also employed in
our quantitative comparison.

We employ a shuffle-split fivefold cross-validation strat-
egy for evaluating ABCNet, as well as the comparison meth-
ods,35–38 on our dataset. This means that the entire process,
including training and testing, is repeated five times. In each
experimental group, 18 and 5 CT images are randomly
selected out of 38 CT images for training and validation,
respectively. The remaining 15 CT images are used for test-
ing. The results reported below are based on those 75 testing
CT image sets.

3.B. Results

Sample segmentation results for ABCNet and the other
three methods, as well as manual ground truth segmentations,
are illustrated in Fig. 5 for one test CT image. We note that it
is impossible to create perfect ground truth due to, for exam-
ple, the presence of microvascular and nerve structures within
the adipose regions and similarly subtle intramuscular fat
within muscle regions. For creating ground truth, we first
manually delineate certain major interfaces like the muscle
wall or the interface between SAT and VAT regions, then
apply thresholding within such defined regions to separate
tissue components, and then make manual corrections as
needed. Finally, the ground truth so created is checked metic-
ulously by our expert (Torigian) to make sure that no gross
and manually correctable errors remain. We believe that this
is the best currently possible way to create ground truth for
these tissue components. Errors if any in ground truth at such
microscopic level are impossible to decipher and correct
manually.

The selected slices in Fig. 5 are from Plv (first row), Abd
(second row), and Thx (third row) regions in the body. SAT
(blue), VAT (red), Msl (green), and Sk (orange) are together
shown in this figure. Quantitative evaluations of the segmen-
tation results are summarized in Table III. Under the same
experimental strategy (shuffle-split fivefold cross validation),
the segmentation performance of ABCNet’s variants is also
evaluated and the results are summarized in Table III.
Box plots are shown in Fig. 6 to further compare the results
of all methods for all four tissues.

It is difficult for us to reproduce the previous methods
which estimate tissue mass based on a particular slice(s)20

since we do not have the precise mass information of body
composition for our dataset. Hence, we assume that all tissues

are uniformly distributed in each voxel, and therefore, that
the tissue mass estimation is equivalent to the voxel amount
estimation. Based on this assumption, %PEs of segmentation
results of adipose tissues achieved by ABCNet and that
reported in a previous study20 are summarized in Table IV.
Furthermore, the means of F1-scores of SAT and VAT for
ABCNet and Hussein et al.’ s method28 are also illustrated in
this table.

4. DISCUSSION

From the sample display in Fig. 5, we may observe that,
compared to other methods, there are distinct advantages of
ABCNet. One advantage is the ability to retain detailed
information, which can be observed from the small holes
and gaps within the Msl and adipose tissues. Those details
are accurately segmented, which we believe should be
attributed to the high-resolution Dense Block. With direct
convolution on the original CT images, all Dense Layers in
the first Dense Block can receive the initial information,
which makes ABCNet accurately extract those details. We
can see in Fig. 5 that some small gaps are falsely labeled
in the ground truth within Msl tissue, but are precisely
delineated by ABCNet. Those small gaps are very hard to
be accurately labeled manually because of the partial vol-
ume effect. However, ABCNet seems to correct this prob-
lem at some level. These observations demonstrate the
ability of ABCNet in keeping details. Another advantage is
that the location information can be fully taken into consid-
eration, which can be particularly observed from the results
of SAT and VAT. In the state-of-the-art methods shown in
Fig. 5, some large areas in SAT and VAT are falsely delin-
eated. Similar situations also occur in the Msl results of V-
Net. This type of false-positive segmentation on large areas
rarely occurs with ABCNet. This observation should be
attributed to the lower resolution Dense Blocks. Although
in the other three compared networks, the lower resolution
information is also applied, none of them achieves such
deep structure as that of ABCNet while keeping the net-
work practically manageable. The particular designed com-
ponents BasicConv, Bottleneck, and Dense Blocks facilitate
ABCNet to embody very deep layers in the lower resolu-
tion Dense Blocks. This helps ABCNet to capture global
features as well as location information.

The quantitative evaluations in Table III also demonstrate
the superior performance of ABCNet. We can see that for all
four tissues of interest, all three evaluation metrics are above
0.91. In particular, for SAT, all three assessments are around
0.97. The results for Sk are also excellent with all three met-
rics exhibiting values above 0.96. The results for the other
two tissues achieve relatively less accuracy, where VAT
achieves an F1-score (Dice) of 0.94 and Msl tissue achieves
an F1-score of 0.92 although still excellent considering that
they are very challenging regions to segment given that they
are sparsely distributed within the body, have very complex
shapes, and we are dealing with low-dose (and resolution)
CT images compared to diagnostic quality images.

Medical Physics, 47 (7), July 2020

2994 Liu et al.: ABCNet: A body composition network 2994



Statistically significantly improved performance of ABC-
Net over other state-of-the-art methods can be seen in
Table III. ABCNet achieves statistically significant superior
results for all F1-scores. For the other two evaluation compo-
nents, except the recall of Sk, ABCNet achieves the best or
one of the best performance measures. Compared with other
specific body composition quantification methods, as shown
in Table IV, ABCNet also achieves superior accuracy. As dis-
cussed in the previous studies,20 the accuracy of the evalua-
tion of adipose tissue based on particular slices was with a %
PE range from 8.77 to 24.06. In ABCNet, this error for SAT
and VAT achieves a mean of 1.8 and 5.1, respectively. Com-
pared with the method designed expressly for quantifying

SAT and VAT,28 our network can obtain more accurate results
along with accurately quantifying other two important tissue
components of interest. Overall, ABCNet seems to be more
accurate and able to handle other and more challenging body
composition tissues encountered on CT images throughout
the body.

Our previous method AAR-BCA17 used a model-based
strategy to model certain anatomic (some artificial and others
natural) objects which best facilitated the delineation of all
four component tissues. That method was very accurate in
localizing objects but it had deficiencies in precise delin-
eation, particularly of the VAT region. The F1 scores for
SAT, VAT, Msl, and Sk were in the range 0.87–0.97, 0.56–

FIG. 5. Sample slices from segmentation results for the compared methods. Blue: SAT, Red: VAT, Green: Msl, Orange: Sk. [Color figure can be viewed at wile
yonlinelibrary.com]

Medical Physics, 47 (7), July 2020

2995 Liu et al.: ABCNet: A body composition network 2995

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


0.91, 0.72–0.94, and 0.78–0.97, respectively. In the current
paper, we embed the previous idea of global recognition or
localization of anatomy into the design of ABCNet through a
multiscale and multiresolution approach for encoding and
decoding features without compromising its detailed delin-
eation capability and thereby obtain substantially improved
accuracy.

Table III also shows the assessments of the variants
of ABCNet. From the F1-scores, we can see that ABC-
Net and its varieties basically have the same levels of
accuracy. Through those evaluation values, ABCNet
appears to have slightly better performance than ABC-
Net-Lite and ABCNet-Rm-BN but inferior accuracy
compared to ABCNet-Skip-BN. Compared with ABC-
Net-Lite, the superior accuracy of ABCNet for VAT seg-
mentation is statistically significant although not
substantial. We believe that the deeper network of ABC-
Net has more ability to extract more details of such
sparse objects. Although ABCNet-Skip-BN has slightly
better segmentation results but are not statistically signif-
icant, it contains many more parameters in its network
(Table II), which makes it much more complex in terms
of both computation and storage space.

Besides having high accuracy, ABCNet is also time-effi-
cient and memory-efficient. The above-described experi-
ments were run on a modern desktop computer with the
following specifications: 4-core Intel Xeon 3.3 GHz base
CPU with 8 GB RAM and an NVIDIA-GTX-1080 GPU,
running on the Linux operating system. The training time of
ABCNet (for one fold) is about 18 h, and it costs an average
of 12 sec to process a body-torso-wide CT image and output
the four tissue components.

ABCNet has a depth of 118 layers but only 1.36 million (M)
parameters. The complexity of the network is comparable to
those of DeepMedic (12 layers with 0.6M parameters) and
Dense V-Net (35 layers with 0.9 M), and much lower than that
of V-Net (34 layers with about 71M parameters) and 3D U-Net
(31 layers with 19M parameters). In Table V, we provide other
information about ABCNet and its variants, including network
depth, number of parameters, and segmentation time. It is
worth noting that although ABCNet-Lite has fewer parameters
than DeepMedic and Dense V-Net, it still has a superior per-
formance, which can be seen from Table III. We believe that
this superiority owes to the particular component — Dense
Layer, which allows ABCNet to become deeper, therefore per-
form better, but with relatively lightweight structure.

TABLE III. The mean (and standard deviation) of precision, recall, and F1-score of four segmentation algorithms.

Algorithm SAT VAT Msl Sk

Precision

ABCNet 0.977 (0.018) 0.950 (0.045) 0.919 (0.066) 0.968 (0.025)

ABCNet-Lite 0.977 (0.017) 0.948 (0.042) 0.917 (0.063) 0.964 (0.028)

ABCNet-Rm-BN 0.980 (0.016) 0.955 (0.038) 0.923 (0.063) 0.970 (0.025)

ABCNet-Skip-BN 0.973 (0.020) 0.947 (0.040) 0.921 (0.068) 0.971 (0.022)

DeepMedic 0.956 (0.031) 0.873 (0.092) 0.896 (0.065) 0.907 (0.064)

V-Net 0.965 (0.021) 0.926 (0.052) 0.890 (0.066) 0.927 (0.031)

Dense V-Net 0.972 (0.020) 0.851 (0.081) 0.859 (0.078) 0.829 (0.039)

3D-Unet 0.990(0.006) 0.946(0.037) 0.884(0.068) 0.941(0.037)

Recall

ABCNet 0.972 (0.033) 0.937 (0.035) 0.934 (0.056) 0.967 (0.027)

ABCNet-Lite 0.968 (0.028) 0.914 (0.041) 0.936 (0.055) 0.969 (0.030)

ABCNet-Rm-BN 0.968 (0.029) 0.918 (0.043) 0.937 (0.053) 0.967 (0.029)

ABCNet-Skip-BN 0.978 (0.025) 0.943 (0.037) 0.937 (0.052) 0.968 (0.032)

DeepMedic 0.968 (0.018) 0.907 (0.047) 0.920 (0.063) 0.961 (0.047)

V-Net 0.963 (0.025) 0.929 (0.035) 0.902 (0.043) 0.934 (0.030)

Dense V-Net 0.933 (0.030) 0.788 (0.063) 0.942 (0.030) 0.974 (0.013)

3D-Unet 0.910(0.067) 0.747(0.099) 0.959(0.023) 0.979(0.022)

F1-score

ABCNet 0.974 (0.024) 0.942 (0.032) 0.924 (0.041) 0.967 (0.023)

ABCNet-Lite 0.973 (0.020) 0.930 (0.036) 0.924 (0.037) 0.965 (0.026)

ABCNet-Rm-BN 0.974 (0.021) 0.936 (0.034) 0.928 (0.038) 0.968 (0.024)

ABCNet-Skip-BN 0.975 (0.020) 0.943 (0.032) 0.927 (0.043) 0.968 (0.024)

DeepMedic 0.962 (0.021) 0.887 (0.065) 0.905 (0.047) 0.932 (0.051)

V-Net 0.964 (0.020) 0.927 (0.037) 0.894 (0.036) 0.930 (0.028)

Dense V-Net 0.952 (0.025) 0.818 (0.070) 0.896 (0.046) 0.895 (0.027)

3D-Unet 0.947(0.040) 0.832(0.076) 0.918(0.041) 0.959(0.026)

Boldface denotes a statistically significant difference of the results from different algorithms compared to those of ABCNet (P < 0.05).
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In summary, ABCNet seems to be able to segment all
major body composition tissues from CT images more accu-
rately compared to other state-of-the-art methods. It is also a
time-efficient and memory-efficient network which can be

run on a normal desktop with a single ordinary GPU. It
costs only a couple of hours to train the network and takes
only a few seconds to segment a body-torso-wide CT image.
It is a practical method that can be applied for body tissue

FIG. 6. Box plots of the metrics for the results of comparison summarized in Table III. The lower and upper edges of the boxes represent 25th and 75th per-
centiles, respectively. The median value is marked by a solid circle in the box. The hollow circle represents outliers beyond the 1.5 interquartile range. [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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composition quantification routinely on large groups of
image datasets.

5. CONCLUSIONS

Motivated by applications in body tissue composition
quantification on large population groups, our goal in this
paper was to create an efficient and accurate body tissue seg-
mentation method for use on body-torso-wide CT images. In
this work, a new residual Encoder–Decoder neural network,
named ABCNet, was proposed. ABCNet is mainly formed by
a particular processing unit called BasicConv which consists
of concatenation, batch normalization, activation, and convo-
lution. Bottleneck, which is one particular type of BasicConv,
is widely used in ABCNet to achieve fusion of feature maps,
parameter compression, and extraction of deeper features. In
each resolution level of the feature map, the Dense Block is
used to extract deeper features. With the linear growth in the
number of feature maps, the number of parameters and the
feature map size can be efficiently controlled in Dense Blocks
and therefore in all networks. A recomputing strategy is
employed to reduce the memory storage requirement.

With this approach, ABCNet achieves excellent perfor-
mance in both accuracy and efficiency. The experiments per-
formed demonstrate that ABCNet can be run on an ordinary
desktop with a single ordinary GPU, with practical times for
both training and testing, and achieves superior accuracy
compared to other state-of-the-art medical image segmenta-
tion methods for the task of body tissue composition analysis.

One limitation of this study is the small number of data-
sets utilized and the unicity of the data source. This was
necessitated by the difficulty of manually segmenting the
intricate and detailed patterns of VAT throughput the body
torso especially in the thorax and abdomen and to a lesser
extent also the muscle tissues. Even so, the number of studies
we have employed is not out of line with the current practice
dealing with similar tasks.26 Although we believe the pro-
posed network system is ready for production-mode use for
routine body composition analysis, testing on a larger number
of independent datasets is needed, which we are currently in
the process of performing.
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