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a b s t r a c t 

Contouring (segmentation) of Organs at Risk (OARs) in medical images is required for accurate radiation 

therapy (RT) planning. In current clinical practice, OAR contouring is performed with low levels of au- 

tomation. Although several approaches have been proposed in the literature for improving automation, 

it is difficult to gain an understanding of how well these methods would perform in a realistic clinical 

setting. This is chiefly due to three key factors – small number of patient studies used for evaluation, 

lack of performance evaluation as a function of input image quality, and lack of precise anatomic defi- 

nitions of OARs. In this paper, extending our previous body-wide Automatic Anatomy Recognition (AAR) 

framework to RT planning of OARs in the head and neck (H&N) and thoracic body regions, we present a 

methodology called AAR-RT to overcome some of these hurdles. 

AAR-RT follows AAR’s 3-stage paradigm of model-building, object-recognition, and object-delineation. 

Model-building : Three key advances were made over AAR. (i) AAR-RT (like AAR) starts off with a com- 

putationally precise definition of the two body regions and all of their OARs. Ground truth delineations 

of OARs are then generated following these definitions strictly. We retrospectively gathered patient data 

sets and the associated contour data sets that have been created previously in routine clinical RT plan- 

ning from our Radiation Oncology department and mended the contours to conform to these definitions. 

We then derived an Object Quality Score (OQS) for each OAR sample and an Image Quality Score (IQS) for 

each study, both on a 1-to-10 scale, based on quality grades assigned to each OAR sample following 9 key 

quality criteria. Only studies with high IQS and high OQS for all of their OARs were selected for model 

building. IQS and OQS were employed for evaluating AAR-RT’s performance as a function of image/object 

quality. (ii) In place of the previous hand-crafted hierarchy for organizing OARs in AAR, we devised a 

method to find an optimal hierarchy for each body region. Optimality was based on minimizing object 

recognition error. (iii) In addition to the parent-to-child relationship encoded in the hierarchy in previous 

AAR, we developed a directed probability graph technique to further improve recognition accuracy by 
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1 AAR: Automatic Anatomy Recognition. RT: Radiation Therapy. 
1. Introduction 

1.1. Background and rationale 

Cancer is a major public health problem worldwide and is the

2nd most common cause of death in the US, with ∼1.7 million new

cancer cases expected to be diagnosed in the US in 2018, and with

an estimated 609,640 American deaths to occur in 2018 ( Siegel

et al., 2018 ). Among several therapeutic options, nearly two thirds

of cancer patients will have treatment that will involve radiation

therapy (RT) ( ASTRO website, 2018 ). Contouring of critical organs,

called Organs at Risk (OARs), and target tumor in medical images

taken for the purpose of RT planning (referred to as planning im-

ages) is required for accurate RT planning to ensure that a proper

dose of radiation is delivered to the tumor while minimizing the

radiation dose to healthy organs. In current clinical practice, OAR

contouring is still performed with low levels of automation due to

lack of highly automated commercial contouring software. This de-

teriorates RT planning. There are two major issues with the current

clinical practice of OAR contouring: (1) Poor accuracy. (2) Poor ef-

ficiency, throughput, and reproducibility. 

Poor accuracy, and consequently poor efficiency/acceptability, of

OAR contours produced by existing software platforms on plan-

ning images is the main hurdle in auto-contouring for RT planning.

The problem is well summarized in Whitfield et al. (2013) : “Rapid

and accurate delineation of target volumes and multiple organs at

risk,… is now hugely important in radiotherapy, owing to the rapid

proliferation of intensity-modulated radiotherapy … Nevertheless,

delineation is still clinically performed with little if any machine

assistance, even though it is both time consuming and prone to

inter-observer variation.” Many commercial auto-contouring sys-

tems are currently available ( Thomson et al., 2014; Lustberg et al.,

2017 ), but their poor accuracy leads to poor clinical acceptability

of the contours and hence poor efficiency. As we demonstrate in

Section 5 involving a large realistic study, in the clinical setting,

OAR contouring can take anywhere from 40 min to 2 h depending

on the number of OARs to be contoured. 
odel “steady” relationships that may exist among OAR boundaries in the

-recognition : The two key improvements over the previous approach are

 for actual recognition of OARs in a given image, and (ii) refined recogni-

ed probability graph. Object-delineation : We use a kNN classifier confined

zed by the recognition step and then fit optimally the fuzzy mask to the

ing back shape constraint on the object. 

5 thoracic and 298 H&N (total 503) studies, involving both planning and

f 21 organs (9 – thorax, 12 – H&N). The studies were gathered from two

nder – 40–59 years and 60–79 years. The number of 3D OAR samples

ions was 4301. IQS and OQS tended to cluster at the two ends of the score

d two quality groups for each gender – good and poor. Good quality data

had distortions, artifacts, pathology etc. in not more than 3 slices through

el-worthy data sets used for training were 38 for thorax and 36 for H&N,

were used for testing AAR-RT. Accordingly, we created 4 anatomy models,

odel-worthy data sets), Thorax female (18 model-worthy data sets), H&N

ts), and H&N female (16 model-worthy data sets). On “good” cases, AAR-

within 2 voxels and delineation boundary distance was within ∼1 voxel.

ity observed between two dosimetrists in manually contouring 5–6 OARs

or” cases, AAR-RT’s errors hovered around 5 voxels for recognition and 2

he performance was similar on planning and replanning cases, and there

rformance. 

ion is much more robust than delineation. Understanding object and im-

ence performance is crucial for devising effective object recognition and

ems to be more important than IQS in determining accuracy. Streak arti-

ts and fillings and beam hardening from bone pose the greatest challenge

© 2019 Elsevier B.V. All rights reserved.

The efficiency problem is exacerbated in advanced RT meth-

ds such as intensity modulated radiotherapy (IMRT) and proton

eam radiation therapy (PBRT) ( McGowan et al., 2013 ). Adaptive

T can allow for modifying the treatment plan to account for

natomic changes occurring during a 5–8-week course of treat-

ent due to weight loss or deformation of tumor and normal

issues. Such changes are particularly common during head and

eck ( Simone et al., 2011 ) and thoracic ( Veiga et al., 2016 ) radi-

tion and can significantly affect the total dose delivered to the

umor and normal surrounding organs and are particularly impor-

ant when treating most thoracic malignancies ( Veresezan et al.,

017 ). PBRT can allow for ultra-precise delivery of treatment due

o the physical characteristics of the proton beam, eliminate exit

ose, maximize dose delivered to the tumor, and minimize radia-

ion dose to adjacent OARs, reducing toxicity and patient morbidity

 Roelofs et al., 2012 ), and improving clinical outcomes like overall

urvival ( Leeman et al., 2017 ). Yet, because of the poor accuracy,

nd hence efficiency of current software products, re-contouring

n images taken during treatment (referred to as evaluation or re-

lanning images) is rarely done. While the impact of this issue on

atient outcome has sparsely been studied ( Dolz et al., 2016 ), with

ccurate automated contouring, advanced IMRT and PBRT meth-

ds can be employed more extensively and may allow for these

dvanced radiotherapy modalities to achieve toxicity reductions or

utcomes benefits to a large subset of patients. 

The current gaps/challenges in auto-contouring for the RT ap-

lication, which motivated the development of AAR-RT 1 , may be

ummarized as follows. (1) Evaluation: Testing on a large number

f independent data sets versus on the same data sets in a multi-

old cross validation manner is vital to get a real understanding of

he behavior of the method independent of the data sets. This is

urrently lacking. Generally, performance evaluation is done only

n planning and not evaluation images. In our study cohort, we

ound the quality of the images to be lower in evaluation scans

han in planning scans. (2) Data quali ty: The quality of the im-
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ge data sets used, presence and severity of the artifacts/deviations

rom normality in these data sets, and how they might influence

esults are not usually discussed in published methods. No exam-

les of performance on scans with artifacts are given and there is

o discussion of how the training and testing data sets are selected

ith regard to artifacts and other distortions. (3) OAR definition:

lthough some contouring guidelines are followed by dosimetrists

nd oncologists ( Brouwer et al., 2015a, 2015b; Kong et al., 2011 ),

he flexibility allowed, site-to-site variations, and the looseness of

he definitions make the resulting contours unsuitable for building

recise computational population object models/schemas. 

In an attempt to address some of these challenges, we adopted

ur previous body-wide Automatic Anatomy Recognition (AAR)

ramework ( Udupa et al., 2014 ) and refined its three main steps,

amely, fuzzy anatomy model building for a body region, object

ecognition/localization, and object delineation, with further ad-

ances in each step. Key innovations and improvements over the

revious AAR framework are as follows. (1) OAR definition: To

vercome the non-standardness hurdle, following published guide-

ines for head and neck (H&N) ( Brouwer et al., 2015a, 2015b; Hall

t al., 2008 ) and thoracic ( Kong et al., 2018 ; Kong et al., 2011; Hall

t al., 2008 ) anatomic OAR definitions, we formulated detailed and

recise operational definitions and a reference document for spec-

fying and delineating each of the 21 OARs considered in this work

n axial CT slices, as explained in Section 2 . (2) Optimal hierarchy:

he AAR approach arranges OARs in a hierarchy by learning object

elationships. Previously, we used an anatomically motivated hier-

rchy for OARs. In this work, we find an optimal hierarchy that ac-

ually minimizes OAR recognition error, as described in Section 3 .

3) Image texture: The best OAR-specific image texture property is

ound and used for both object recognition and delineation, as out-

ined in Section 3 . (4) Recognition refinement using Directed Prob-

bility Graph ( Section 3 ): In the previous approach, object local-

zation accuracy was inferior in the z - (cranio-caudal) direction to

hat in the xy (axial) plane. We train and employ a Directed Prob-

bility Graph to improve this accuracy. (5) Delineation via voxel

lassification and fuzzy model fitting: The previous approach used

uzzy connectedness which had issues with automatically finding

eeds required for its delineation engine. We replace that strategy

y a fuzzy classification and fuzzy model fitting step to improve

ccuracy ( Section 3 ). (6) Large-scale evaluation of recognition and

elineation: We evaluate both recognition and delineation perfor-

ance of AAR-RT on clinical CT scans of over 500 cancer patients

andomly selected from our hospital database for the two body re-

ions involving both planning and evaluation scans ( Sections 2 and

 ). (7) Evaluation as a function of image/object quality: To under-

tand dependence of performance on image/object quality, we de-

ne image/object quality metrics, build models using highest qual-

ty data sets, and evaluate recognition/delineation accuracy on all

ata sets as a function of quality ( Sections 2 –4 ). 

.2. Related work: approaches to segmentation of OARs 

There is a large body of literature on segmentation of individual

bjects/OARs on images from different modalities. However, not all

f them are applicable to the problem of body-region-wide OAR

egmentation. It takes a lot of effort to understand the application-

pecific issues, solve each of them satisfactorily, and evaluate them

n a realistic manner to gain confidence on the behavior of the

ethod on real clinical data sets. We shall therefore review works

pecifically related to body-region-wide OAR segmentation for the

T application on CT images of cases involving H&N and thoracic

alignancies. We will perform a comparative analysis of AAR-RT

nd key published works from in Section 4 . 

Atlas-based methods are quite popular in RT application due

o their robustness and requirement for a small number of train-
ng samples. These methods register the training images to the

est image and correspondingly propagate the training OAR con-

ours to the test image. The anatomy information in the train-

ng set is described by one or a group of images called atlas . Re-

orted atlas generation methods include a single training image

 Han et al., 2008; Voet et al., 2011 ), averaging multiple images

 Sims et al., 2009 ), and simulated images with standard anatomy

 Isambert et al., 2008 ). More recently, multi-atlas methods have

hown better accuracy with a more elaborate training step which

roups patients first for atlas generation ( Saito et al., 2016;

chreibmann et al., 2014; Teguh et al., 2011 ), and then selects the

ost similar group to the test image subsequently for object seg-

entation. One disadvantage of the atlas-based methods is that

hey require accurate registration to align the patient and target

mage, which is hard to make robust to shape variations, anatomy

hanges, and image quality variations. More importantly, it is hard

o handle non-smooth geometric relationships that exist among

bjects in their geographic layout, size, and pose ( Matsumoto et al.,

016 ) via smooth registration operations, although grouping helps

o circumvent this issue to some extent. 

Besides atlas-based methods, the approach of using landmarks

n each object to handle local variations ( Ghesu et al., 2017;

bragimov et al., 2014; Zheng et al., 2015 ) received considerable

ttention in recent years due to the better local adaptability of

uch approaches. These methods can be categorized as global ap-

roaches because they start from the entire patient image rather

han a local region of interest (ROI), so a registration step be-

omes necessary. However, the orientation and position variations

etween H&N and thoracic regions and curvature variations of

he spine often pose extra difficulties for registration ( Daisne and

lumhofer, 2013 ) which are addressed via the use of landmarks. As

n alternative, our previous AAR works ( Udupa et al., 2014; Phellan

t al., 2016 ) build fuzzy models for each object and encode object

elationships pairwise explicitly in a hierarchical arrangement of

bjects for facilitating recognition, which eliminates the registra-

ion step and can also handle non-smooth object relationships. 

More recent approaches tend to explore local methods that

tart from an ROI for each object. The ROI may be determined ei-

her manually or by global methods. This kind of global-to-local

trategy has lower requirements on the precision of registration

nd can become more robust under anatomy variations and im-

ge quality vagaries. Some studies cascade atlas-based methods for

OI initialization followed by a local boundary extraction approach,

uch as geodesic active contours ( Fritscher et al., 2014 ), graph-cut

 Fortunati et al., 2015 ), and appearance models ( Wang et al., 2018 ).

n recent years, delineation methods using convolutional neural

etworks (CNNs) ( de Vos et al., 2017; Ibragimov and Xing, 2017a )

nd fully convolutional networks (FCNs) ( Çiçek et al., 2016; Dou

t al., 2017; Trullo et al., 2017a; Zhou et al., 2017a ) have started

howing improved results under the prerequisite of correct local

OI selection. Deep learning approaches seem to outperform other

ethods in learning local anatomy patterns, but challenges still ex-

st in localizing OARs in the whole given image (object recognition

roblem), especially for sparse and small objects. It is worth inves-

igating, therefore, how to incorporate the anatomy prior informa-

ion to reduce the amount of total input information to these net-

orks to make them more effective and specific. Recent research

hows the benefit of incorporating shape prior as a constraint for

eural network strategies ( Oktay et al., 2018 ), but this is only prior

nformation on each individual OAR. The problem of determining

he manner in which to utilize global information, especially the

elationship among OARs for localization before delineation, is still

nsolved in these approaches. 

The progress in research over the years in multi-object seg-

entation suggests a dual paradigm for segmentation: (1) ob-

ect recognition (or localization), which uses prior information to
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Table 1 

Thoracic and H&N OARs included in our study and some study statistics. 

Abbr OAR Abbr OAR Abbr OAR Study statistics Thorax H&N 

tSB Thoracic skin outer boundary LBP Left brachial plexus LPG Left parotid gland #Planning scans 118 216 

Hrt Heart RBP Right brachial plexus RPG Right parotid gland #OARs 9 12 

LLg Left lung hSB H&N skin outer boundary LSG Left submandibular gland #OAR samples 1175 2199 

RLg Right lung SBi hSB inferior part RSG Right submandibular gland #Good Quality samples 718 905 

#Poor Quality samples 457 1294 

TB Trachea & proximal bronchi SBs hSB superior part MD Mandible #Model worthy scans 38 36 

tSC Thoracic spinal cord cSC Cervical spinal cord OHP Orohypopharynx constrictor muscle #Replanning scans 87 82 

tES Thoracic esophagus LX Larynx cES Cervical esophagus #OAR samples 516 411 
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i  

q  
define the whereabouts of the object, and (2) object delineation ,

which employs local information to precisely define the object’s

spatial extent in the image. This dichotomous strategy for image

segmentation was first suggested in the live wire method ( Falcao

et al., 1998 ) where recognition is done manually but delineation

is automatic and occurs in real time, and the two processes are

tightly coupled. Our entire AAR framework operates on this dual

recognition-delineation premise and we try to advance recognition

and delineation methods separately and synergistically. This is the

key idea behind our AAR-RT framework. 

A very preliminary report on this investigation appeared in

the proceedings of the 2018 SPIE Medical Imaging Conference

( Wu et al., 2018 ). The present paper includes the following signifi-

cant enhancements over the conference paper: (i) A comprehensive

literature review. (ii) Full description of the methods and the un-

derlying algorithms. None of the object recognition and delineation

algorithms were described in the conference paper. (iii) Compre-

hensive evaluation. The conference paper preliminarily tested and

presented results for 6 H&N OARs and none from the thorax. This

paper analyzes results for recognition and delineation for all 21

OARs from both H&N and thoracic regions and their dependence

on image/object quality. (iv) Evaluation on both planning and eval-

uation scans. The conference paper considered only a subset of the

planning data sets used in this paper and no evaluation scans. (v)

A detailed comparison of AAR-RT with key auto-contouring meth-

ods from the literature for the two body regions which was not

undertaken in the conference paper. 

2. Materials 

2.1. Image and contour data 

This retrospective study was conducted following approval from

the Institutional Review Board at the Hospital of the University

of Pennsylvania along with a Health Insurance Portability and Ac-

countability Act waiver. We collected planning CT image and con-

tour data sets from existing patient databases from the Depart-

ment of Radiation Oncology, University of Pennsylvania, under four

patient groups: 40–59-year-old males and females (denoted G M1 

and G F1 , respectively), 60–79-year-old males and females (denoted

G M2 and G F2 , respectively). For thorax and H&N, data sets respec-

tively from 210 to 216 cancer patients (with different types of can-

cer) were gathered, with at least 50 data sets per group; pixel size:

1–1.6 mm, slice spacing: 1.5–3 mm. Similarly, we gathered replan-

ning (evaluation) scans from 30 patients (for each body region)

who underwent PBRT fractionated treatment serially. For each pa-

tient, we selected image data at 2 or more, commonly 3, serial

time points, accounting for a total of 87 scans for thorax and 82

scans for H&N. The OARs considered for the two body regions (9

for thorax and 12 for H&N for planning cases and 6 for thorax

and 5 for H&N for replanning cases), their abbreviations used, and

their total number are listed in Table 1 . The total number of 3D
AR samples considered in this study from planning and replan-

ing scans was 4301 (1691 for thorax and 2610 for H&N) from a

otal of 595 patient scans. 

OAR contours for the planning cases were previously drawn

y the dosimetrists (and approved by attending physicians) in the

rocess of routine clinical RT planning of these patients. Note that

ot all OARs were delineated in each planning scan. The number of

ARs for which dosimetrist-drawn contours were available in each

can was 5–9 for thorax and 5–12 for H&N. Since manual object

ontouring is impractical to perform and hence not done clinically

or every replanning scan associated with treatment fractions, we

o not have ground truth OAR contours for the corresponding data

ets. Therefore, to generate ground truth data for replanning scans

nd to gain insight into how contouring is done in practice, we re-

ruited four dosimetrists (two for each body region) from the Penn

adiation Oncology department to perform manual contouring on

ll 169 replanning studies from the two body regions. The follow-

ng OARs were considered for the replanning studies (see Table 1 ).

horax: RLg, LLg, Hrt, tES, tSC, and TB. H&N: hES, hSC, MD, OHP,

nd LX. The dosimetrists were asked to record the start time and

nd time for each contouring session for each object. Also, we

oted down other preparatory time and time for ancillary effort s

uring the contouring process. 

.2. Standardizing OAR definition and ground truth contouring 

Although some object contouring guidelines are followed by

osimetrists and oncologists ( Brouwer et al., 2015a, 2015b ), the

exibility allowed and the looseness of the definitions make

round truth contouring less precise and the resulting contours un-

uitable for building precise computational population object mod-

ls. To overcome this hurdle, following the above guidelines for

natomic object definitions, we formulated detailed and precise

perational definitions and a document ( Wu et al., 2017a, 2017b )

or specifying each object and for delineating its boundaries on

xial CT slices. For illustrating the level of detail involved in our

pecification, we show in Fig. 1 the mandible in the H&N region

s an example. Two software engineers (co-authors GVP and DM)

ere thoroughly trained on these definitions who then mended

osimetrist-drawn contours of all 21 OARs on all 426 planning

cans by strictly following this document under the supervision of

 radiologist with 22 years of experience (co-author DAT). The re-

ulting contours were used as ground truth object delineations for

uilding models and for evaluating AAR-RT. The two dosimetrists

ollowed these documents as well for contouring the 11 OARs on

he 169 replanning scans. 

.3. Image/object quality consideration for model building and 

valuation 

Algorithms for image segmentation are influenced by the qual-

ty of appearance of each object in the image and overall image

uality. For holistic evaluation, it is important to define object and
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Inferior most aspect of mandible

Apex of mandibular condyle

Fig. 1. Specification of Mandible. Top row: Superior boundary is the superior-most 

aspect of the mandible (typically the apex of the condyle) as shown in axial slice in 

the middle. The slices on the left and right are immediately inferior and superior to 

the slice in the middle, respectively. Bottom row: Inferior boundary of the mandible 

is the inferior-most aspect of the mandible as shown in slice in the middle. The 

slices on the left and right are immediately inferior and superior to the slice in the 

middle, respectively. The slices are displayed at bone window. 
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2 Binary images of all objects considered in B are expected to be available for 

each image that is selected for building the model. Only these objects can then be 

recognized and delineated in any given patient image. In other words, the set of 

OARs to be segmented in a given patient image should always be a subset of the 

set of OARs considered for building FAM ( B, G ). 
mage quality metrics and perform segmentation evaluation as a

unction of these quality metrics. No such effort s seem to have

een undertaken to date in segmentation challenges and other

uantitative medical imaging application efforts. We developed a

ethod ( Pednekar et al., 2018 ) to assign a quality grade to the im-

ge appearance of each object (OAR) in each image based on a set

f 9 criteria: neck posture deviation, mouth position, other types

f body posture deviations, image noise, beam hardening artifacts

streak artifacts), shape distortion, presence of pathology, object in-

ensity deviation, and object contrast. Fig. 2 displays patient cases

llustrating some of these criteria. We converted these criterion

rades into an object quality score (OQS) on a 1 to 10 scale us-

ng logical predicates ( Pednekar et al., 2018 ). The OQSs were also

sed to determine an integrated image quality score (IQS), also on

 1 to 10 scale. OQS and IQS served two purposes: (i) for deter-

ining patient scans in our cohort that can be utilized for model

uilding, which we refer to as model-worthy data sets; and (ii) for

egmentation evaluation. 

The number of scans in our cohort that were completely free

f deviations on the basis of the above 9 factors was 0 for thorax

nd 1 for H&N. Generally, younger patients had better quality than

lder patients. We observed that OQS and IQS mostly clustered at

he low and high end of the score scale (see Fig. 3 ). We therefore

efined an OAR sample (i.e., an OAR as a 3D object in a given pa-

ient image data set) as of good quality if it did not carry deviations

n more than 3 slices (this corresponded roughly to OQS > 6); oth-

rwise the sample was considered as of poor quality. A scan (image

ata set) was considered model-worthy if all of its OARs were good-

uality samples. Following the basic principle of the AAR frame-

ork ( Udupa et al., 2014 ) of using near-normal data sets for build-

ng anatomy models of a body region, only model-worthy data sets

ere used for model building: Thorax: 20 males, 18 females; H&N:

0 males, 16 females. Table 1 (last column) lists statistics related

o good and poor OAR samples and model-worthy data sets for the

wo body regions among our planning/evaluation scans. Since the

umber of model-worthy data sets in each of the 4 patient groups

as not large enough, we built only 2 models, called fuzzy anatomy

odels , one for males and one for females for each body region B:

AM ( B, G M 

) by combining groups G M 1 and G M 2 , and FAM ( B, G F ) by

ombining groups G F 1 and G F 2 . These model-worthy data sets did

ot participate in testing recognition and delineation algorithms.

e performed evaluation of OAR recognition and delineation sep-

rately for the four categories: male-good, male-poor, female-good,

nd female-poor. 
. Methods 

.1. Overview 

Our previous AAR approach ( Udupa et al., 2014 ) consists of

hree stages – model building, object recognition, and object de-

ineation. Model building involves creating a Fuzzy Anatomy Model,

AM ( B, G ) = ( H, M, ρ , λ, η), of the body region B of interest for

 group G of subjects. In this expression, H denotes a hierarchi-

al arrangement (tree structure) of the objects (OARs); M is a set

f fuzzy models with one model for each object; ρ represents the

arent-to-child relationship in G in the hierarchy; λ is a set of scale

anges, one for each object; η includes a host of parameters rep-

esenting object properties such as the range of variation of size,

mage intensity and texture properties, etc., of each object. FAM ( B,

 ) is built from a set of good quality (model-worthy) CT images of

 and the binary images representing a set of OARs in B for each

f these images. 2 After FAM ( B, G ) is built, it is used to recognize

nd delineate any OAR in any patient image of B . Recognition and

elineation proceed hierarchically in H , starting from the root OAR,

hen proceeding to the child. 

AAR-RT incorporates several advances made in AAR in each of

he three stages. Model building : (i) In place of the handcrafted

ierarchy H that was employed in the previous approach to build

AM ( B, G ), we use an algorithm to construct a hierarchy that yields

lose to the least recognition error among all possible hierarchies.

ii) Previously, the parent-child relationship ρ was expressed by

ust the vector connecting the geometric centers of the parent and

hild and its statistics over G . Now, based on experience with the

revious approach, this is further refined by including the relation-

hip among inferior-to-superior ( z direction), lateral-to lateral ( x

irection), and anterior-to-posterior ( y direction) boundaries of the

ARs using a Directed Probability Graph. Object recognition : (i) The

rder specified by the optimal hierarchy found in the model build-

ng stage is followed for localizing OARs in a given patient image

sing the previous optimal threshold approach. (ii) This recognition

esult is refined using the Directed Probability Graph constructed

n the model building stage. Object delineation : (i) To overcome

eed specification issues, in place of the previous fuzzy connect-

dness engine, a kNN scheme is used. (ii) The final refined fuzzy

odel resulting at the recognition stage is fitted optimally to the

NN delineation result to produce the final OAR delineation. 

The flow diagram of the overall approach underlying AAR-RT is

epicted in Fig. 4 . The three stages are described separately below

n detail. 

.2. Building fuzzy anatomy model 

Given a set of images I = { I 1 ,…, I N } of B for group G and the

ssociated binary images (the next Ib = { I n , l: 1 ≤ n ≤ N & 1 ≤ l ≤ L }

epresenting the L OARs O = { O 1 , . . . , O L } in B , building FAM ( B,

 ) = ( H, M, ρ , λ, η) involves determining each of the 5 param-

ters in this quintuple. Hierarchy H and object relationships ρ
n H are found as described below. Other parameters are found

s described in the original AAR framework ( Udupa et al., 2014 ).

riefly, M = { FM (O l ): 1 ≤ l ≤ L } is a set of fuzzy models, one fuzzy

odel for each OAR. The fuzzy model FM (O l ) of an OAR O l is cre-

ted by scaling all binary samples of O l to a mean size, reposi-

ioning all samples to a mean location, and averaging the result

see Udupa et al., 2014 , for details). Parameter λ is a set of scale
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Fig. 2. Examples of factors that can downgrade the image quality of CT scans. (a) Streak artifacts due to dental fillings and implants. (b) Body posture deviation (neck 

rotation). (c) Pathology (centrally necrotic lesion predominantly in right masticator space). (d) Shape distortion (post-surgical change). (e) Body posture deviation (mouth 

open). 

Fig. 3. OQS distribution in our planning scans for Hrt and RPG. Colors denote dif- 

ferent groups: Blue: G M1 . Red: G F1 . Gray: G M2 . Orange: G F2 . (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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ranges in which each element of the set indicates the size varia-

tion of each OAR. This parameter is utilized in confining recogni-

tion search in the pose space to previously known ranges in the

population G . Parameter η stores population statistics over G per-

taining to OARS such as their intensity and texture properties etc.,

which are used in recognition and delineation. 

3.2.1. Finding optimal hierarchy of OARs 

There are several reasons for a hierarchical arrangement of

objects. Objects have steady geometric relationships ( Matsumoto

et al., 2016 ) and they generally do not depend on image/object

quality. This implies that if the relationships can be learned, then

OAR recognition can be made quite robust with respect to im-

age/object quality. Furthermore, the relationships are non-smooth

and non-linear ( Matsumoto et al., 2016 ), implying that some rela-

tionships are much less variable than others. Therefore, we con-

tend that for any object O 1 , there is a best (most optimal) ob-

ject O to be paired as its child. Since our goal is achieving ac-
2 

Training

Testing

Building Fuzzy 
Anatomy Model 

Optimal H
Learning 

Refined RecognitioDelineation

Images 
of B

Fig. 4. Flow diagram illustrating the ove
urate recognition of objects, the optimality criterion here should

e the accuracy of recognition of the child given the parent. This

aturally leads to the following formulation for optimal hierarchy:

iven image sets I and I b and the set O of OARs for B , find

hat hierarchy H over which the total recognition error is min-

mized. To solve this problem, we may form a complete graph

 = (O, E) , E = { ( O i , O j ) : O i , O j ∈ O& O i � = O j } , in which the nodes

re the OARs and every pair of OARs is connected by two directed

rcs; then determine all possible L L-2 trees that span G , and find

mong them the tree that yields the least recognition error. Given

hat each recognition experiment requires about 30 s, when L = 12

H&N body region, for example) and assuming the number of im-

ges in I to be N = 50, finding a globally optimal tree following a

rute-force approach would take about 17.5 million days! We take

 greedy approach to find optimal H . 

We convert the above graph into a weighted graph G =
(O, E, ω ) , where ω (O i , O j ) is the weight assigned to directed arc

O i , O j ). Our idea is to make ω(O i , O j ) small when a mini hierarchy,

here O j is a child of O i , yields small error. Subsequently, we can

nd an optimum spanning tree OST (G, O r ) in G that is rooted at O r 

sing a minimum spanning tree algorithm ( Cormen et al., 2009 ). In

ur approach, we fix O r to be the skin object (tSB for thorax and

SB for H&N). We take a greedy approach that is computationally

easible although it cannot guarantee that OST (G, O r ) is a hierar-

hy that yields globally the best possible recognition results for the

bjects in O, to yield minimum total error in recognition of all ob-

ects over the images in I . To implement the approach, we form

ll possible mini hierarchies of the form shown in Fig. 5 , where O r 

s the root object and O i and O j are other (non-root) objects. Then,

or all arcs of the form (O r , O j ), we set ω(O r , O j ) to the mean of the

ecognition error of O j over all images in I resulting by using the

ini hierarchy of Fig. 5 (a). For all arcs (O i , O j ) of the form shown

n Fig. 5 (b), the arc weight ω(O i , O j ) assigned is the mean over all

mages of I of the recognition errors of O j resulting by using the

ini hierarchy of Fig. 5 (b). The idea here is that, in this basic hier-

rchical form, which is different from that in Fig. 5 (a), the recogni-
ierarchy Learning Directed 
Prob Graph

Recognitionn

FAM(B, G)

Patient 
image

rall approach underlying AAR-RT. 
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Or

Oi

Oj

Or=Oi

Oj

(a) (b)

Fig. 5. Mini hierarchies considered in the greedy algorithm for estimating arc 

weight based on recognition error. In (a), all mini hierarchies that include the root 

object O r and any other object O j are considered. In (b), all mini hierarchies that 

include arcs (O i , O j ) where O i and O j are different from O r are considered. 
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ion accuracy of both O i and O j should influence the cost assigned

o O j being the child of O i . 

In the AAR approach, recognition error for an object O is ex-

ressed via its scale error SE (O), location error LE (O), and false pos-

tive and false negative volumes, all with respect to the known

round truth object. In our implementation, we set ω( O i , O j ) =
E( O j ) in the situations shown in Fig. 5 (a) and (b). In finding

ST ( G, O r ), we set a limit of 4 for the depth of the tree to gen-

rate more balanced trees and to avoid long paths in resulting

ierarchies. We developed an algorithm that finds a hierarchy

eeking to minimize the sum of the arc weights while keeping

he depth limited. This hierarchy has an arc weight cost close to

hat of the tree found by the minimum spanning tree algorithm,

ut a smaller recognition error when the whole tree is used for

ecognition. 

.2.2. Refining object relationships 

Object hierarchical relationships learned in the previous step

llow overall placement of object models in a test image. Based

n this placement, model boundary extents in the three anatomic

lanes are refined by exploiting the relationship that may exist

mong these boundary planes. Learning and refining this relation-

hip are done independently in the three directions (left-to-right

r ± x direction, antero-posterior or ± y direction, and cranio-

audal or ± z direction). We will use the notation x l (O) and x h (O)

o denote the boundary extent of an object O in the −x and + x

irections, respectively. Similarly, y l (O), y h (O), z l (O), and z h (O) are

efined. An example to illustrate the idea is shown in Fig. 6 involv-
RPG
MD

zl(RPG)

zh(RPG)

(a)

xl(RPG)

ig. 6. Illustration of boundary relationship among Mandible (MD) and Right and Le

lane locations of RPG in the three coordinate directions are shown as x l (RPG), x h (R

ttps://zygotebody.com . 
ng 3 OARs: MD, LPG, and RPG. Since the parotid glands are situ-

ted close to the mandibular condyle laterally ( Fig. 6 (a)), we expect

 l (RPG) and x h (RPG) to have a steady relationship with respect to

 l (MD) ( Fig. 6 (b)) due to anatomic constraints. A similar remark

pplies to x l (LPG) and x h (LPG) with respect to x h (MD). This implies

hat, if we localize (recognize) MD, and if we learn the above rela-

ionships in the ± x direction between MD and the parotid glands,

e may be able to refine (in the Bayesian sense) the extents of

he localized models of RPG and LPG in the ± x direction. In the

odel building stage, we learn such relationships and incorporate

hem into FAM ( B, G ) (in the ρ component), and in the recognition

tage, this information is exploited to predict locations x l (O) and

 h (O) for RPG and LPG. Only those relationships that are “steady”

re utilized for this learning (modeling) and prediction processes.

e will describe in this section the modeling part. The prediction

rocess will be explained in Section 3.3 on object recognition. We

ssume that all locations ( x, y , and z ) are specified with respect to

he scanner coordinate system and after binary object samples are

caled and aligned in the process of creating fuzzy models FM (O l ).

ince the three coordinate directions are handled in exactly the

ame manner, we present the details for the z direction only. 

We employ the mechanism of a Directed Probability Graph,

hich is a directed acyclic graph, to model the above location

elationships. In our case, the graph is expressed as DG z = (V z ,

z ), whose set of nodes is V z = { z l (O k ), z h (O k ): 1 ≤ k ≤ L } and

et Ez of directed arcs is a special subset of the set of all

ossible directed arcs A z = { (v i , v j ) : v i , v j ∈ v z &V i � = v j &(v i , v j ) � =
(z l (O k ) , z h (O k )) for any object O k }. The subset Ez is chosen

rom A z as described below. Note that V z has 2 L nodes and

ach node represents a random variable ( z location). Some el-

ments of V z are special which we refer to as anchor nodes .

hey represent z- locations (superior and inferior boundaries) of

ARs which coincide with the z -location (superior and inferior

oundaries) of the body region B . For example, for B = thorax,

he superior boundary of B is defined to be 15 mm above

he apex of the lungs and the inferior boundary is 5 mm be-

ow the base of the lungs ( Udupa et al., 2014; Wu et al.,

017a , 2017b ), and so, z l (tSC) = z l (tSB) = z l (tES) = z l (TB) = z l ( B ), and

 h (tSC) = z h (tSB) = z h ( B ). That is, for these 4 OARs, one (in the su-

erior direction for tES and TB) or both (both superiorly and in-

eriorly for tSC and tSB) of their z -location boundaries coincides

ith the corresponding boundaries of B. Since these anchor bound-

ry locations are known precisely in the AAR approach due to

he definition of B , we can exploit this prior knowledge to refine

he automatically-identified boundary locations of all OARs. The

irected arcs in Ez represent conditional dependencies between
MD

LPG

xh(RPG) xl(LPG) xh(LPG)

yl(RPG)

yh(RPG)

RPG

(b)

ft Parotid Glands (RPG and LPG) in (a) sagittal view, (b) axial view. Boundary 

PG), y l (RPG), y h (RPG), z l (RPG), and z h (RPG). Reproduced with permission from 

https://zygotebody.com
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Fig. 7. (a) Matrix of the standard deviation σ d(e) values of the distances for all edges over our training data set. Edges e here denote arcs connecting boundary locations in 

the z -direction. The color scale is shown on the right. (b) A binary matrix obtained from (a) where cells with values σ d(e) ≤ x mm are shown black. These cells suggest that 

the associated objects have a “steady” relationship between their z -boundary locations. For each object O, O l and O h denote, respectively, z l (O) and z h (O). 
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nodes. Nodes that are not connected represent variables that are

conditionally independent of each other. Each node has a proba-

bility function associated with it which takes as input a particular

set of values of the node’s parent variables and gives as output the

probability of the variable represented by the node. 

If (v i , v j ) is a directed arc selected from A z to be included in

Ez , our desire is to assign a conditional probability to (v i , v j ) such

that we can reliably estimate the contribution from parent v i to

the probability of the random variable associated with v j . Once we

specify how the arcs are selected and the conditional probability

P z (v j /v i ) associated with these arcs (v i , v j ) are determined, the Di-

rected Probability Graph is fully specified. 

We determine Ez in two stages. In the first stage, we determine

a subset U z of A z of edges that show a “steady” relationship. Con-

sider any edge e = (v i , v j ) ∈ A z . Let d(e) be the distance between

locations denoted by v i and v j and σ d(e) be the standard deviation

of this distance over all samples of O i and O j in our training set Ib .

First, we find a subset U z of V z by 

U z = 

{
e = 

(
v i , v j 

)
: σd ( e ) ≤ τ

}
, (1)

where τ is a fixed threshold. The idea behind U z is to include only

those pairs of nodes which have a “steady” relationship. Note that

since this distance is symmetric, if (u, w) is in U z , so will be (w, u).

σ d(e) values obtained for all edges in A z are shown as a color ma-

trix in Fig. 7 (a) for the H&N body region for the training data co-

hort used for model building. Fig. 7 (b) shows the result of thresh-

olding the matrix in (a) at τ = 10 mm. 

In the second stage, we decide which directed edges in U z are

to be retained for inclusion in Ez . Consider an edge e = (v i , v j ) ∈
U z . We include e in Ez iff one of the following conditions holds. 

1) v i is an anchor node but not v j . 

2) Both v i and v j are not anchor nodes and object O 

′ associated

with v j appears after object O associated with v i in the breadth

first order in the optimal hierarchy. 

The rationale for condition (i) is obvious – we would like the

known location represented by v i to be utilized to predict location

v j . Note that if (u, w) is in U z and if only u is an anchor node

but not w, then although (w, u) is in U z it will not be included

in Ez . If (u, w) is in U z and both u and w are anchor nodes, then

both edges will not be included in Ez since this will not be useful
s both (anchor) nodes are known and there is no need to predict

ither node. The reason for condition (ii) is that, in the hierarchical

rder of recognition, object O will already have been recognized

efore dealing with object O 

′ . 
Finally, we assume that the conditional probabilities P z (v j /v i )

ssociated with arcs e = (v i , v j ) follow a Gaussian distribution p z (e)

ith mean μd(e) (which is the mean of the d(e) values over the

raining samples) and standard deviation σ d(e) . This completes the

pecification of the network DG z . Similarly, networks DG x and DG y 

re constructed, except that in these cases, there are no anchor

odes since boundaries of body region B are defined only in the

 -direction. In our fuzzy anatomy model FAM ( B, G ), the ρ com-

onent is thought of as consisting of two parts, ρ = ( ρR , ρDG ),

here ρR denotes parent-to-child relationship in hierarchy H (as

n Udupa et al., 2014 ), and ρDG represents the triplet of learned

irected Probability Graphs (DG x , DG y , DG z ). 

.3. Object recognition 

The recognition process proceeds in two steps. Initially, the op-

imal hierarchy H found during model building is used for locat-

ng all objects in the hierarchical order. Then, after all objects are

ecognized in this manner, object localization is refined using the

reviously-built Directed Probability Graph by again going through

he hierarchical order in H . 

.3.1. Recognition via optimal hierarchy 

The fuzzy anatomy model FAM ( B, G ) built for B and G is utilized

or recognizing objects in an image I of B of any patient belonging

o group G . Recall that the purpose of recognition is to determine

he whereabouts of the objects in I and not their precisely delin-

ated boundaries. The AAR-RT recognition process takes, as input,

mage I, FAM ( B, G ), and the names of OARs that need to be con-

oured among the OARs in O, and outputs the recognized (local-

zed) fuzzy model FM 

T (O) of each O that is optimally transformed

o image I starting from the version of the fuzzy model FM (O) in

AM ( B, G ). This process takes place in several steps. AAR-RT first

ecognizes the skin object (tSB in thorax and hSB in H&N) follow-

ng the original AAR approach ( Udupa et al., 2014 ). This initial-

zes the hierarchical recognition process. Subsequently, following
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vi

v1i vki

(v )z iP

Fig. 8. A portion of DG z is shown to illustrate the estimation of a refined z- location 

v i of the fuzzy model of object O. 
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he optimal hierarchy H , for any object O, since the parent is al-

eady recognized and hence parent-to-child relationship ρR stored

n the model is known, it first scales and places FM (O) in I based

n just ρR . This is called one-shot recognition in the original AAR

pproach. This placement (pose) is further refined by using the

ptimal thresholded-search strategy of the previous AAR approach.

riefly, an object-specific optimal threshold, previously learned in

he model building stage and stored in the 5th parameter η of

AM ( B, G ), is applied to I , and the pose parameters of the fuzzy

odel FM (O) are adjusted for best fit between the thresholded im-

ge and the fuzzy model. For our discussion in the next step, we

ill refer to this resulting pose-adjusted model of O by FM 

t (O). At

he end of this first step, we have FM 

t (O) for all O ∈ O in I . 

.3.2. Recognition refinement via directed probability graphs 

In this step, we will refine the model FM 

t (O) obtained in the

revious step to its final recognized form FM 

T (O) in image I by us-

ng the previously trained Directed Probability Graphs. In this pro-

ess, we will refine locations x l (O), x h (O), y l (O), y h (O), z l (O), and

 h (O) of object O as represented in FM 

t (O) by using the information

tored in the ρDG component of ρ . Obviously, these refinements

re made for all objects except the root object. As in Section 3.2 (ii),

e will take the z -direction to describe the refinement process.

he x - and y -directions follow the same procedure. 

For any node v i of V z , let its parent nodes in DG z = (V z , Ez ) be

enoted by { v 1 
i 
, . . . , v k 

i 
} . 3 Examine the situation shown in Fig. 8 . By

he Markov property of DG z , we can write 

 z ( v i | v 1 , . . . , v i −1 , v i +1 , . . . , v 2 L ) = P z 
(
v i 

∣∣v 1 i , . . . , v 
k 
i 

)
. (2) 

Assuming that the parents are conditionally independent, we

an write 

 z ( v i ) = P z 
(
v i 

∣∣v 1 i 

)
P z 

(
v 1 i 

)
+ · · · + P z 

(
v i 

∣∣v k i 

)
P z 

(
v k i 

)
. (3) 

Since our recognition process proceeds hierarchically, when we

re dealing with object O whose z- location node v i is being re-

ned, the z- locations of its parents { v 1 
i 
, . . . , v k 

i 
} have all been re-

ned already and hence known. Let these refined actual locations

or O in I be { u 

1 
i 
, . . . , u 

k 
i 
} . Based on these known parent loca-

ions and the priors p z (e) (Gaussian distributions associated with

ach edge e = (v 
j 
i 
, v i ) with parameters μd(e) and σ d(e) as described

reviously in Section 3.2 (ii)), we approximate the probability in

q. (3) of node (location) v i as follows. 

 z ( v i ) ≈ max 
[
g ij 

(
v i 

∣∣v 1 i , ..., v 
k 
i 

)]
, where 

 ij 

(
v i 

∣∣v 1 i , ..., v 
k 
i 

)
= 

k ∑ 

j=1 

[
u 

j 
i 
+ p z ( e ) 

]
. (4) 

That is, the individual priors associated with each edge are

hifted by the known location of the parent and then added. The

esult is a mixture of Gaussians whose maximum is taken to be

he predicted probability of v i . We denote the predicted location

here this maximum occurs by w 

p 
. 
i 

3 Note that although each node has exactly one parent in H , a node may have 

everal parents in DG z (and DG x and DG y ). 

n  

o

From the known location of model FM 

t (O) before performing

efinement, we know a location for node v i coming from the recog-

ition process. Let this location be denoted by w 

r 
i 
. We will make

se of both these locations w 

r 
i 

and w 

p 
i 

and their associated proba-

ilities P z (w 

r 
i 
) and P z (w 

p 
i 
) to fuse them to estimate the final refined

ocation w i . 

 i = w 

p 
i 

+ 

(
w 

r 
i − w 

p 
i 

) P z 
(
w 

r 
i 

)

P z 
(
w 

r 
i 

)
+ P z 

(
w 

p 
i 

) . (5) 

The refinement process proceeds in this manner in the hierar-

hical order. The fuzzy model FM 

t (O) found before refinement is

nally rescaled to fit the refined boundary locations, which yields

he refined model FM 

T (O) for all O ∈ O in I . 

.4. Object delineation 

The delineation process proceeds in two steps. First, the local-

zed fuzzy model FM 

T (O) output in the recognition step for each

 ∈ O in I is utilized to identify all voxels that are within the ob-

ect region in I via a kNN classifier. In the second step, to this clus-

er of identified voxels the fuzzy model FM 

T (O) is optimally fit to

roduce the final delineation. 

.4.1. Delineation via fuzzy connectedness/kNN voxel classification 

For skin objects, we use Iterative Relative Fuzzy Connected-

ess (IRFC) algorithm ( Ciesielski et al., 2007 ) as elaborated in

 Udupa et al., 2014 ). IRFC is an image-based delineation engine

hat requires the specification of a set of seed voxels and a lo-

al affinity function. It is suitable for large objects with sufficient

ntensity contrast wherein automatic seed selection and object-

pecific affinity specification work well. For small and sparse ob-

ects, automatically selecting seeds often fails. Therefore, for all

bjects other than skin objects, we employ a trained k-nearest-

eighbor (kNN) voxel-wise classifier to find the object voxels

ithin the fuzzy mask specified by FM 

T (O). For this purpose, we

se a 3-dimensional feature vector [ f FM 

, f I , f T ] 
t associated with each

oxel, where f FM 

denotes the fuzzy membership value of O as ex-

ressed in FM 

T (O), f I denotes voxel intensity in I , and f T represents

 texture property value assessed at the voxel. All texture proper-

ies are from among those derived from gray-level co-occurrence

atrix ( Sonka et al., 2007 ). The texture property that is optimal

or each OAR is found at the model building stage. For example,

he glands (LSG, RSG, LPG, and RPG) have a similar textural char-

cteristic among themselves but different from other objects. kNN

raining and estimation of all required parameters including the

etermination of optimal texture properties are performed auto-

atically from the training data sets at the model building stage. 

.4.2. Optimal fuzzy model fitting 

The result of kNN classification for object O is a cluster of vox-

ls C (O) in I which is typically a scatter of voxels without proper

oundaries and potentially with holes (false negatives) and ex-

raneous voxels (false positives) although all within the generous

uzzy mask defined by FM 

T (O). To minimize these issues, we trans-

orm the fuzzy model FM 

T (O) optimally to C (O) by minimizing the

um of squared difference between C (O) as a binary mask and

M 

T (O) as a fuzzy mask. The transformation involves x, y, z transla-

ions, uniform scaling, and a threshold. We will denote these 5 pa-

ameters by a vector p , the binary mask resulting from FM 

T (O) af-

er transforming by a given p by BM (O, p ), and the sum of squared

ifference between C (O) and BM (O, p ) by || C (O)- BM (O, p )||. The fi-

al delineation of object O is found as BM (O, p 

∗), where p 

∗ is the

ptimal transformation parameter 

∗ arg min 
p = p {|| C(O) − BM(O , p) ||} . (6) 
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Table 2 

Age statistics of patients in planning and replanning studies. 

Group Thorax H&N 

# Patients Mean SD # Patients Mean SD 

Planning data 

Male 40–59 50 50 5 54 52.7 5.1 

Female 40–59 52 51 5 54 52.4 5.0 

Male 60–79 54 72 3 54 64.6 2.6 

Female 60–79 54 71 3 54 67.6 4.2 

Replanning data 

Male 18 66 9 22 56.9 19.2 

Female 12 70 5 8 57.9 16.8 
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4 These objects are rarely considered in most published papers but need to be 

contoured frequently in RT planning. LBP and RBP are hard to even visually locate 

on slices and so also esophagus on some slices in the H&N and thoracic regions. 
4. Experiments, results, discussion 

4.1. Data-related 

As mentioned previously, we created 4 anatomy models, one

each for: Thorax male (20 model-worthy data sets), Thorax female

(18 model-worthy data sets), H&N male (20 model-worthy data

sets), and H&N female (16 model-worthy data sets). These mod-

els were used in a gender-specific manner to test recognition and

delineation performance on all test data sets. The model-worthy

data sets ( Table 1 ) did not participate in any experiments involv-

ing the testing of recognition and delineation algorithms. We per-

formed evaluation of OAR recognition and delineation separately

under four categories based on object quality: male-good, male-

poor, female-good, and female-poor. We conducted two groups of

experiments – the first on planning data sets and the second on

replanning scans. 

Table 2 lists statistics related to the age distribution of our

study patients. For both body regions and for planning data sets,

there is no statistically significant difference ( P > 0.05) in age dis-

tribution between the male and female cohorts for the younger age

group ( G M1 and G F1 ), although the difference is statistically sig-

nificant ( P < 0 . 05 ) for the older age group ( G M2 and G F2 ), the fe-

male group being older than the male group. The replanning CT

data sets were selected randomly and not by age group. There is

no statistically significant difference ( P > 0 . 05 ) in age distribution

between the male and female groups for these data sets for both

body regions. 

4.2. Models 

Fig. 9 displays each OAR (except skin objects) selected from

several model-worthy studies for male and female subjects for

H&N and thorax body regions as well as the models generated for

the two body regions. The optimal hierarchies found from model-

worthy male data sets for the OARs in the two body regions are

also included in the figure. Note that here the skin boundary was

specified explicitly as the root object since it is easy to locate and

delineate in CT images compared to other objects. This hierarchy

was used for building all models. 

All parameters involved in AAR-RT are estimated automatically

from model-worthy data sets during the model building stage.

There are only two additional parameters: τ ( Eq. (1) , Fig. 7 ), k in

the kNN method. The values of these parameters are experimen-

tally determined and fixed once for all at τ = 10 mm and k = 50 for

both thorax and H&N. 

4.3. Object recognition and delineation in planning scans 

We will present accuracy results from the following four exper-

iments. 
(i) E1: Auto-contouring on high-OQS objects from the male group

G M 

. The objects involved in this evaluation generally have

streak artifacts and pathologies in not more than 3 slices and

may have come from any data sets in G M 

with any IQS value.

Although the objects in this group had minimal artifacts, they

may be still affected by pathology. OQS for these objects were

in the upper end of the score scale. 

ii) E2: Similar to E1 but on the female group G F . 

ii) E3: Auto-contouring on low-OQS objects from the male group

G M 

. The data sets involved in this experiment were the com-

plement of the subset of G M 

used in E1. 

v) E4: Similar to E3 but on the female group G F . 

We express recognition accuracy in terms of location error and

cale error. Location error (LE) is the distance (in millimeter) of

he geometric center of the object model at final recognition to

he known true geometric center of the object, ideally 0 mm. Scale

rror (SE) is the ratio of the estimated object size to its true size,

ith the ideal value of 1. We describe delineation accuracy/error

ia Dice Coefficient (DC) and Hausdorff boundary distance (HD).

he ideal values for these parameters are 1 and 0 mm, respectively.

ig. 10 displays recognition and delineation accuracies graphically

or experiments E1 through E4 on different OARs in the two body

egions. Sample recognition and delineation results for the two

ody regions (for both good- and poor-quality cases) are displayed

n Figs. 11 and 12 , respectively, with a slice of the recognized

odel and the delineated contour overlaid on the original slice. 

We make the following observations from the quantitative re-

ults depicted in Fig. 10: 

(i) E1 and E2 (good object quality): There were 461 object samples

(360 H&N, 101 thorax) involved in E1 described above in group

G M 

out of a total of 1479 samples (32%). The corresponding

numbers for group G F in E2 were 658 object samples (545 H&N,

113 thorax) from a total of 1391 (57%). The voxel size in our

data sets varied from 0.93 × 0.93 × 1.5 mm 

3 to 1.6 × 1.6 × 3 mm 

3 ,

most with a slice spacing of 2 mm or more. Overall, the location

error of recognition (object localization) in these experiments,

as seen from the last bar in Fig. 10 labeled “All”, is 4.28 mm

for the male group and 4.01 mm for the female group, which is

about 2 voxels, and the overall accuracy in delineation is close

to 0.7 for DC and within about a voxel from true boundary

for HD. The difference in recognition and delineation accuracy

between the male and female groups is not statistically signifi-

cant ( P > 0.05). Note a similar trend in accuracy for the different

objects between the male and female groups. Some OARs like

OHP, cES, tES, LBP, and RBP are more challenging than others,

but given images with minimal artifacts and generally nominal

pathology, they can all be located and delineated quite accu-

rately via AAR-RT. 

In understanding these results, two points should be noted:

(1) DC is known to be very sensitive to errors in small and

sparse objects where small errors of the order of a voxel at

different parts of the boundary can deteriorate DC drastically.

In this sense, HD may be a more robust measure. (2) There is

considerable variation in the ground truth delineations them-

selves. As will be shown under results from the second exper-

iment ( Section 4.4 ), DC depicting the variability between two

dosimetrists is significant. Considering these two points, our re-

sults from E1 and E2 are excellent: HD is about 1 voxel and DC

is comparable to DC between dosimetrists. If we exclude the

five most challenging objects tES, cES, OHP, LBP and RBP, 4 then
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(a) (b) (c) (d)

(g) (h)

hSB

LXSBscSC

SBi
RPG LPG

cES

MD

OHP RSG LSG

tS

TB

tSC

RL

LLg

RBP Hr tES LBP
(f)(e)

Fig. 9. Object samples from model-worthy data sets shown as surface renditions, models built from model-worthy data sets shown as volume renditions, and optimal 

hierarchies for H&N and thorax. (a) Male H&N, 9 OARs each from 5 studies. (b) Male thorax, 8 OARs each from 5 studies. (c) Female H&N, 9 OARs each from 5 studies. 

(d) Female thorax, 8 OARs each from 3 studies. Object samples represent binary objects after they are aligned in the scanner coordinate system during the model building 

process. Models for (e) thorax (right anterior oblique view), and (f) H&N (left posterior oblique view). Optimal hierarchies found for (g) H&N, and (h) thorax. See Table 1 for 

object names. 
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the overall DC for our results for the remaining 16 OARs over

the test object samples becomes 0.80 compared to DC of 0.81

(see below) between the dosimetrists. 

(ii) E3 and E4 (poor quality): When the objects have signifi-

cant artifacts, the results are much worse, hovering around

5 voxels for recognition and 5 mm for HD. The streak arti-

facts pose serious challenges to object recognition and delin-

eation, especially in the H&N images due to dental implants

and tooth fillings. Among our planning data in H&N, only

2 out of 216 scans were completely free of any streak arti-

facts (although they contained other deviations), 188 (87%)

had streak artifacts arising from beam hardening from metal

( Fig. 2 ), and 26 (12%) had beam hardening effects from

bone. The other factors encoded in OQS, such as existence

of pathology and body posture deviation also lead to much

worse results compared with E1 and E2. Again, there is

no statistically significant difference between results for the

male and female subjects in these experiments. 

The previous AAR method ( Udupa et al., 2014 ) was tested on

ear-normal studies. Since all scans considered in the present

ork contained deviations from normalcy, in almost all cases, AAR-

T yielded better results than the previous approach. To illus-

rate the improvements brought about by the innovations incorpo-

ated in AAR-RT, we compare in Fig. 13 final delineation accuracies

chieved for some sample OARs before and after the proposed im-

rovements. 

.4. Object recognition and delineation in replanning scans 

We have gathered retrospectively image data from 60 patients

ho underwent PBRT fractionated treatment serially (see Table 1 ).

or each patient, we selected image data at 2 to 3 serial time

oints, accounting for a total of 82 studies in H&N and 87 in tho-

ax. Like Fig. 10 , we show in Fig. 14 recognition and delineation

ccuracy for replanning data sets for good- and poor-quality object

ases. Generally, replanning data sets had a much larger percentage

f cases with low scores (poor quality) for both OQS and IQS. 

Unlike testing on planning scans, we used two methods for

esting replanning studies. Method 1: It uses the contours drawn by
he dosimetrists for a patient case at an earlier time point t 0 in the

erial study as a patient-specific model to recognize and delineate

bject contours at later time points for the same patient. Method

: At each time point, we perform AAR-RT recognition and delin-

ation afresh by selecting the gender-specific model for the test

can. Note that no registration step is required in either method.

e also assess inter-dosimetrist variation for each of the 11 tested

ARs (5 in H&N and 6 in thorax, see Section 2.1 ) based on the

ontours drawn by four dosimetrists (two for each body region,

rawing on the same data sets) on these 82 H&N studies and 87

horacic studies. 

From the results in Fig. 14 , we make the following observations.

(1) Method 1 achieves better delineation accuracy (statistically

significant for All, P < 0.001) overall than Method 2 on both

high OQS and low OQS groups. This is because using man-

ual contour at t 0 as the model for t 1 and t 2 preserves bet-

ter patient-specific object information than the fuzzy model

over population as in Method 2. Meanwhile, on most OARs,

results from Method 1 are better than results in Fig. 10 for

planning scans. This shows that when introducing manual

assistance in auto-contouring, the performance could be fur-

ther improved over fully automatic methods. 

(2) Analogous to Fig. 10 , when objects have high OQS (artifacts

and pathologies on less than 4 slices), overall DC is 0.77 and

HD is 1 voxel or less for Method 1. The corresponding val-

ues for Method 2 are 0.71 and around 1 voxel. For the low

OQS data, overall DC was ∼0.6 and HD was 2–3 voxels for

both methods. We observe that the H&N OARs are more

influenced by image quality than thoracic OARs; this is

mainly due to strong streak artifacts in the H&N region on

all replanning data sets. 

(3) The overall inter-observer variability expressed in DC and

HD between the two dosimetrists (per body region) is

slightly above the DC and HD obtained via AAR-RT on high

OQS data sets as shown by the hatched bar in Fig. 14 . We

noticed a dichotomy between DC and HD results as com-

pared to dosimetrists’ variation. Considering DC and HD,

AAR-RT performance on high-OQS large/non-sparse objects 

such as MD, LLg, RLg, and Hrt is comparable to dosimetrists’

variation, which implies that major editing effort can be
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Fig. 10. Recognition errors LE and SE (Rows 1, 2) and delineation accuracies/errors DC and HD (Rows 3, 4) for the OARs in the two body regions in experiments E1–E4. See 

Table 1 for OAR abbreviations. The bars represent mean value over the tested object samples and the whiskers denote standard deviation. 
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saved when image quality is sufficient on such objects. On

smaller/sparse objects, the behavior is different. Some sparse

objects like cSC, cES, tSC, and TB were comparable in HD be-

tween AAR-RT and dosimetrists although their DC values for

dosimetrists seem better than those from AAR-RT. This sug-

gests a non-uniformity in the meaning of these metrics be-

tween large globular objects versus sparse objects. This is a

drawback of these metrics, especially DC. Even small devia-

tions from reference segmentations can cause drastic lower-

ing of DC for sparse objects. Notably, for high-OQS samples,

there seems to be a significant difference in AAR-RT perfor-

mance between the two genders (for example, tSC, LX, cES,

and tES). 

(4) We are not aware of any studies in the literature that eval-

uated performance of algorithms on replanning data sets

directly. However, earlier methods have been reported ( La

Macchia et al., 2012; Tsuji et al., 2010 ) to propagate segmen-

tations from planning CT to replanning studies by applying
 s
image registration techniques. These techniques assume, like

our Method 1, that contours are already available on plan-

ning images, mostly by manual drawing. 

.5. Computational considerations 

All experiments were conducted on a PC with an Intel i7-6670

rocessor and 16 GB RAM. In our current implementation of AAR-

T, once the anatomy model is built, auto-contouring of all OARs

or each patient study in each body region can be completed in 5–

 min, which translates roughly to 30 s/OAR. Model building itself,

owever, takes about 6 h for each body region, out of which the

ost time-consuming step is finding the optimal hierarchy which

onsumes about 5 h. In a clinical RT set up, this does not matter

ince there is no need to repeat this step very frequently. 
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Fig. 11. Sample results for different OARs on representative H&N CT images. Rows 1 & 2: Recognition and delineation from good-quality data sets. Rows 3 & 4: Recognition 

and delineation from poor-quality data sets. 

Fig. 12. Sample results for different OARs on representative thoracic CT images. Rows 1 & 2: Recognition and delineation from good-quality data sets. Rows 3 & 4: Recognition 

and delineation from poor-quality data sets. 
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Fig. 13. Delineation accuracies/errors DC and HD for some OARs in the two body regions in experiments E1 and E2 for the previous AAR approach ( Udupa et al., 2014 ) and 

AAR-RT. See Table 1 for OAR abbreviations. The bars represent mean values over the tested object samples and the whiskers denote standard deviations. 

Fig. 14. Delineation accuracies/errors DC and HD for the OARs in the two body regions in experiments on replanning data sets. See Table 1 for OAR abbreviations. The 

hatched bar denotes metric values between the dosimetrists. The bars represent mean value over the tested object samples and the whiskers denote standard deviation. 
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Table 3 

Comparison with methods from the literature for H&N OARs. Results are illustrated by either mean value or range. Unclear content 

from the literature is indicated as n/a. AAR-RT results shown are for the good-quality cases including both genders. 

Approach Number of 

cases Train/Test 

Number of test 

objects 

Image/object quality DC (mean or range) 

( Chen and 

Dawant, 2015 ) 

25/10 60 Not mentioned MD: 0.86–0.94 LPG, RPG: 0.74–0.87 

LSG, RSG: 0.55–0.8 

( Jung et al., 

2015 ) 

25/10 n/a Not mentioned MD: 0.77–0.86 LPG, RPG: 0.56–0.79 

LSG, RSG: 0.29–0.59 

( Albrecht, 2015 ) 25/10 n/a Not mentioned MD: 0.75–0.93 LPG, RPG: 0.73–0.88 

LSG, RSG: 0.56–0.81 

( Mannion- 

Haworth, 

2015 ) 

25/10 n/a Not mentioned MD: 0.92–0.94 LPG, RPG: 0.74–0.89 

LSG, RSG: 0.65–0.87 

( Orbes Arteaga 

et al., 2015 ) 

25/10 n/a Not mentioned MD: 0.9–0.96 LPG, RPG: 0.68–0.85 

( Ibragimov and 

Xing, 2017b ) 

40/10 112 Mentioned cases with 

streak artifacts 

MD: 0.89 LPG: 0.77 RPG: 0.77 LSG: 0.7 

RSG: 0.73 LX:0.86 cSC: 0.87 

( Thomson et al., 

2014 ) 

n/a / 10 70 Cases not distorted by 

tumor or artifacts are 

selected 

LPG, RPG: 0.74–0.83 LSG, RSG: 0.7–0.85 

LX: 0.5–0.62 OHP: 0.4–0.6 

( Tao et al., 

2015 ) 

n/a /16 16 Not mentioned LX: 0.73, OHP: 0.64 

( Duc et al., 

2015 ) 

100/100 600 Not mentioned LPG: 0.65, RPG: 0.65, cSC 0.75 

AAR-RT 36/262 2200 Quality as 

encountered in 

clinical practice 

MD: 0.89, LPG: 0.74, RPG: 0.75, LSG: 

0.73 RSG: 0.73, LX: 0.74, OHP: 0.58, 

cES: 0.62, cSC: 0.75 

Table 4 

Comparison with methods from the literature for thoracic OARs. Results are illustrated by either mean value or range. Unclear content from 

the literature is indicated as n/a. AAR-RT results shown are for the good-quality cases including both genders. 

Approach Number of cases 

Train/Test 

Number of test 

objects 

Image/object 

quality/artifacts 

DC (mean or range) 

( Zhu et al., 

2013 ) 

n/a /40 160 Not mentioned LLg 0.95; RLg 0.95; Hrt 0.90; tSC 0.52 

( Velker et al., 

2013 ) 

n/a /50 150 Not mentioned LLg 0.95–0.98; RLg 0.95–0.98; Hrt 

0.81–0.95 

( Lustberg et al., 

2017 ) 

20/20 n/a Not mentioned LLg 0.96–0.98; RLg 0.97–0.98; tES 

0.35–0.57; TSC 0.83–0.87; Hrt 

0.87–0.93 

( Lustberg et al., 

2017 ) 

450/20 n/a Not mentioned LLg 0.97–0.98; RLg 0.97–0.98; tES 

0.65–0.76; tSC 0.80–0.88; Hrt 0.83–0.93 

( Schreibmann et al., 

2014 ) 

n/a /46 70 Not mentioned LLg 0.92–0.98; RLg 0.88–0.98; tES 

0.01–0.54; tSC 0.52–0.87; Hrt 

0.83–0.93; TB 0.81–0.95 

( Trullo et al., 

2017b ) 

30/30 (6-fold) 120 Not mentioned tES 0.67; Hrt 0.90; TB 0.82 

AAR-RT 38/167 1187 Quality as 

encountered in 

clinical practice 

LLg 0.95; RLg 0.96; tES 0.68; tSC 0.68; 

Hrt 0.86; TB 0.81; LBP 0.38; RBP 0.40 
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.6. Comparison with results from literature 

We summarize some key studies from the recent literature that

re related to our work in H&N ( Table 3 ) and thorax ( Table 4 ). Our

ork differs from these studies in several import ways: 

(1) Size : Our study is much larger than any from the litera-

ture and deals with data sets that constitute the real het-

erogeneity that exists in clinical cases. The largest pre-

vious study from the literature considered 40 cases in

H&N ( Ibragimov and Xing, 2017b ) and 240 cases in thorax

( Zhou et al., 2017b ) where most studies are used for training

and only 12 cases used for testing. Including both planning

and replanning scans our evaluation involved: 503 studies

with 74 used for training and 429 for testing; a total of

4301 object samples where 774 were involved in training

and 3527 in testing. The largest number of object samples

tested in prior works is 112 for H&N ( Ibragimov and
Xing, 2017b ) and 413 ( Zhou et al., 2017b ) for thorax. Test-

ing on a large number of independent data sets (as opposed

to on the same data sets in a multifold cross validation man-

ner) is vital to get a real understanding and develop confi-

dence for the behavior of the method in the long run in-

dependent of the data sets on which the method is tested.

Testing on a large number of object samples from differ-

ent body regions separately is important for similar reasons

since the performance behavior of methods can be different

on different objects. 

(2) Scope : We investigated both planning and replanning stud-

ies by using the same approach. We did not come across

any work in the literature that performed such an analy-

sis; all reported studies tested the planning and replanning

cases separately – the former by using an auto-contouring

method, the latter by propagating expert-drawn contours

from planning studies to replanning studies via deformable

image registration. In our study cohort, as described pre-
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Fig. 15. Sample recognition results to illustrate the robustness of the AAR-RT recognition process. Note particularly how the model is positioned correctly/closely for (a) MD, 

RPG, and LPG in spite of severe streak artifacts, for (b) LSG and RSG in spite of distortions due to pathology, for (c) OHP and (d) LBP and RBP in spite of absence of sufficient 

appearance information, and for (e) LLg in spite of presence of large pathology. 
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viously, we found the quality of the images to be gener-

ally slightly lower in replanning studies than in planning

cases although the performance was similar. Therefore, test-

ing auto-contouring methods should be done separately on

these data sets. 

(3) Data quality : None of the studies from the literature dis-

cussed the quality of the data sets used, presence and sever-

ity of the artifacts in their data, and how they might in-

fluence their results. No examples of performance on cases

with artifacts are given and there is no discussion of how

the training and testing data sets are selected with regard to

artifacts and other deviations, particularly streak artifacts. 

(4) Gender : We analyzed gender and age dependence of image

and object quality and their influence on results. Such infor-

mation may be useful in the future for developing effective

model building/training strategies and creating standardized

and generalizable databases for evaluation. 

The results listed in Tables 3 and 4 are influenced by multiple

factors, such as patient gender and group, image/object quality, im-

age resolution, definitions used (if any) for body region and OARs,

manual ground-truth quality, etc. In view of the reasons listed

above, a fair comparison with AAR-RT is hard to garner from these

tables. Note that although the results listed for AAR-RT are for

the good-quality cases, by definition, these cases include objects

with artifacts and other deviations in multiple but not exceeding 3

slices. Keeping these factors in mind, our fully-automated method

not only covers the largest number of OARs but also achieves very

competitive performance. There is no mentioned result for cES,

LBP, and RBP for comparison in the literature. One advantage of

our method is its steadiness. Indeed, on every object the perfor-

mance is above average standard from references, which implies

the robustness of the proposed method to OAR variations in size,

shape, and appearance. This is mainly because of the recognition

step which is capable of overlaying the fuzzy model on the image

within a location error of ∼1.5 voxels ( ∼3 mm) with respect to the

actual location of the object. To illustrate the robustness of AAR-RT

recognition process, we show in Fig. 15 several examples of severe

artifacts and absence of adequate image information for locating

objects even by experts, where AAR-RT successfully places the ob-

ject model close to the true location on the image because of the

rich prior information encoded in its anatomy model FAM ( B, G ). 

5. Concluding remarks 

In this paper, we significantly extended our previous body-wide

AAR framework through several innovations and evaluated its per-

formance comprehensively from the perspective of the RT applica-

tion. Some key and unique elements of the new AAR-RT framework

are as follows. (i) It uses computationally directed precise defini-

tions of the body regions and the OARs. This becomes essential

for encoding prior information consistently and faithfully and for
ringing about maximum impact from prior information on object

ecognition. (ii) It employs a strategy to find a hierarchy for ar-

anging OARs in each body region that seeks to minimize the error

n recognition in place of a hand-crafted hierarchy in the previous

AR approach. (iii) It uses Directed Probability Graphs to encode

AR boundary relationships and to predict them at the recognition

tage. (iv) Its recognition process follows the found optimal hierar-

hy and the trained probability graph to localize objects in a robust

anner even in the presence of significant image artifacts and de-

iations. (v) Its delineation process uses the localized fuzzy model

f the object and object-specific intensity and texture properties to

dentify voxels indicating strong membership within the object and

o fit the model optimally to the identified voxels. (vi) It uses an

mage/object quality-based evaluation of both recognition and de-

ineation processes utilizing over 500 CT scans of cancer patients

ndergoing RT and over 40 0 0 object samples in these scans in-

olving both planning and replanning studies. Our conclusions and

emarks based on this study are as follows. 

1. On data sets with artifacts and deviations in not more than

3 slices, AAR-RT yields recognition accuracy within 2 voxels

and delineation HD within about 1 voxel. This is close to the

variability observed among dosimetrists in manual contour-

ing. When artifacts and deviations are more severe, the results

are much worse, hovering around 5 voxels for recognition and

5 mm for HD. AAR-RT’s performance is similar on planning and

replanning cases (when using Method 2) although we observed

a slightly lower object and image quality for the latter. 

2. Understanding object and image quality and how they influence

performance is crucial for devising effective object recognition

and delineation algorithms. At present, it is very difficult to gain

an understanding of the behavior of segmentation methods as

a function of image/object quality in spite of the availability of

large databases and many segmentation challenges. Streak arti-

facts arising from dental implants and fillings and beam hard-

ening from bone pose the greatest challenge to auto-contouring

methods. They cast streaks that are much brighter or darker

than the actual tissue intensity and affect almost all H&N struc-

tures in almost all studies. 

3. AAR’s dichotomous treatment of the segmentation methodol-

ogy as dual recognition and delineation processes is helpful in

understanding and addressing challenges due to image artifacts

and deviations. AAR’s recognition operation is much more ro-

bust than delineation. We observed that often even when the

models were placed very close (within 2 voxels) to the actual

object with strong streak artifacts and/or deviations, delineation

failed to retain that accuracy since the object intensity pat-

terns were greatly distorted. We are studying ways to combine

AAR-RT with deep learning methods to improve delineation ro-

bustness. A price to be paid for recognition robustness is the

expensive computational time at the model building stage of
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finding optimal hierarchies, although this step needs to be exe-

cuted very infrequently. 

4. Individual object quality expressed by OQS seems to be much

more important than the overall image quality expressed by IQS

in determining accuracy. There is an interesting phenomenon

underlying OQS, object hierarchy, and accuracy of recognition.

Not all ancestors influence accuracy in the same manner. A

study of the relationship among OQS, IQS, recognition accuracy,

delineation accuracy, and object hierarchy may help to improve

robustness of recognition and delineation strategies. 
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