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To make Quantitative Radiology (QR) a reality in radiological practice, computerized body-wide Auto-
matic Anatomy Recognition (AAR) becomes essential. With the goal of building a general AAR system that
is not tied to any specific organ system, body region, or image modality, this paper presents an AAR meth-
odology for localizing and delineating all major organs in different body regions based on fuzzy modeling
ideas and a tight integration of fuzzy models with an Iterative Relative Fuzzy Connectedness (IRFC) delin-
eation algorithm. The methodology consists of five main steps: (a) gathering image data for both building
models and testing the AAR algorithms from patient image sets existing in our health system; (b) formu-
lating precise definitions of each body region and organ and delineating them following these definitions;
(c) building hierarchical fuzzy anatomy models of organs for each body region; (d) recognizing and locat-
ing organs in given images by employing the hierarchical models; and (e) delineating the organs follow-
ing the hierarchy. In Step (c), we explicitly encode object size and positional relationships into the
hierarchy and subsequently exploit this information in object recognition in Step (d) and delineation
in Step (e). Modality-independent and dependent aspects are carefully separated in model encoding.
At the model building stage, a learning process is carried out for rehearsing an optimal threshold-based
object recognition method. The recognition process in Step (d) starts from large, well-defined objects and
proceeds down the hierarchy in a global to local manner. A fuzzy model-based version of the IRFC
algorithm is created by naturally integrating the fuzzy model constraints into the delineation algorithm.

The AAR system is tested on three body regions – thorax (on CT), abdomen (on CT and MRI), and neck (on
MRI and CT) – involving a total of over 35 organs and 130 data sets (the total used for model building and
testing). The training and testing data sets are divided into equal size in all cases except for the neck. Over-
all the AAR method achieves a mean accuracy of about 2 voxels in localizing non-sparse blob-like objects
and most sparse tubular objects. The delineation accuracy in terms of mean false positive and negative vol-
ume fractions is 2% and 8%, respectively, for non-sparse objects, and 5% and 15%, respectively, for sparse
objects. The two object groups achieve mean boundary distance relative to ground truth of 0.9 and 1.5 vox-
els, respectively. Some sparse objects – venous system (in the thorax on CT), inferior vena cava (in the
abdomen on CT), and mandible and naso-pharynx (in neck on MRI, but not on CT) – pose challenges at
all levels, leading to poor recognition and/or delineation results. The AAR method fares quite favorably
when compared with methods from the recent literature for liver, kidneys, and spleen on CT images.
We conclude that separation of modality-independent from dependent aspects, organization of objects
in a hierarchy, encoding of object relationship information explicitly into the hierarchy, optimal thresh-
old-based recognition learning, and fuzzy model-based IRFC are effective concepts which allowed us to
demonstrate the feasibility of a general AAR system that works in different body regions on a variety of
organs and on different modalities.

� 2014 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Background

Since the birth of radiology in 1895, the emphasis in clinical
radiology has been on human visualization of internal structures.
Although various tomographic image modalities evolved subse-
quently for deriving anatomic, functional, and molecular informa-
tion about internal structures, the emphasis on human
visualization continued and the practice of clinical radiology has
remained mostly descriptive and subjective. Quantification is amply
employed in radiology in clinical research. However, in clinical
radiological practice, this is not common. In the qualitative mode,
quantifiable and/or subtle image information is underutilized,
interpretations remain subjective, and subtle changes at early dis-
ease stages or due to therapeutic intervention may be underesti-
mated or missed (Torigian and Alavi, 2007). It is generally
believed now that if Quantitative Radiology (QR) can be brought
to routine clinical practice, numerous advances can be made
including: improved sensitivity, specificity, accuracy, and precision
of early disease diagnosis; more objective and standardized
response assessment of disease to treatment; improved under-
standing of what is ‘‘normal’’; increased ease of disease measure-
ment and reporting; and discovery of new disease biomarkers.

To make QR a reality, we believe that computerized Automatic
Anatomy Recognition (AAR) during radiological image interpreta-
tion becomes essential. To facilitate AAR, and hence eventually
QR, and focusing only on the anatomic aspects of shape, geography,
and architecture of organs, while keeping the larger goal in mind,
we present in this paper a novel fuzzy strategy for building
body-wide anatomic models, and for utilizing these models for
automatically recognizing and delineating body-wide anatomy in
given patient images.

1.2. Related work

Image segmentation – the process of recognizing and delineat-
ing objects in images – has a rich literature spanning over five dec-
ades. From the perspective of the direction in which this field is
headed, it is useful to classify the methods developed to date into
three groups: (a) Purely image-based, or pI approaches (Beucher,
1992; Boykov et al., 2001; Kass et al., 1987; Malladi et al., 1995;
Mumford and Shah, 1989; Udupa and Samarasekera, 1996),
wherein segmentation decisions are made based entirely on infor-
mation derived from the given image; (b) object model-based, or
OM approaches (Ashburner and Friston, 2009; Cootes et al.,
2001; Heimann and Meinzer, 2009; Pizer et al., 2003; Shattuck
et al., 2008; Staib and Duncan, 1992), wherein known object shape
and image appearance information over a population are first cod-
ified in a model and then utilized on a given image to bring con-
straints into the segmentation process; and (c) hybrid
approaches (Chen and Bagci, 2011; Hansegard et al., 2007;
Horsfield et al., 2007; Liu and Udupa, 2009; Rousson and
Paragios, 2008; Shen et al., 2011; van der Lijn et al., 2012; Zhou
and Bai, 2007), wherein the delineation strengths of the pI methods
are combined synergistically with the global object recognition
capabilities of the OM strategies. pI algorithms predate other
approaches, and they still continue to seek new frontiers. OM
approaches go by various names such as statistical models and
probabilistic atlases, and continue to be pursued aggressively. Par-
ticularly, atlas-based techniques have gained popularity in brain
MR image segmentation and analysis (Cabezas et al., 2011). Hybrid
approaches hold much promise for AAR and QR and are currently
very actively investigated. Since our focus in this paper is the body
torso, and since the nature of the images and of the objects and
challenges encountered are different for these regions (from, for
example, for the brain), our review below will focus mainly on
methods developed for the torso.

Since the simultaneous consideration of multiple objects offers
better constraints, in recent years, multi-object strategies have
been studied under all three groups of approaches to improve seg-
mentation. Under pI approaches, the strategy sets up a competition
among objects for delineating their regions/boundaries (e.g.;
Bogovic et al., 2013; Saha and Udupa, 2001). In OM approaches,
the strategy allows including inter-relationships among objects
in the model to influence their localization and delineation (e.g.;
Cerrolaza et al., 2012; Duta and Sonka, 1998). In hybrid
approaches, multi-object strategies try to strengthen segmentabil-
ity by incorporating relevant information in model building, object
recognition/localization, and subsequently also in delineation via
the pI counterpart of the synergistic approach (Chen et al., 2012;
Chu et al., 2013; Linguraru et al., 2012; Lu et al., 2012; Meyer
et al., 2011; Okada et al., 2008; Shen et al., 2011; Tsechpenakis
and Chatzis, 2011). Motivated by applications (such as semantic
navigation) where the focus is just locating objects in image vol-
umes and not delineating them, a separate group of methods has
been emerging (Criminisi et al., 2013; Zhou and Rajapakse, 2005;
Zhou et al., 2013). They use features characterizing the presence
of whole organs or specific anatomic aspects of organs (such as
the femoral neck and head) combined with machine learning tech-
niques to locate objects in image volumes by finding the size, loca-
tion, and orientation of rectangular bounding boxes that just
enclose the anatomic entities.

The state-of-the-art in image segmentation seems to leave sev-
eral gaps that hinder the development of a body-wide AAR system.
First, while multi-object strategies have clearly shown superior
performance for all approaches, in all published works they have
been confined to only a few (three to five) selected objects and
have not taken into account an entire body region or all of its major
organs, the only exception being (Baiker et al., 2010), whose focus
was whole body segmentation of mice on micro CT images. Second,
and as a result, there is no demonstrated single method that oper-
ates on different body regions, on all major organs in each body
region, and at different modalities. Third, all reported modeling
strategies have a statistical framework, either as statistical models
of shape and intensity pattern of appearance of objects in the
image or as atlases, and none taking a fuzzy approach, except
(Zhou and Rajapakse, 2005) and our previous work (Miranda
et al., 2008, 2009), both in the brain only. Fuzzy set concepts have
been used extensively otherwise in image processing and 3D visu-
alization. Fuzzy modeling approaches allow bringing anatomic
information in an all-digital form into graph theoretic frameworks
designed for object recognition and delineation, obviating the need
for (continuous) assumptions made otherwise in statistical
approaches about shapes, random variables, their independence,
functional form of density distributions, etc. They also allow cap-
turing information about uncertainties at the patient level (e.g.,
blur, partial volume effects) and population level, and codification
of this information within the model. Fourth, objects have complex
inter-relationships in terms of their geographic layout. Learning
this information over a population and encoding this explicitly in
an object hierarchy can facilitate object localization considerably.
Although several multi-object methods have accounted for this
relationship indirectly, its direct incorporation into modeling,
object recognition, and delineation in an anatomic hierarchical
order has not been attempted. The AAR approach presented in this
paper is designed to help overcome these gaps.

1.3. Outline of paper and approach

We start off by describing a novel hierarchical fuzzy modeling
framework for codifying prior population information about object
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assemblies in Section 2. In Section 3, we delineate methods for
automatically recognizing objects in given patient images that
employ these hierarchical models. We present fuzzy-connected-
ness-based object delineation techniques in Section 4 that employ
the modified fuzzy models found at recognition as constraints in
delineation. We demonstrate and evaluate the applicability of the
AAR methodology in Section 5 on three different body regions –
thorax, abdomen, and neck – on different modalities. A comparison
to methods from recent literature, the lessons learned, our conclu-
sions, and the challenges we encountered are examined in Sec-
tion 6. The AAR approach has five unique characteristics: (1)
direct hierarchical codification of the prior object geographic and
geometric relationship information; (2) a ‘‘what-you-see-is-what-
you-get’’ entirely digital fuzzy modeling strategy; (3) hierarchical
object recognition strategies that go from a broader gestalt to nar-
rower specifics in locating objects; (4) demonstrated generality of
applicability of the same approach to different organ systems, body
regions, and modalities; and (5) adaptability of the system to
different applications.

The AAR approach is graphically summarized in Fig. 1. The body
is divided into body regions B1, . . . ,BK. Models are built for each
specific body region B e {B1, . . . ,BK} and each population group G
(whatever way G is defined). Throughout this paper, B and G are
treated as variables, and each body region is considered separately
and independent of other body regions. In Section 6, we will dis-
cuss briefly the issue of linking body regions for considering the
whole body for the AAR schema. The three main blocks in Fig. 1
correspond to model building, object recognition, and object delin-
eation. A fuzzy model FM(O‘) is built separately for each of the L
objects O‘ in B, and these models are integrated into a hierarchy
chosen for B. The output of the first step is a fuzzy anatomic model
FAM(B, G) of the body region B for group G. This model is utilized in
recognizing objects in a given patient image I of B belonging to G in
the second step. The hierarchical order is followed in this process.
The output of this step is the set of transformed fuzzy models FMT
Fig. 1. A schematic representation of the AAR schema. The three main steps of model
(O‘) corresponding to the state when the objects are recognized in
I. These modified models and the image I form the input to the
third step of object delineation which also follows the hierarchical
order. The final output is in the form of delineated objects
OD

1 ; . . . ;OD
L , where each OD

‘ is a binary image.
Very preliminary versions of some of the contents of this paper

appeared in SPIE Medical Imaging conference proceedings in 2011,
2012, and 2013. Those papers did not contain the full details pre-
sented here on model building. More importantly, based on earlier
experience many improvements are reported in this paper, none of
which appeared earlier. Further, the recognition and delineation
methods presented here have many novel elements. As a result,
the entire AAR approach has changed substantially. Additional dif-
ferences include comprehensive evaluation and the demonstration
of the AAR scheme on multiple body regions.
2. Building fuzzy model of body region B

Notation: We will use the following notation throughout this
paper. G: the population group under consideration. B: the body
region of focus. O1, . . . ,OL: L objects or organs of B (such as esoph-
agus and pericardium for B = Thorax). I = {I1, . . . , IN}: the set of
images of B for G from N subjects which are used for model build-
ing and for training the parameters of the AAR algorithms. In,‘: the
binary image representing the true delineation of object O‘ in the
image In e I . Ib = {In,‘: 1 6 n 6 N & 1 6 ‘ 6 L} is the set of all binary
images used for model building. FM(O‘): Fuzzy model of object O‘

derived from the set of all binary images Ib
‘ = {In,‘: 1 6 n 6 N} of

O‘. FAM(B, G): Fuzzy anatomy model of the whole object assembly
in B with its hierarchy. FMT(O‘): Transformed (adjusted) FM(O‘)
corresponding to the state when O‘ is recognized in a given patient
image I. OD

‘ : Delineation of O‘ in I represented as a binary image.
Any image I will be represented by a pair I = (C, f), where C denotes
a 3D rectangular array of voxels, and f is a mapping f: C ? I where I
building, object recognition, and object delineation are explained in Sections 2–4.
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is a set of integers1 denoting the image intensities. For any binary
image J = (C, fb), we will use PAS(J) to denote the principal axes
system derived from the set X of voxels of J with value 1. PAS(J) is
described by the geometric center of X and the eigenvectors derived
from X via principal component analysis.

Our description in the rest of Section 2 will follow the schematic
of Fig. 1. Table A1 in Appendix A lists brief anatomic definitions of
all objects from all three body regions considered in this paper.

2.1. Gathering image database for B and G

This retrospective study was conducted following approval
from the Institutional Review Board at the Hospital of the Univer-
sity of Pennsylvania along with a Health Insurance Portability and
Accountability Act (HIPAA). The basic premise of our AAR approach
is that the fuzzy anatomic model of B for G should reflect near nor-
mal anatomy. Consequently, the cleanest way of gathering image
data for model building will be to prospectively acquire image data
in a well-defined manner from subjects in group G who are certi-
fied to be near normal. Such an approach would be expensive
and may involve radiation exposure (in case of CT imaging). For
developing the concepts and testing the feasibility of AAR, there-
fore, we have taken a vastly less expensive and simpler approach
of utilizing existing human subject image data sets. For the tho-
racic and abdominal body regions, a board certified radiologist
(co-author DAT) selected all image data sets (CT) from our health
system patient image database in such a manner that the images
appeared radiologically normal for the body region considered,
with exception of minimal incidental focal abnormalities such as
cysts and small pulmonary nodules. Images with severe motion/
streak artifacts or other limitations were excluded from consider-
ation. For these two body regions, the population groups consid-
ered have an age range of approximately 50–60 years. This age
range was selected to maximize our chances of finding sufficient
number of near normal images. For the neck body region, we have
utilized image data (MRI) previously acquired from normal sub-
jects for the study of pediatric upper airway disorders. G in this
instance is female subjects in the age range of 7–18. Our modeling
schema is such that the population variables can be defined at any
desired ‘‘resolution’’ in the future and the model can then be
updated when more data are added.

Some organs in B are better defined in a slice plane different
from the slice plane used for imaging others. For example, for
B = neck, the best plane for slice imaging is sagittal for tongue
and soft palate, while for the upper airways and other surrounding
organs, axial slices are preferred. Our AAR methodology automati-
cally handles organs defined in images with different orientations
of digitization by representing image and object data in a fixed and
common scanner coordinate system of reference.

2.2. Delineating objects of B in the images in the database

There are two aspects to this task – forming an operational def-
inition of both B and the organs in B in terms of their precise
anatomic extent, and then delineating the objects following the
definition. These considerations are important for building consis-
tent and reliable models, and, in the future, if similar efforts and
results for body-wide models are to be combined, exchanged,
and standardized.

2.2.1. Definition of body regions and objects
Each body region is defined consistently in terms of a starting

and ending anatomic location. For axial slice data, these locations

1 Except when we deal with fuzzy sets, which are also expressed as images for

computational purposes, in which case I is a set of real numbers.
are determined in terms of transverse slice positions. For example,
for B = Thorax, the body region is considered to extend axially from
5 mm below the base of the lungs to 15 mm above the apex of the
lungs. Arms are not included in this study. For other orientations of
slice planes in slice imaging, the same definitions are applied but
translated into other planes. Similarly, each object included in B

is defined precisely irrespective of whether it is open-ended
because it straddles body regions (for example, esophagus) or
closed and contained within B but is contiguous with other objects
(for example, liver with hepatic portal vein, common hepatic
artery, and bile duct). For each body region, we have created a doc-
ument that delineates its precise definition and the specification of
the components and boundaries of its objects. This document is
used as a reference by all involved in generating data sets for
model building. These definitions are summarized in the table
included in Appendix A.

Each body region is carved out manually, following its defini-
tion, from the data sets gathered for it. In our notation, I denotes
the resulting set of such standard images that precisely cover B

as per definition. We assume the scanner coordinate system, SCS,
as a common reference system with respect to which all coordi-
nates will be expressed.

2.2.2. Delineation of objects
The objects of B are delineated in the images of I , adhering to

their definition, by a combination of methods including live wire,
iterative live wire (Souza and Udupa, 2006), thresholding, and
manual painting, tracing and correction. To minimize human labor
and to maximize precision and accuracy, algorithms in terms of a
proper combination of these methods and the order in which
objects are delineated are devised first, all of which operate under
human supervision and interaction. For illustration, in the abdo-
men, to delineate subcutaneous adipose tissues (SAT) as an object,
the skin outer boundary ASkn (as an object) is first segmented by
using the iterative live wire method. Iterative live wire is a version
of live wire in which once the object is segmented in one slice, the
user commands next slice, the live wire then operates automati-
cally in the next slice, and the process is continued until automatic
tracing fails when the user resorts to interactive live wire again,
and so on. Subsequently, the interface between the subcutaneous
and visceral adipose compartments is delineated by using also
the iterative live wire method. Once these two object boundaries
are delineated, the subcutaneous and visceral components are
delineated automatically by using thresholding and morphological
operations. On MR images, the same approach works if background
non-uniformity correction and intensity standardization (Nyul and
Udupa, 1999) are applied first to the images in I . If direct delinea-
tion by manual tracing or even by using live wire is employed, the
process would become complicated (because of the complex shape
of the adipose and visceral compartments) and much more labor
intensive.

Because of the enormity of this task, a number of trainees, some
with medical and biomedical but some with engineering back-
ground, were involved in accomplishing this task. All tracings were
examined for accuracy by several checks – 3D surface renditions of
objects from each subject in various object combinations as well as
a slice-by-slice verification of the delineations overlaid on the gray
images for all images. The set of binary images generated in this
step for all objects is denoted by Ib = {In,‘: 1 6 n 6 N & 1 6 ‘ 6 L}.
The set of binary images generated just for object O‘ is denoted
by Ib

‘ = {In,‘: 1 6 n 6 N}.

2.3. Constructing fuzzy object models

The Fuzzy Anatomy Model FAM(B, G) of any body region B for
group G is defined to be a quintuple:



Fig. 2. (a) Hierarchy for whole body WB. (b) Hierarchy for Thorax. TSkn: Outer boundary of thoracic skin as an object; RS: Respiratory System; TSk: Thoracic Skeleton; IMS:
Internal Mediastinum; RPS, LPS: Right & Left Pleural Spaces; TB: Trachea & Bronchi; E: Esophagus; PC: Pericardium; AS, VS: Arterial & Venous Systems. (c) Hierarchy for
Abdomen. ASkn: Outer boundary of abdominal skin; ASk: Abdominal Skeleton; Lvr: Liver; ASTs: Abdominal Soft Tissues; SAT & VAT: Subcutaneous and Visceral Adipose
Tissues; Kd: Kidneys; Spl: Spleen; Msl: Muscle; AIA: Aorta and Iliac arteries; IVC: Inferior Vena Cava; RKd & LKd: Right and Left Kidneys. (d) Hierarchy for Neck. NSkn: Outer
boundary of skin in neck; A&B: Air & Bone; FP: Fat Pad; NSTs: Soft Tissues in neck; Mnd: Mandible; Phrx: Pharynx; Tnsl: Tonsils; Tng: Tongue; SP: Soft Palate; Ad: Adenoid;
NP & OP: Nasopharynx and Oropharynx; RT & LT: Right and Left Tonsils.

3 In our empirical investigations of the AAR system, we have studied the
nstruction and use of fuzzy models both with and without orientation alignment.

ee Section 5.
4 Among several size measures we tested, such as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
volume3
p

, largest eigenvalue, and
e length of the diagonal of the enclosing box, this measure turned out to be the
ost robust.
5
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FAMðB;GÞ ¼ ðH;M;q; k;gÞ: ð1Þ

Briefly, the meaning of the five elements of FAM(B, G) is as fol-
lows. H is a hierarchy, represented as a tree, of the objects in B; see
Fig. 2. M is a collection of fuzzy models, one model per object in B.
q describes the parent-to-offspring relationship in H over G. k is a
set of scale factor ranges indicating the size variation of each object
O‘ over G. g represents a set of measurements pertaining to the
objects in B. A detailed description of these elements and the man-
ner in which FAM(B, G) is derived from I and Ib are presented
below.

2.3.1. Hierarchy H
This element describes the way the objects of B are considered

ordered anatomically as a tree structure. This order currently spec-
ifies the inclusion of an offspring object Ok anatomically in the par-
ent object O‘.2 While each B has its own hierarchy, B itself forms the
offspring of a root denoting the whole body, WB, as shown in Fig. 2.
The hierarchies devised for the three body regions studied are shown
in Fig. 2. An object that is exactly a union of its offspring will be
referred to as a composite object. Examples: RS, Fat, Kd, etc. Note that
none of the skin objects is a composite object since the full body
region inside the skin is not fully accounted for by the union of
the offspring objects. The notion of composite objects is useful in
combining objects of similar characteristics at a higher level of the
hierarchy, which may make object recognition (and delineation)
more effective. Thin tubular objects will be called sparse objects:
TB, E, AS, VS, AIA, IVC, Phrx, NP, and OP. Compact, blob-like objects
will be referred to as non-sparse: TSkn, RS, IMS, LPS, RPS, PC, ASkn,
Fat, SAT, VAT, Lvr, Spl, Kd, RKd, LKd, NSkn, FP, NSTs, Tnsl, Tng, SP,
Ad, RT, and LT. Some objects are a hybrid between these two types,
consisting of both features. Examples: TSk, Ask, ASTs, A&B, and Mnd.

2.3.2. Fuzzy model set M
The second element M in the description of FAM(B, G) repre-

sents a set of fuzzy models, M = {FM(O‘): 1 6 ‘ 6 L}, where FM(O‘)
is expressed as a fuzzy subset of a reference set X‘ � Z3 defined in
the SCS; that is, FM(O‘) = (X‘, l‘). The membership function l‘(v)
defines the degree of membership of voxel v e X‘ in the model of
object O‘. Ideally, for any ‘, 1 6 ‘ 6 L, we would like the different
2 However, as discussed in Section 6, other arrangements are possible for H.
samples of O‘ in different subjects to differ by a transformation
An,‘ involving translation, rotation, and isotropic scaling. Our idea
behind the concept of the fuzzy model of an object is to codify
the spatial variations in form from this ideal that may exist among
the N samples of the object as a spatial fuzzy set, while also retain-
ing the spatial relationship among objects in the hierarchical order.

Given the training set of binary images Ib
‘ of object O‘, we deter-

mine An,‘, l‘, and FM(O‘) for O‘ as follows. We permit only such
alignment operations, mimicking An,‘, among the members of Ib

‘ ,
that are executed precisely without involving search and that avoid
the uncertainties of local optima associated with optimization-
based full-fledged registration schemas. In this spirit, we handle
the translation, rotation, and scaling components of An,‘ in the fol-
lowing manner.

For translation and rotation, for each manifestation In,‘ of O‘ in
Ib
‘ , we determine, within SCS, the principal axes system PAS(In,‘)

of O‘. Subsequently, all samples are aligned to the mean center
and principal axes3. The scale factor estimation is based on a linear
size estimate (in mms) of each sample of O‘ and resizing all samples
to the mean size. The size of O‘ in In,‘ is determined fromffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1 þ e2 þ e3

p
Þ, where e1, e2, and e3 are the eigenvalues correspond-

ing to the principal components of O‘ in In,‘.4

After aligning the members of Ib
‘ via An,‘, a distance transform is

applied to each transformed member for performing shape-based
interpolation (Raya and Udupa, 1990; Maurer et al., 2003), the dis-
tances are averaged over all members, and converted through a
sigmoid function to obtain the membership values l‘ and subse-
quently FM(O‘).

2.3.3. Parent-to-offspring relationship q
This element describes the parent-to-offspring spatial relation-

ship in H for all objects in B. Since each object Ok has a unique par-
ent, this relationship is represented by q = {qk: 1 6 k 6 L}5. For each
It also encodes WB to body region relationships, although this is not taken into
ccount in our current implementation. See comments in Section 6.
co
S

th
m

a



J.K. Udupa et al. / Medical Image Analysis 18 (2014) 752–771 757
Ok, qk codifies the mean position as well as the orientation relation-
ship between Ok and its parent over N samples. We adopt the con-
vention that q1 denotes the relationship of the root object of B

relative to SCS. Let GCn,‘ be the geometric center of O‘ in In,‘. Then,
the mean positional relationship P‘,k between O‘ and Ok is considered
to be the mean of the vectors in the set {GCn,k � GCn,‘: 1 6 n 6 N}. To
find the mean orientation Q‘,k, we make use of the eigenvectors
E1

n;‘; E
2
n;‘, and E3

n;‘ of the shape of O‘ in In,‘ estimated over all N samples.
We take an average of each Ei

n;‘ over N samples for i = 1, 2, 3. How-
ever, for some n and i, Ei

n;‘ may be more than 90 degrees from the
average, in which case we replace Ei

n;‘ by �Ei
n;‘ while simultaneously

replacing Ej
n;‘ by �Ej

n;‘ for some j different from i so as to keep the sys-
tem right-handed. We then recalculate the average, and repeat until
the eigenvector is within 90 degrees of the average. Then, starting
from either the first or the third eigenvector, whichever has the
eigenvalue farther from the second, we normalize and make the oth-
ers orthogonal to it. Q‘,k is then taken to be the transformation that
aligns the eigenvector system of the parent O‘ with that mean orien-
tation. This method guarantees a robust orientation estimate despite
the 180-degrees switching property of eigenvectors.

In order not to corrupt qk by the differences in size among sub-
jects, before estimating qk, the parent O‘ and all offspring objects
Ok of O‘ are scaled with respect to the center GCn,‘ of O‘ as per a
common scale factor, estimated for O‘ via the method described
above. The reasoning behind this scaling strategy is that an object
and its entire offspring should be scaled similarly to retain their
positional relationship information correctly.

2.3.4. Scale range k
The fourth element k of FAM(B, G) is a set of scale factor ranges,

k ¼ fk‘ ¼ ½kb
‘ ; k

h
‘ � : 1 � ‘ � Lg, indicating the size variation of each

object O‘ over its family Ib
‘ . This information is used in recognizing

O‘ in a given image to limit the search space for its pose; see
Section 3.

2.3.5. Measurements g
This element represents a set of measurements pertaining to

the object assembly in B. Its purpose is to provide a database of
normative measurements for future use. We are not exploring this
aspect in this paper. However, this element also serves to improve
our knowledge about object relationships (in form, geographical
layout, etc. in B) and thence in constructing better hierarchies for
improving AAR. We will discuss this briefly in Section 5.

There are several parameters related to object recognition (Sec-
tion 3) and delineation (Section 4), some of which are image
modality specific. (They are identified by T m

1 and Th‘ in Section 3
and rwO, muO, muB, ruO, and ruB in Section 4.) The values of these
parameters are also considered part of the description of g. The
definition of these parameters and the process of their estimation
are described at relevant places in Sections 3 and 4 for ease of read-
ing, although their actual estimation is done at the model building
stage.

The fuzzy anatomy model FAM(B, G) output by the model build-
ing process is used in performing AAR on any image I of B for group
G as described in Sections 3 and 4.
6 We assume that the field of view in I fully encloses the root object. For the
hierarchies shown in Fig. 2, the root object is the skin outer boundary which is
typically more-or-less, although not perfectly, fully included within the imaging field
of view. See also Section 6 for further comments.
3. Recognizing objects

We think of the process of what is usually referred to as ‘‘seg-
menting an object in an image’’ as consisting of two related phe-
nomena – object recognition (or localization) and object
delineation. Recognition is a high-level process of determining the
whereabouts of the object in the image. Given this information
for the object, its delineation is the meticulous low-level act of pre-
cisely indicating the space occupied by the object in the image. The
design of the entire AAR methodology is influenced by this concep-
tual division. We believe that without achieving acceptably accu-
rate recognition it is impossible to obtain good delineation
accuracy. The hierarchical concept of organizing the objects for
AAR evolved from an understanding of the difficulty involved in
automatic object recognition. Once good recognition accuracy is
achieved, several avenues for locally confined accurate delineation
become available, as we discuss in Section 4. The goal of recogni-
tion in AAR is to output the pose (translation, rotation, and scaling)
of FM(O‘), or equivalently the pose-adjusted fuzzy model FMT(O‘),
for each O‘ in a given test image I of B such that FMT(O‘) matches
the information about O‘ present in I optimally.

The recognition process proceeds hierarchically as outlined in
the procedure AAR-R presented below. In Step R1, the root object
is recognized first by calling algorithm R-ROOT6. Then, proceeding
down the tree represented by H in the breadth-first order, other
objects are recognized by calling algorithm R-OBJECT. The latter
makes essential use of the parent fuzzy model and the parent-to-off-
spring relationship q encoded in FAM(B, G).

Procedure AAR-R

Input: An image I of B, FAM(B, G).

Output: FMT(O‘), ‘ = 1, . . . ,L.

Begin
R1. Call R-ROOT to recognize the root object in H;

R2. Repeat
R3. Find the next offspring Ok to recognize in H (see text);
R4. Knowing FMT(O‘), qk, and kk, call R-OBJECT to recognize

Ok;

R5. Until all objects are covered in H;
R6. Output FMT(O‘), ‘ = 1, . . . ,L;

End
Two strategies are described here for each of algorithms R-ROOT
and R-OBJECT. The first, a global approach, does not involve search-
ing for the best pose. We call this the One-Shot Method since the
model pose is determined directly by combining the prior informa-
tion stored in FAM(B, G) and information quickly gathered from the
given image I. The one-shot method is used as initialization for a
more refined second method called Thresholded Optimal Search.

3.1. One-shot method

A threshold interval Th1 corresponding to the root object O1 is
applied to I followed by a morphological opening operation to
roughly segment O1 to produce a binary image J. The purpose of
the morphological operation is to exclude as much as possible
any significant extraneous material, such as the scanner table
and patient clothing, from J. Then the transformed model FMT(O1)
is found by applying a transformation T m

1 to FM(O1). T m
1 is devised

to express the mean relationship between the roughly segmented
O1 and the true segmentation of O1 represented in the binary
images In,1 e Ib. The estimation of T m

1 is done at the model building
stage of AAR as mentioned in Section 2.3. To determine T m

1 , similar
thresholding and morphological operations are performed on each
gray image In in the training set to obtain a rough segmentation of
O1, denoted Jn,1, in In. The relationship between this rough segmen-
tation Jn,1 and the true segmentation In,1 of O1 in Ib is found as a
transformation T n;1 that maps PAS(Jn,1) to PAS(In,1). The mean,
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denoted T m
1 , of such transformations over all training images is

then found.
Once the root object O1 is recognized, the poses for other objects

in I in the hierarchy H are determined by combining (in the sense
of composition) T m

1 with the parent to offspring relationship infor-
mation stored in qk for each parent-offspring pair. The transformed
models FMT(O‘) are then found from this information.

3.2. Thresholded optimal search

This is a strategy to refine the results obtained from the one-
shot method. Its premise is that the overall image intensity of
the objects in B can be characterized by threshold intervals7 such
that, at the model’s pose corresponding to the best match of the
model with an underlying object in the given test image I, the mis-
match between the thresholded result and the model is minimal. For
MR images for this approach to make sense, it is essential to correct
for background intensity non-uniformities first followed by intensity
standardization (Nyul and Udupa, 1999).

Suppose that at the model building stage, the optimal threshold
interval Th‘ for each object O‘ has already been determined auto-
matically from the training image set. We will explain below
how this is accomplished. Then, at the recognition stage, the
threshold for O‘ is fixed at this learned value Th‘. Starting from
the initial pose found by the one-shot method, a search is made
within the pose space for an optimal pose p⁄ of the fuzzy model
over I that yields the smallest sum of the volume of false positive
and false negative regions, where the model itself is taken as the
reference for defining false positive and negative regions. Specifi-
cally, let FMpðO‘Þ denote the fuzzy model of O‘ at any pose p,
expressed as an image, and let J denote the binary image resulting
from thresholding I at Th‘. Then8,

p� 2 arg min
p

ðjFMpðO‘Þ � Jj þ jJ � FMpðO‘ÞjÞ: ð2Þ

Image subtraction here is done in the sense of fuzzy logic, and
|x| denotes the fuzzy cardinality of x, meaning that it represents
the sum total of the membership values in x. The search space to
find p⁄ is limited to a region around the initial pose. This region
is determined from knowledge of qk and its variation and the scale
factor range kk. For the positional vector, we search in an ellipsoid
with its axes in the coordinate axis directions and with length four
times the standard deviation of the corresponding coordinate.
When searching in orientation space, we search in an ellipsoid
with its axes in the direction of the eigenvectors of the rotation
vector distribution (covariance matrix) and with length four times
the square root of the corresponding eigenvalue. (A rotation vector
has magnitude equal to the angle of rotation and direction along
the axis of right-handed rotation. The rotation referred to is the
rotation of Q‘,k required to bring it into coincidence with Ei

n;‘.) For
the scale factor, we search in an interval of size four times the stan-
dard deviation of the scale factor.

3.2.1. Determining Th‘ at the model building stage
To estimate Th‘, we run a rehearsal of the recognition method

described above as follows, essentially for attempting to learn
the recognition process. Imagine we already built M and estimated
q and k. Suppose that we now run the recognition process on the
training images. Since we do not know the optimal threshold but
have the true segmentations, the idea behind this learning of the
recognition process is to test recognition efficacy for each of a
number of threshold intervals t and then select the interval Th‘ that
7 All thresholds are assumed to represent intervals in this paper unless specified
otherwise.

8 Since arg min is a set, ‘‘e’’ means one of the values chosen from the set is assigned
to p⁄.
yields the best match of the model with the known true segmenta-
tions for each O‘. That is, if Jn(t) is the binary image resulting from
thresholding the training image In at t, then

Th‘ 2 arg min
p; t

X

n

jðJnðtÞ � FMpðO‘ÞÞ � In;‘j þ jIn;‘ � ðJnðtÞ � FMpðO‘ÞÞj:

ð3Þ

Here, � denotes fuzzy intersection. In words, the optimal threshold
Th‘ is found by searching over the pose space over all training data
sets and all thresholds the best match between the true segmenta-
tion of O‘ with the result of thresholding In restricted to the model.
In our implementation, 81 different values of the intervals are
searched (9 for each end of the interval). The 9 positions for the
lower end are the 5th,10th, . . . ,45th percentile values of the cumu-
lative object intensity histogram determined from the training
image set. Similarly, for the upper end, the positions are 55–95th
percentile values.

To summarize, the thresholded optimal search method starts
the search process from the initial pose found by the one-shot
method. It uses the optimal threshold values Th‘ determined at
the training stage for each object O‘ and finds the best pose for
the fuzzy model of O‘ in the given image I by optimally matching
the model with the thresholded version of I. The only parameters
involved in the entire recognition process are the thresholds Th‘,
one threshold interval per object, and T m

1 . Their values are auto-
matically determined in the model building stage from image
and binary image sets I and Ib and they become part of the model
FAM(B, G) itself.

4. Delineating objects

Once the recognition process is completed and the adjusted
models FMT(O‘) are output for a given image I of B, delineation of
objects is performed on I in the hierarchical order as outlined in
the procedure AAR-D presented below. As in recognition, in Step
D1, the root object is first delineated by calling D-ROOT. AAR-D then
proceeds in the breadth-first order to delineate other objects by
calling D-OBJECT.

Procedure AAR-D

Input: An image I of B, FAM(B, G), FMT(O‘), ‘ = 1, . . . ,L.

Output: OD
‘ , ‘ = 1, . . . ,L.

Begin
D1. Call D-ROOT to delineate the root object in H;

D2. Repeat
D3. Traverse H and find the next offspring Ok to delineate in

H (see text);
D4. Knowing delineation of O‘, call D-OBJECT to delineate Ok

in I;

D5. Until all objects are covered in H;

D6. Output OD
‘ , ‘ = 1, . . . ,L;

End

For D-ROOT and D-OBJECT, we have chosen an algorithm from
the fuzzy connectedness (FC) family in view of the natural and inti-
mate adaptability of the FC methods to prior information coming in
the form of fuzzy sets. In particular, since we focus on the problem
of delineating one object at a time, for both Steps D1 and D4, we
have selected the linear-time Iterative Relative FC (IRFC) algorithm
of (Ciesielski et al., 2012) for separating each object O‘ from its
background. Our novel adaptations are in incorporating fuzzy
model information into the IRFC formulation and in making the
latter fully automatic. These modifications are described below.
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4.1. Fuzzy model-based IRFC (FMIRFC)

There are two aspects that need to be addressed to fully
describe the FMIRFC algorithm: affinity function and seed specifica-
tion. Affinity is a local concept indicating the degree of connected-
ness of voxels locally in terms of their spatial and intensity
nearness. In the FC family, this local property is grown optimally
into a global phenomenon of object connectedness through the
notion of path strengths.

4.1.1. Affinity function
The FC framework (Udupa and Samarasekera, 1996; Ciesielski

et al., 2012) is graph-based. An ordered graph (C, a) is associated
with the given image I = (C, f) where a is an adjacency relation
on C such as 6-, 18-, or 26-adjacency. Each ordered pair (c, d) of
adjacent voxels in a is assigned an affinity value j(c, d) which con-
stitutes the weight assigned to arc (c, d) in the graph. To each path
p in the graph (or equivalently in I) in the set of all possible paths
Pa,b between two voxels a and b of C, a strength of connectedness
K(p) is determined, which is the minimum of the affinities along
the path. The connectivity measure K⁄(a, b) between a and b is then
defined to be K⁄(a, b) = max{K(p): p e Pa,b}. The notion of connec-
tivity measure can be generalized to the case of ‘‘between a set A
and a voxel b’’ by a slight modification: K⁄(A, b) = max{K(p):
p e Pa,b & a e A}. By using a fast algorithm to compute K⁄(A, b),
the machinery of FC allows a variety of approaches to define and
compute ‘‘objects’’ in images by specifying appropriate affinity
functions and seed sets. In particular, in IRFC, two seed sets AO

and AB are indicated for an object O and its background B, respec-
tively. Then the object indicated by AO is separated optimally from
the background indicated by AB by an iterative competition in con-
nectivity measure between AO and every voxel c e C and between
AB and c. In published IRFC methods, AO and AB are specified usually
with human interaction.

In FMIRFC, affinities jO(c, d) and jB(c, d) for O and B are designed
separately. Subsequently they are combined into a single affinity j
by taking a fuzzy union of jO and jB. Each of jO and jB has three
components. The description below is for jO. The same applies to jB.

jOðc;dÞ ¼ x1wOðc; dÞ þx2uOðc;dÞ þx3cOðc; dÞ: ð4Þ

Here, wO(c, d) represents a homogeneity component of affinity,
meaning, the more similar image intensities f(c) and f(d) are at c
and d, the greater is this component of affinity between c and d.
As commonly done in the FC literature, we set

wOðc;dÞ ¼ exp½�ðf ðcÞ � f ðdÞÞ2=2r2
wO
�; ð5Þ

where rwO is a homogeneity parameter that indicates the standard
deviation of intensities within object O. uO(c, d), the object feature
component, on the other hand, describes the ‘‘degree of nearness’’
of the intensities at c and d to the intensity muO expected for the
object O under consideration. Denoting the standard deviation of
object intensity by ruO, this nearness is expressed by

uOðc;dÞ ¼ exp½�ðmaxfðf ðcÞ �muO
Þ2; ðf ðdÞ �muO

Þ2g=2r2
uO
�: ð6Þ

The third component cO incorporates fuzzy model information into
affinity by directly taking the larger of the two fuzzy model mem-
bership values lO(c) and lO(d) at c and d for the object,

cOðc;dÞ ¼maxflOðcÞ;lOðdÞg: ð7Þ

Finally, a combined single affinity j on I is constructed by

jðc; dÞ ¼ maxfjOðc;dÞ; jBðc;dÞg: ð8Þ

The weights in (4) are chosen equal and such that they add up
to 1. The homogeneity parameter is set equal for object and back-
ground (rwO = rwB) and estimated from uniform regions in the
training images (after leaving out high gradient regions), as com-
monly done in the FC literature (Saha and Udupa, 2001). The
remaining parameters (ruO, ruB, muO, muB) are estimated auto-
matically from the training data sets from the knowledge of O
and B regions for each object.

4.1.2. Seed specification
Seed sets AO and AB are found by a joint criterion of a threshold

for image intensity and for model membership for each of O and B.
The threshold interval ThO for O is the same as the one used for rec-
ognition, namely Th‘. The threshold interval ThB for background is a
union of similar threshold intervals for the background objects. (In
principle, all objects other than O can be considered to be back-
ground objects of O; however, in practice, only the anatomic neigh-
bors of O matter.) The only new parameters are ThM

O and ThM

B used
as model thresholds for indicating AO and AB, respectively. These
parameters are used as follows:

AO ¼ fv 2 C : f ðmÞ 2 ThO & lOðmÞ 2 ThM

O g;
AB ¼ fm 2 C : f ðmÞ 2 ThB & lBðmÞ 2 ThM

B g:
ð9Þ

Algorithm FMIRFC

Input: Image I of B, FAM(B, G), FMT(O‘) at recognition. Below,
we assume O = O‘.

Output: OD
‘ .

Begin
FC1. Determine background B of O;
FC2. Retrieve affinities jO and jB from FAM(B, G);
FC3. Compute combined affinity j;

FC4. Retrieve thresholds ThO, ThB, ThM
O , and ThM

B from FAM(B,
G) and determine seed sets AO and AB in I via (9);

FC5. Call the IRFC delineation algorithm with j, AO, AB, and I as
arguments;

FC6. Output image OD
‘ returned by the IRFC algorithm;

End

In our implementation, ThM

O is fixed at [0,0.9] and [0,0.5] for non-
sparse and sparse objects, respectively, and ThM

B is set to [0,0].
Finally, we summarize the FMIRFC algorithm as shown in the

box display.

5. Illustrations, experiments, results, and discussion

We will describe the image data sets in Section 5.1, present
model-construction related results in Section 5.2, and illustrate
and evaluate recognition and delineation results in Sections 5.3
and 5.4.

5.1. Image data

The data sets used for the three body regions are summarized in
Table 2.

Data sets DS1 and DS2 are from CT and are selected from our
hospital patient image database, and were verified to be of accept-
able quality and radiologically normal, with exception of minimal
incidental focal abnormalities, in the body regions for which they
are chosen. Note the typical clinical resolution for pixel size
(�1 mm) and slice spacing (5 mm) in these data sets and hence
the challenge for object recognition and delineation. Our goal in
focusing on these data was to challenge the AAR system to perform
on typical clinical data sets. DS3 is from an on-going research pro-
ject investigating the association of Polycystic Ovary Syndrome



Table 2
Summary of data sets used in the experiments.

Data
identifier

Body
region B

Group G
(age)

Number of
subjects N

Image
modality

Imaging protocol details Image information

DS1 Thorax 50–60 male 50 normal CT Contrast-enhanced, axial, breath-hold 512 � 512 � 51–69,
0.9 � 0.9 � 5 mm3

DS2 Abdomen 50–60 male 50 normal CT Contrast-enhanced, axial, breath-hold 512 � 512 � 38–55,
0.9 � 0.9 � 5 mm3

DS3 Neck 8–17 male &
female

15 normal MRI T2-weighted, axial & T1- & T2-weighted sagittal. T2: TR/
TE = 8274.3/82.6 ms, T1: TR/TE = 517.7/7.6 ms

400 � 400 � 35–50,
0.5 � 0.5 � 3.3 mm3

DS4 Abdomen 8–17 male &
female

14 MRI T2-weighted, axial. TR/TE = 1556.9/84 ms 400 � 400 � 45–50,
0.7 � 0.7 � 6 mm36 normal, 8

obese patients

9 This dilemma of the disconnection between model building and recognition is
common to all model/atlas-based methods and is the real challenge in automatic
recognition of sparse and hybrid objects.

10 For this analysis, we have used all image data sets since the information provided
by this analysis does not influence at present the testing of AAR algorithms for
recognition and delineation.
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with Obstructive Sleep Apnea in obese pediatric female subjects
(Arens et al., 2011). It consists of both axial and sagittal acquisi-
tions and a mix of T1- and T2-weighted images. DS1-DS3 represent
the three body regions for which the hierarchy of organs was
depicted in Fig. 2. DS4 (Wagshul et al., 2013), however, is used
for testing the ability of the AAR method to rapidly prototype an
application by using existing models for the same body region. In
this case, models built from DS2 from CT are deployed on DS4 from
MRI.

In all data sets, any extra slices falling outside the body region B

as per definition are removed manually first. Note the variation in
the size of the body region in Table 2 (expressed roughly as slice
spacing � number of slices). In the case of MRI, the resulting
images are processed, first to suppress background non-uniformi-
ties and subsequently to standardize the image intensities (Nyul
and Udupa, 1999). Standardization is a post-acquisition image pro-
cessing technique which significantly minimizes the inter-subject
and intra- and inter-scanner image intensity variations for the
same tissue and achieves tissue-specific numeric meaning for MR
images. It has been shown to significantly improve the accuracy
of delineation algorithms (Zhuge and Udupa, 2009). It is done sep-
arately for each MRI protocol and body region. For DS1 and DS2,
one half of the image data sets were used for model building,
which included the estimation of the parameters of the recognition
and delineation algorithms (T m

1 , Th‘, rwO, muO, muB, ruO, and ruB),
and the remaining data sets were used for testing the methods. For
DS3, the train-test sets were set up as 11 and 4, and this was
repeated 30 times for different choices of 11 and 4 data sets. For
DS4, all data sets were used for testing, and model building was
based on one half of the data sets in DS2. This provided an interest-
ing scenario for the challenge for the AAR method, in that, models
built from normal CT data sets for one patient group were used for
performing AAR on MRI data sets from normal subjects and
patients from another group.

5.2. Model building

In Fig. 3, the organs defined in the image of one of the subjects
employed in model building are displayed for each body region in
different combinations of the organs. We have examined all data
sets under DS1–DS3 in this manner which has helped us in prop-
erly understanding the organ relationships. This is crucial for
devising effective hierarchies, recognition strategies, and delinea-
tion algorithms.

Fig. 4 displays fuzzy models FM(O‘) of objects in various combi-
nations for the three body regions. Since the volumes are fuzzy,
they are volume rendered by using an appropriate opacity func-
tion. Note that although the models appear blurred, they portray
the overall shape of the objects they represent and the object rela-
tionships. From consideration of the difficulties in model building,
recognition, and delineation, we divided objects in the body into
sparse, non-sparse, and hybrid groups. Sparse objects pose special
challenges for recognition and delineation, stemming mostly from
difficulties in model building. We will come back to these issues in
Sections 5.3 and 5.4. Variations in the form, shape, and orientation
of sparse objects cause them to overlap far less, or often not at all,
compared to non-sparse objects, when forming the model by gath-
ering fuzzy overlap information. In other words, the models tend to
diffuse or become too fuzzy. For example, in AS (thorax), the
descending aortic portion extends from superior to inferior. How-
ever, this part is often either bent from the vertical or is crooked,
and the pattern of the brachiocephalic and subclavian arteries aris-
ing from the aortic arch is different. If the variation is just in orien-
tation only, then aligning by orientation may produce sharper
models. But the issue is not one of producing less fuzzy models
but of building models that have the right/correct amount of fuzz-
iness so that the recognition process will be least misguided by the
model9. We will say more on this in Section 6. To study the effect of
orientation alignment, we display in Fig. 5 models created without
and with orientation adjustment, for several sparse as well as non-
sparse objects from all three body regions. The volume renditions
were created with exactly the same settings for each object for its
two versions of models. Orientation adjustment does not produce
any dramatic difference in the models created, although close scru-
tiny reveals that the model definition improves slightly; examine
especially LPS, AIA, AS, and Lvr.

Relating to the fifth element g of FAM(B, G), we show in Tables
3–5 correlations among objects in their size for the three body
regions10. Object size is determined as explained in Section 2.3. As
may be expected, bilateral organs, such as LPS and RPS, LKd and
RKd, and LT and RT, are strongly correlated in size. That is, their sizes
go together, whatever way they may be related to the subject’s body
size. There are also other interesting strong, poor (or no), and even
weak negative, correlations, as highlighted in the tables; for exam-
ple, TSk with RS and RPS; VS with TB, PC, and E; ASkn with ASTs,
SAT and Msl; ASTs with SAT and Msl; Msl with SAT; NSkn with
A&B; Ad with NSkn, FP, NP, and SP. Although we have not explored
the utility of such information in this paper, we envisage that this
and other information will be useful in devising hierarchies more
intelligently than guided by just anatomy, and hence in building bet-
ter FAM(B, G).
5.3. Object recognition

Results for recognition are summarized in Figs. 6–8 and Tables
6–9 for the different body regions. Figs. 6–8 and Tables 6–8 illus-
trate recognition results for the three body regions for the best



Fig. 3. Organs from one training set for each body region are displayed via surface rendering. For each row, objects in one picture are listed as {. . .}. Top row: Thorax. 3rd
picture: {RPS, TB, E, AS, VS, PC}. Middle row: Abdomen. 3rd picture: {Ask, Lvr, LKd, IVC, AIA, Spl, SAT, Msl}. Bottom row: Neck. 5th picture: {Mnd, Tng, NP, OP, Ad, FP, Tnsl}.
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set up involving orientation adjustment selectively for different
objects. The alignment strategy was as follows for the different
objects in these results.
Fig. 4. Volume renditions of fuzzy models of objects in different combinations for the t
Thorax. 5th picture: {LPS, AS, TB}. Middle row: Abdomen. 3rd picture: {ASk, Lvr, LKd, RK

Non-sparse & hybrid objects : RS; LPS;RPS; IMS; TSk;Ask;K
NSTs;Mnd; Tnsl; Tng; SP;Ad;RT; LT� no orientatio

Sparse objects : TB;E;AS;VS;AIA; IVC; Phrx;NP;OP� orient
The recognition accuracy is expressed in terms of position and
size. The position error is defined as the distance between the
geometric centers of the known true objects in Ib and the center
hree body regions. For each row, objects in one picture are listed as {. . .}. Top row
d, AIA, IVC, Spl}. Bottom row: Neck: 5th picture: {Mnd, Tng, NP, OP, Ad, FP}.

d; Spl;Msl; LKd;RKd;A&B; FP;
n alignment:
ation alignment by all axes:

ð10Þ
:



Fig. 5. Volume renditions of fuzzy models created without (Rows 1 and 3) and with (Rows 2 and 4) orientation alignment for several non-sparse (Rows 1 and 2) and sparse
(Rows 3 and 4) objects. Row 1: PC, RPS, LKd, Lvr. Row 3: AS, E, AIA, IVC, TB.

1 Since recognition results do not improve much with finer discretization of the
odel but only increase computation for recognition, we construct models with
otropic voxels of side equal to one half of the largest dimension of the voxels in the
riginal data. Thus for DS1 and DS2, the model voxels are of size 2.5 � 2.5 � 2.5 mm3.
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of the adjusted fuzzy model FMT(O‘). The size error is expressed as
a ratio of the estimated size of the object at recognition and true
size. Values 0 and 1 for the two measures, respectively, indicate
perfect recognition. Note in Figs. 6–8 that the model bleeds into
adjacent tissue regions with some membership value since it is
fuzzy. This should not be construed as wrong segmentation. The
main issue is if the model placement via recognition is accurate
enough to yield good delineation. Similarly and due to the slice
visualization mode, sparse object components may appear to be
missed or to present with low membership values.

Although we have not conducted extensive experiments to test
all possible arrangements for orientation alignment for non-sparse
and sparse objects, generally we found that orientation adjustment
for non-sparse objects does not improve recognition results. In
some cases like PC, it may actually lead to deterioration of results.
In our experience, the set up in (10) turned out to be an excellent
compromise from the viewpoint of accuracy of results and effi-
ciency. For comparison, we demonstrate in Table 9 recognition
results for the thorax with no orientation adjustment for any object
in both model building and recognition.
Size error is always close to 1 for all body regions and objects.
Generally, recognition results for non-sparse objects are excellent
with a positional error of mostly 1–2 voxels. Note that for DS1
and DS2, voxels are quite large.11 We observed that, the positional
accuracy within the slice plane is better than across slices. In other
words, errors listed in the tables are mostly in the third dimension
in which voxel size is large. Orientation adjustment improves recog-
nition somewhat for some sparse objects, but has negligible effect
for non-sparse objects, at least in the thorax.

The recognition results for the MRI data set DS4 are demon-
strated in Fig. 9 and Table 10. Again, since the model is fuzzy, it will
encroach into adjacent tissue regions with some membership
value. Since our goal here was just to measure subcutaneous adi-
posity, the hierarchy was simplified as shown in Fig. 9. Again the
position error is 1–2 voxels. These results are particularly notewor-
thy since they are generated by using the models built from image
1

m
is
o



Table 3
Size correlation among objects of the Thorax.

TSkn RS TSk IMS RPS TB LPS PC E AS VS

TSkn 1
RS 0.76 1
TSk 0.76 0.93 1
IMS 0.48 0.76 0.71 1
RPS 0.6 0.92 0.88 0.75 1
TB 0.06 0.41 0.5 0.56 0.59 1
LPS 0.64 0.93 0.87 0.74 0.96 0.57 1
PC 0.47 0.51 0.45 0.65 0.28 0.11 0.3 1
E 0.42 0.65 0.56 0.58 0.72 0.58 0.78 0.18 1
AS 0.44 0.53 0.49 0.71 0.54 0.24 0.51 0.35 0.35 1
VS 0.3 0.31 0.35 0.34 0.34 0.09 0.34 �.01 0.05 0.42 1

Table 4
Size correlation among objects of the Abdomen.

ASkn ASk ASTs Lvr SAT Msl Spl RKd LKd AIA IVC

ASkn 1
ASk 0.68 1
ASTs 0.9 0.8 1
Lvr 0.61 0.48 0.58 1
SAT 1 0.69 0.92 0.61 1
Msl 0.91 0.79 0.99 0.63 0.94 1
Spl 0.62 0.43 0.61 0.51 0.65 0.62 1
RKd 0.53 0.64 0.57 0.61 0.51 0.6 0.34 1
LKd 0.53 0.56 0.52 0.51 0.49 0.54 0.34 0.87 1
AIA 0.6 0.85 0.7 0.27 0.58 0.68 0.49 0.51 0.5 1
IVC 0.32 0.58 0.47 0.29 0.32 0.46 0.3 0.38 0.36 0.67 1

Table 5
Size correlation among objects of the Neck.

NSkn A&B FP Mnd NP OP Tng SP Ad LT RT

NSkn 1
A&B 0.89 1
FP 0.76 0.81 1
Mnd 0.75 0.96 0.83 1
NP 0.39 0.12 �.06 �.12 1
OP 0.63 0.59 0.44 0.54 0.14 1
Tng 0.83 0.75 0.76 0.66 0.19 0.65 1
SP 0.5 0.27 0.23 0.14 0.46 0.26 0.37 1
Ad �.2 0.61 �.19 0.1 �.29 �.06 �.07 �.19 1
LT 0.61 0.56 0.58 0.48 0.28 0.5 0.64 0.25 �.1 1
RT 0.61 0.56 0.58 0.48 0.28 0.5 0.64 0.25 �.1 1 1

J.K. Udupa et al. / Medical Image Analysis 18 (2014) 752–771 763
data sets acquired from a different modality, namely CT, and for a
different group with an age difference of about 40 years and with a
different gender. This underscores the importance of understand-
ing the dichotomy between recognition and delineation. Recogni-
tion is a high-level and rough process which gives anatomic
context. The models do not have to be, and we argue should not
be, detailed attempting to capture fine details. Obtaining the
anatomic context is a necessary step for achieving accurate
delineation. It is important to note here that for the cross modality
operation to work in this manner, the MR image intensities must
be standardized (Nyul and Udupa, 1999).
5.4. Object delineation

Sample delineation results are displayed in Figs. 10–13 for DS1–
DS4. Delineation accuracy statistics for these data sets, expressed
as false positive and false negative volume fractions (FPVF, FNVF)
as well as mean Hausdorff distance (HD) between the true and
delineated boundary surfaces, are listed in Tables 11–14. The HD
measure is defined as the mean over all test subjects of the median
of the distances of the points on the delineated object boundary
surface from the true object boundary surface.

Delineation results for VS (Thorax) are not presented since the
recognition accuracy for VS is not adequate for reliable delineation.
We note that the delineation of 21 non-sparse objects achieves a
mean FPVF and FNVF of 0.02 and 0.08, respectively, and a mean
HD of 0.9 voxels, which are generally considered to be excellent.
Six sparse objects also achieve good delineation outcome, with
the above mean measures reading 0.05, 0.15, and 1.5, respectively.
However, sparse objects VS, E, IVC, Mnd, and NP pose challenges
for effective delineation. Often, even when their recognition is
effective, it is difficult to guarantee placement of seed sets AO

and AB appropriately within and outside these objects because of
their sparse nature. In DS3 (MR images of neck), it is very difficult
to properly delineate Mnd, NP, and OP because of their poor defi-
nition in the image. To test the effectiveness of the models created
from these data (DS3) in segmenting the same objects on CT data of
a group of three different pediatric subjects, we devised a simple



Fig. 6. Sample recognition results for Thorax for the alignment strategy shown in (10). Cross sections of the model are shown overlaid on test image slices. Left to right: TSkn,
TSk, LPS, TB, RPS, E, PC, AS, VS.

Fig. 7. Sample recognition results for Abdomen for the alignment strategy shown in (10). Cross sections of the model are shown overlaid on test image slices. Left to right:
ASkn, ASk, SAT, Lvr, RKd, LKd, Spl, Msl, AIA, IVC.

Fig. 8. Sample recognition results for Neck for the alignment strategy shown in (10). Cross sections of the model are shown overlaid on test image slices. Left to right: NSkn,
FP, Mnd, NP (note that NP is a combination of nasal cavity and nasopharynx), Ad, OP, RT, LT, Tng, SP.
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Table 6
Recognition results (mean, standard deviation) for Thorax for the strategy in (10). (‘‘Mean’’ excludes VS.)

TSkn RS TSk IMS LPS TB RPS E PC AS VS Mean

Location error (mm) 3.9 5.5 9.0 5.6 6.3 11.6 10.4 9.8 8.6 10.7 31.8 8.1
1.5 2.3 5.0 3.5 3.1 5.0 4.7 4.8 5.0 5.4 12.0 4.0

Size error 1.0 0.99 0.96 0.95 0.97 0.91 0.98 0.9 0.95 1.01 0.77 0.96
0.01 0.02 0.05 0.05 0.03 0.06 0.04 0.14 0.05 0.08 0.06 0.06

Table 7
Recognition results (mean, standard deviation) for Abdomen for the strategy in (10).

ASkn SAT ASk Lvr ASTs Kd Spl Msl AIA IVC RKd LKd Mean

Location error (mm) 5.9 20.2 11.7 7.9 7.2 10.6 11.6 7.7 8.2 8.7 11.3 7.3 9.8
3.4 8.5 7.9 5.4 3.0 9.8 13.9 3.6 2.8 7.2 11.6 7.4 7

Size error 1.0 0.97 0.96 0.93 1.0 0.94 1.2 1.01 1.1 1.15 0.97 0.93 1.01
0.02 0.03 0.06 0.07 0.02 0.09 0.19 0.03 0.13 0.1 0.1 0.08 0.07

Table 8
Recognition results (mean, standard deviation) for Neck for the strategy in (10).

NSkn A&B FP NSTs Mnd Phrx Tnsl Tng SP Ad NP OP RT LT Mean

Location error (mm) 3 7.8 4.2 4.8 12.5 10.4 2.8 4.9 5.1 1.8 11.1 10 2.9 2.3 5.96
1.2 3.8 2.1 2.1 3.7 4.5 1.8 2.8 1.8 0.8 6.8 8.7 2.2 2.1 1.96

Size error 1 0.9 1 0.92 0.74 0.8 1 1.02 0.93 0.9 0.65 0.74 0.92 0.9 0.93
0.01 0.03 0.03 0.06 0.05 0.04 0.1 0.06 0.24 0.12 0.07 0.2 0.11 0.12 0.04

Table 9
Recognition results for Thorax with no orientation alignment. (‘‘Mean’’ excludes VS.)

TSkn RS TSk IMS LPS TB RPS E PC AS VS Mean

Location error (mm) 3.9 5.5 9 5.6 6.3 8 10.4 14.2 8.6 8.1 33.6 8.0
1.5 2.3 5 3.5 3.1 6.5 4.7 10.5 5 7.5 15.1 4.9

Size error 1.01 0.99 0.96 0.95 0.97 0.83 0.98 0.85 0.95 0.99 0.77 0.95
0.01 0.02 0.05 0.05 0.03 0.08 0.04 0.12 0.05 0.08 0.06 0.05

ASkn

SAT

Fig. 9. The hierarchy used (left) and sample recognition results for DS4 (right) with model cross section overlaid on test image slices for ASkn and SAT.

Table 10
Recognition accuracy for the objects shown in Fig. 9.

ASkn SAT

Position error (mm) 4.6 12.97
2.5 5.3

Size error 1.01 1
0.05 0.03
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hierarchy with NSkn as the root and with Mnd, NP, and OP as its
offspring objects. The delineation results obtained for these four
objects were excellent, with a mean FPVF of 0, 0.01, 0, and 0.02,
and mean FNVF of 0.01, 0.01, 0.02 and 0.1, respectively.
5.5. Comparison with a non-hierarchical approach

To study the effect of the hierarchy and the knowledge encoded
in it on recognition, we list in Table 15 the recognition perfor-
mance of a non-hierarchical approach. The results are shown for
Thorax wherein each object is recognized on its own by using
the same fuzzy models FM(O‘) as used in the hierarchical AAR sys-
tem. The initial pose for search is taken to be the center of the
image and search range covers roughly the whole body region with
the scale factor range the same as that for the hierarchical
approach. In comparison to the hierarchical approach (Tables 6
and 9), it is clear that non-hierarchical recognition performance
is much worse.



Fig. 10. Sample delineation results for Thorax. Left to right: TSkn, IMS, LPS, AS, RPS, PC, TB, E.

Fig. 11. Sample delineation results for Abdomen. Left to right: ASkn, SAT, Lvr, SAT, RKd, LKd, Spl, Msl, AIA.

Fig. 12. Sample delineation results for Neck. Left to right: NSkn, FP, NP, OP, RT, LT, Tng, SP, Ad.
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Fig. 13. Sample delineation results for DS4. ASkn (left) and SAT (right).

Table 11
Delineation results for Thorax (mean & standard deviation).

TSkn RS TSk IMS LPS RPS E PC TB AS

FPVF 0.02 0.0 0.19 0.03 0.01 0.01 0.0 0.01 0.01 0.01
0.02 0.0 0.05 0.01 0.03 0.02 0.0 0.00 0.00 0.00

FNVF 0.05 0.06 0.13 0.07 0.04 0.04 0.49 0.09 0.16 0.17
0.06 0.04 0.07 0.07 0.02 0.02 0.19 0.06 0.14 0.17

HD (mm) 3.6 1.24 10.6 6.2 2.9 2.1 3.1 3.5 5.2 5.3
4.5 0.42 2.4 1.8 8.8 4.7 0.87 1.3 1.8 2.5

Table 12
Delineation results for Abdomen (mean & standard deviation).

ASkn ASk Lvr ASTs SAT RKd LKd Spl Msl AIA

FPVF 0.01 0.06 0.04 0.12 0.05 0.00 0.01 0.0 0.13 0.01
0.00 0.01 0.02 0.05 0.03 0.00 0.01 0.0 0.03 0.0

FNVF 0.05 0.14 0.1 0.15 0.12 0.13 0.1 0.13 0.09 0.13
0.08 0.09 0.05 0.09 0.02 0.04 0.02 0.03 0.08 0.03

HD (mm) 1.7 6.9 5.3 1.74 1.6 2.4 5.4 6.8 2.5 5.6
2.7 1.5 1.6 1.0 0.8 1.1 4.8 6.0 1.1 1.8

Table 13
Delineation results for Neck (mean & standard deviation).

NSkn FP Mnd NP OP RT LT Tng SP Ad

FPVF 0.0 0.0 0.01 0.01 0.0 0.01 0.01 0.02 0.01 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.01 0.0

FNVF 0.0 0.1 0.49 0.32 0.2 0.06 0.06 0.02 0.08 0.07
0.01 0.05 0.08 0.2 0.02 0.02 0.01 0.01 0.01 0.04

HD (mm) 2.8 0.83 3.3 3.8 7.6 3.3 3.2 8.4 8.03 2.2
0.06 0.53 0.56 1.01 2.4 0.62 1.4 1.92 4.0 0.3

Table 14
Delineation results for DS4.

ASkn SAT

FPVF 0.0 0.06
FNVF 0.03 0.01
HD (mm) 1.7 3.9
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5.6. Computational considerations

Program execution times are estimated on a Dell computer with
the following specifications: 4-core Intel Xeon 3.6 GHz CPU with
8 GB RAM and running the Linux-jb18 3.7.10–1.16 operating sys-
tem. Mean computational times for the AAR steps are listed in
Table 16. Model building includes the construction of fuzzy models
and the estimation of q, k, and all parameters related to recognition
and delineation, including the optimal threshold parameters Th‘.
This latter step takes about 12 s per object. As seen from Table 16,
each of the three main operations takes under 1 min per object.
Among these operations, only the time for model building depends
on the number of training data sets, while recognition and delinea-
tion are independent of this factor. On average, model building
times per object per training data set for Thorax, Abdomen, and
Neck are, respectively, 1.4 s, 1.7 s, and 1 s. In statistical atlas based
methods, the computational time for image registration becomes
the bottleneck. Our calculation taking Elastix as a representative
registration tool kit (Klein et al., 2010) indicates that the creation
of a single atlas for each of the 11 objects of the Thorax at a reduced
image resolution of 2.5 � 2.5 � 2.5 mm3 for the 25 training data
sets of DS1 would take about 23.5 h compared to 6.4 min for the
AAR system. The time per object for recognition and delineation



Table 15
Recognition results for Thorax: non-hierarchical approach (mean & standard deviation).

TSkn RS TSk IMS LPS TB RPS E PC AS VS Mean

Location error (mm) 10.5 12.9 21.1 27.7 91.4 53.3 72.3 42.4 45.5 23.1 82.2 43.8
9.5 13.1 21.8 9.8 10.8 20.9 12.9 34.5 12.5 15.2 33.8 17.7

Size error 1.0 1.01 0.96 0.92 0.8 0.82 0.8 0.86 0.9 0.97 0.81 0.9
0.02 0.09 0.08 0.07 0.09 0.06 0.07 0.14 0.06 0.11 0.08 0.08

Table 16
Mean computational time in seconds per object for different operations and body
regions.

Operation Thorax Abdomen Neck

Model building 35 42 24
Object recognition 30 46 6
Object delineation 47 56 24
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can also take several minutes for these methods. Even with 100
data sets for training and 15 objects in a body region, the total time
needed for the AAR model building step would be about 40 min,
whereas atlas building may take days to complete especially when
multi-atlas strategies are used.
5.7. Comparison with other methods

The publications reporting works that are directly related to our
work in spirit are (Baiker et al., 2010; Chu et al., 2013; Criminisi
et al., 2013; Lu et al., 2012; Linguraru et al., 2012; Okada et al.,
2008; Zhou et al., 2012). In Table 17, we present a comparison to
our AAR system based on the results reported in these works.
We note that a quantitative grading/understanding of the methods
is impossible since the data sets used, acquisition protocols and
resolutions, considered objects, training and test data set subdivi-
sions, cross validation strategies, and computing platforms are all
different in these methods. Interestingly, a commonality among
them is that they all focused on CT image data sets.

Among these methods, (Chu et al., 2013; Linguraru et al., 2012;
Lu et al., 2012; Okada et al., 2008) comprise one group wherein the
body region of focus was the pelvis or abdomen, with 3–5 objects
considered for segmentation. They all employ an object localiza-
tion step, which is achieved either through an atlas (Chu et al.,
2013; Linguraru et al., 2012; Okada et al., 2008), statistical shape
models (Okada et al., 2008), or machine learning techniques (Lu
et al., 2012), and subsequently a delineation step that uses graph
cuts (Chu et al., 2013; Linguraru et al., 2012), information theory
Table 17
A comparison with the current methods from the literature that are related to our work.

Method Objects Voxel size (mm3) Train
propo

Lu et al. (2012) Prostate, bladder, rectum � � � � 0.8–5 141–4
Linguraru et al.

(2012)
Liver, spleen, kidneys (0.5–0.9)2 � 1–5 27–1,

Okada et al.
(2008)

Liver, vena cava, gallbladder 0.7 � 0.7 � 2.5 20–8

Chu et al. (2013) Liver, spleen, pancreas, kidneys (0.55–0.82)2 � 0.7–1
(estimated)

90–10

Criminisi et al.
(2013)

26 anatomic structures in the
torso

(0.5–1)2 � 1–5 318–8

Zhou et al.
(2012)

12 organ regions in thorax,
abdomen, pelvis

(0.6–0.7)3 300–1

Baiker et al.
(2010)

Brain, heart, kidneys, lungs,
liver, skeleton

(0.332)3 MOBY
datas
(Lu et al., 2012), and MAP or ML estimation (Chu et al., 2013;
Okada et al., 2008). In the second group (Criminisi et al., 2013;
Zhou et al., 2012), the aim is only to locate the objects via machine
learning techniques. The third group is constituted by (Baiker et al.,
2010), the only work that considered body-wide organs, but in
mice, using a kinematic model of the skeletal joints to localize
objects relative to different skeletal components.

We observe that, for the same objects (liver, kidneys, and
spleen), our results are comparable to, often better than, the cur-
rent results from literature, especially considering the 5 mm slice
spacing and the equal training-to-test data set proportion for our
evaluation. We conclude that the development of a general AAR
system that can be readily applied and adapted to different body
regions, multitudes of organs, and modalities has not yet been
demonstrated. Perhaps some of the above methods can be made
to work in this general manner. However, we believe that this
may require considerable further development and innovation.
6. Concluding remarks

In this paper, we presented a general body of methods for auto-
matic anatomy recognition and delineation whose principles are
not tied to any specific body region, organ system, or imaging
modality. We took a fuzzy approach for building the models and
attempted to harness as much specific anatomic information as
possible to be embedded into the fuzzy anatomic model. We dem-
onstrated the generality of the approach by examining the perfor-
mance of the same AAR system on three different body regions
using CT and MR image data sets. We also illustrated the potential
of the system for rapid prototyping by demonstrating its adaptabil-
ity to a new application on a different modality (DS4). Our system
is set up to operate fully automatically. All image modality-specific
parameters needed – threshold intervals for objects in B for recog-
nition and affinity parameters for delineation – are estimated auto-
matically from the training data sets. When a new application is
sought at a modality different from those considered in the anat-
omy model FAM(B, G), a few sample segmentations of the objects
of interest and the matching images are needed for relearning
Unknown and irrelevant entries are indicated by ‘‘�’’.

ing-to-test data
rtion

Location error (mm) Region overlap (Dice, Jackard
Index (JI), etc.)

7, 4-fold 2.4–4.2 �
28-fold 0.8–1.2 90.9–94.8%

(for liver) 1.5–2.8 88%

, 10-fold � 56% (pancreas-JI) to 95.2%
(liver-Dice)

2 9.7–19.1 (mean for each
structure)

�

000 6–14 for mode locations �

atlas, 26
ets

� 47–73%
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these image intensity-related parameter values (specifically, Th‘
and the affinity parameters). All other modality-independent
aspects of the model do not need retraining. In the case of MRI,
images from each separate MRI protocol have to be standardized
for image intensity so that setting up these parametric values
becomes sensible. Separation of modality-independent from
dependent aspects, organization of objects in a hierarchy, encoding
object relationship information into the hierarchy, optimal thresh-
old-based recognition learning, and fuzzy model-based IRFC are
novel and powerful concepts with consequences in recognition
and delineation, as we demonstrated in this paper.

While the above strengths of this AAR system are quite unique
as revealed in our literature review, the system has some
Table A1
Anatomic definitions of organs considered in this paper.

Acronym Definition of object

Thoracic objects
Thoracic skin TSkn The outer boundary of the thoracic skin (arms ex

inferior boundary is defined to be 5 mm below th
lung apices

Thoracic skeleton TSk All skeletal structures contained in the thoracic bo
clavicles that are inside the body region

Respiratory system RS Grouping of RPS, LPS, and TB
Right lung RPS The outer boundary of the right lung along the r
Left lung LPS The outer boundary of the left lung along the lef
Trachea and bronchi TB The outer boundary of the trachea and bronchi f
Internal mediastinum IMS Grouping of PC, E, AS, and VS
Pericardial region PC Region within the boundary of pericardial sac. Th
Esophagus E The outer boundary of the esophagus from the s
Arterial system AS The outer boundary of the ascending aorta, aortic

left common carotid artery, and proximal left sub
artery

Venous system VS The outer boundary of the superior vena cava, ri

Abdominal objects
Abdominal skin ASkn The outer boundary of the abdominal skin. The int

is defined by the superior aspect of the liver. The
common iliac arteries

Abdominal skeleton ASk All skeletal structures contained in the abdomina
body region

Soft tissue ASTs Grouping of Kd, Spl, Msl, AIA, IVC
Kidneys Kd Grouping of RKd and LKd
Right kidney RKd The outer boundary of the right kidney. All exter
Left kidney LKd The outer boundary of the left kidney. All extern
Spleen Spl The outer boundary of the spleen. All external bl
Muscle Msl The outer boundaries of the abdominal musculat

muscles
Abdominal aorta AIA The outer boundary of the abdominal aorta. The
Inferior vena cava IVC The outer boundary of the inferior vena cava. The
Liver Lvr The outer boundary of the liver. The intrahepatic
Fat Fat Grouping of SAT and VAT
Subcutaneous

adipose tissue
SAT Adipose tissue in the subcutaneous region in the

Visceral adipose
tissue

VAT Adipose tissue internal to the abdominal muscul

Neck objects
Head and Neck skin NSkn The outer boundary of the head and neck skin, w

superior boundary is defined by a level 6.6 mm ab
6.6 mm inferior to the inferior aspect of the man

Air and Bone A&B Grouping of Mnd and Phrnx
Mandible Mnd The outer boundary of the mandible
Pharynx Phrx Grouping of NP and OP
Nasopharyngeal

airway
NP The outer contour of the nasal and nasopharynge

Oropharyngeal
airway

OP The outer contour of the oropharyngeal air caviti
the epiglottis

Fat pad FP The outer boundary of the parapharyngeal fat pa
Neck soft tissues NSTs Grouping of Tnsl, Tng, SP, Ad
Palatine tonsils Tnsl Grouping of RT and LT
Right palatine tonsil RT The outer boundary of the right palatine tonsil
Left palatine tonsil LT The outer boundary of the left palatine tonsil
Tongue Tng The outer boundary of the tongue
Soft palate SP The outer boundary of the soft palate
Adenoid tissue Ad The outer boundary of the adenoid tissue
limitations at present. First, we have not studied the performance
of the system on patient images that contain significant pathology.
However, we note that DS4 indeed includes image data sets of
patients who are obese. Note also that these image data sets are
from a very different age and gender group and on a different
imaging modality from those used to build FAM(B, G). We believe
that it is essential to make the system operate satisfactorily on nor-
mal or near-normal images before testing it on images with diverse
pathologies. As such, we are currently in the process of testing the
system on organs and organ systems with significant pathology in
all three body regions focusing on specific disease processes.

Second, the accuracy is inadequate for some sparse objects for
recognition (VS, IVC) and delineation (E, Mnd, NP). Also we have
cluded). The interior region constitutes the entire thoracic body region. The
e base of the lungs and the superior boundary is defined to be 15 mm above the

dy region, including the spine, ribs, sternum, and the portions of the scapulae and

ight pleura
t pleura
rom the superior thoracic trachea to the distal main stem bronchi

e superior aspect is defined by the branching of the main pulmonary artery
uperior aspect of thorax to the level of gastric cardia
arch, descending thoracic aorta, pulmonary arteries, innominate artery, proximal
clavian artery. The superior aspect is defined by the branching of the innominate

ght and left brachiocephalic veins, and azygos vein

erior region constitutes the entire abdominal body region. The superior boundary
inferior boundary is defined by the bifurcation of the abdominal aorta into the

l body region, including lumbar spine and portion of the inferior ribs within the

nal blood vessels are excluded
al blood vessels are excluded
ood vessels are excluded
ure, including the rectus abdominis, abdominal oblique, psoas, and paraspinal

superior and inferior slices of AIA are the same as those of the abdominal region
superior and inferior slices of IVC are the same as those of the abdominal region
portal veins and hepatic arteries are included in this region

abdomen

ature

here the interior region constitutes the entire head and neck body region. The
ove the superior aspect of the globes. The inferior boundary is defined by a level

dible

al air cavity, extending to the inferior aspect of the soft palate

es, extending from the inferior aspect of the soft palate to the superior aspect of

d
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not considered in this paper other important and challenging
sparse objects such as the adrenal glands, pancreas, and the spinal
cord. If recognition is inadequate, delineation will become unac-
ceptable because it becomes impossible to appropriately initialize
the delineation process and to exploit the model for making up for
missing boundary information in the image in delineation. When
we closely examined these cases, it became clear that there are
fundamental challenges in the model building stage itself for
sparse objects. Generally we found that sparse objects have much
greater variation than their non-sparse counterparts in form, topol-
ogy, and geographic layout, compared to their size. As an example,
consider AS and VS (Thorax). The descending aortic portion of AS is
often straight and directed vertically downward while in some
subjects it may be inclined, curved, or even tortuous, with other
portions, especially the aortic arch, not varying much. The branch-
ing pattern of the left and right brachiocephalic veins and the
course of the azygos vein in VS also vary considerably. In view of
such difficulties, we have come to the realization that sparse
objects should not be modeled directly from their precise shape
information in the binary image set Ib, instead only their rough
super form (such as a minimal super set that subsumes such vari-
ations) should be utilized in model building. We are exploring the
use of rough sets (Maji and Pal, 2012) for this purpose.

The AAR methodology seems to have definite computational
advantages over atlas-based approaches. Further, in atlas-based
methods, it is perhaps much more challenging to incorporate the
extensive object-level knowledge that the AAR approach exploits
at various stages for recognition and delineation. These incorpora-
tions constitute highly non-linear and discontinuous phenomena
which are effected in intensity, geometric, and topological spaces.
The kinematic model employed in (Baiker et al., 2010) is a good
analogy of how one may encode object relationships via a model
that are difficult to emulate through continuous and smooth
image/atlas deformations.

Some of the avenues we are currently exploring for the pro-
posed AAR approach are delineated below.

In this paper, we did not address the problem of automatically
determining the body region B following the definition of B within
the given data set. As demonstrated in (Chen et al., 2012), it is pos-
sible to determine the slices delimiting a body region B automati-
cally based on slice profiles. Furthermore, the information about
the relationship between B and WB can also be encoded into the
hierarchy as illustrated in Fig. 2(a) for each B.

The use of composite objects often leads to better recognition
accuracy. This is because the multiple objects contained in a com-
posite object offer tighter constraints in recognition search. The
aspect of how objects can be grouped to achieve optimum recogni-
tion results needs investigation. A related topic is how to device
optimal hierarchies for a given body region. The hierarchies we
have considered so far are anatomically motivated. Perhaps there
are ‘‘optimal’’ hierarchies from the view point of achieving the best
recognition (and hence, delineation) results. In such an investiga-
tion, matters of how objects should be grouped as well as ordered
in the hierarchy can both be addressed simultaneously using graph
optimization techniques.

We have set up the AAR-R and AAR-D procedures in a general
way. Recognition and delineation algorithms other than those we
have tested can be used independently for R-ROOT and R-OBJECT
and for D-ROOT and D-OBJECT within the same hierarchical set
up. Similar to composite object recognition, delineation done
simultaneously for multiple objects, unlike the one-object-at-a-
time approach of AAR-D, may improve overall accuracy.

Computationally, there are three expensive operations in the
AAR system – image interpolation, distance transform, and the
delineation algorithm (FMIRFC). To make recognition and delinea-
tion operate in practical time in a clinical setting, implementations
of these operations will have to be sped up. Toward this goal, we
are studying GPU implementations of these operations. GPU imple-
mentations of some fuzzy connectedness algorithms have already
been published (Zhuge et al., 2011, 2013).

Finally, along the lines of the study underlying DS4, we are
exploring the adaptation of the AAR system to several clinical
applications.
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