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Purpose: The derivation of quantitative information from images in a clinically practical way continues 

to face a major hurdle because of image segmentation challenges. This paper presents a novel approach, 

called automatic anatomy recognition-disease quantification (AAR-DQ), for disease quantification (DQ) on 

positron emission tomography/computed tomography (PET/CT) images. This approach explores how to 

decouple DQ methods from explicit dependence on object (e.g., organ) delineation through the use of 

only object recognition results from our recently developed automatic anatomy recognition (AAR) method 

to quantify disease burden. 

Method: The AAR-DQ process starts off with the AAR approach for modeling anatomy and automatically 

recognizing objects on low-dose CT images of PET/CT acquisitions. It incorporates novel aspects of model 

building that relate to finding an optimal disease map for each organ. The parameters of the disease 

map are estimated from a set of training image data sets including normal subjects and patients with 

metastatic cancer. The result of recognition for an object on a patient image is the location of a fuzzy 

model for the object which is optimally adjusted for the image. The model is used as a fuzzy mask on 

the PET image for estimating a fuzzy disease map for the specific patient and subsequently for quantify- 

ing disease based on this map. This process handles blur arising in PET images from partial volume effect 

entirely through accurate fuzzy mapping to account for heterogeneity and gradation of disease content at 

the voxel level without explicitly performing correction for the partial volume effect. Disease quantifica- 

tion is performed from the fuzzy disease map in terms of total lesion glycolysis (TLG) and standardized 

uptake value (SUV) statistics. We also demonstrate that the method of disease quantification is applicable 

even when the “object” of interest is recognized manually with a simple and quick action such as interac- 

tively specifying a 3D box ROI. Depending on the degree of automaticity for object and lesion recognition 

on PET/CT, DQ can be performed at the object level either semi-automatically (DQ-MO) or automatically 

(DQ-AO), or at the lesion level either semi-automatically (DQ-ML) or automatically. 

Results: We utilized 67 data sets in total: 16 normal data sets used for model building, and 20 phan- 

tom data sets plus 31 patient data sets (with various types of metastatic cancer) used for testing the 

three methods DQ-AO, DQ-MO, and DQ-ML. The parameters of the disease map were estimated using the 

leave-one-out strategy. The organs of focus were left and right lungs and liver, and the disease quantities 

measured were TLG, SUV Mean , and SUV Max . On phantom data sets, overall error for the three parame- 

ters were approximately 6%, 3%, and 0%, respectively, with TLG error varying from 2% for large “lesions”

(37 mm diameter) to 37% for small “lesions” (10 mm diameter). On patient data sets, for non-conspicuous 

lesions, those overall errors were approximately 19%, 14% and 0%; for conspicuous lesions, these overall 

errors were approximately 9%, 7%, 0%, respectively, with errors in estimation being generally smaller for 

liver than for lungs, although without statistical significance. 

Conclusions: Accurate disease quantification on PET/CT images without performing explicit delineation 

of lesions is feasible following object recognition. Method DQ-MO generally yields more accurate results 

than DQ-AO although the difference is statistically not significant. Compared to current methods from 

the literature, almost all of which focus only on lesion-level DQ and not organ-level DQ, our results were 
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1. Introduction 

1.1. Background 

It is now generally believed that quantitative radiology (QR),

when brought to routine clinical practice, will bring about sig-

nificant enhancement of the role of radiology in the medical mi-

lieu, potentially spawning numerous new advances in medicine.

The derivation of quantitative information from images, however,

continues to face a major image analysis hurdle, namely the iden-

tification and delineation of “objects” of interest in the image. The

“object” may be an anatomic organ, a sub-organ, a tissue region, a

pathological region, or an anatomic zone such as a well-defined

lymph node station. Called image segmentation , this process has

a rich and long history spanning nearly 5 decades ( Doyle, 2012;

Narasimhan and Fornango, 1963 ) in the general area of image pro-

cessing. Image segmentation has, however, remained the toughest

challenge in image analysis and an essential roadblock to the prac-

tical clinical implementation of QR. 

Perhaps owing to the above challenge, most past effort s on

the development of segmentation algorithms have focused on spe-

cific organs and image modalities. The literature on algorithms

for segmenting each important organ in the body such as brain

( Ashburner and Friston, 2009; Zhou and Rajapakse, 2005 ), heart

( Zhuang et al., 2015, Zhuang and Shen, 2016 ), lungs ( Mansoor et al,

2014, Kohlmann et al., 2015 ), and liver ( Priyadarsini et al., 2012;

Goceri et al., 2014 ) individually on magnetic resonance imaging

(MRI) and computed tomography (CT) images is vast. While these

algorithms have brought about many advances in the study of dis-

eases pertaining to these specific organs, they are not generaliz-

able to body-region-wide or body-wide applications that require

the segmentation of all or all major objects/organs in the region

under consideration. A new breed of methodologies is now evolv-

ing to address this issue of segmenting multitudes of organs sit-

uated body-wide or in an entire body region ( Udupa et al., 2014;

Kashyap et al., 2018; Lee et al., 2016; Oliveira et al., 2018; Hu et al.,

2017; Okada et al., 2015; Tong et al., 2015; Namias et al., 2016 ). 

While it remains to be seen how these advances will influence

the practice of QR in the future, it is time to think about how to

decouple methods of disease quantification from explicit depen-

dence on image segmentation when (and to the extent) possible.

In this regard, as formulated in all of our previous segmentation

work, it is helpful to formulate image segmentation as being com-

prised of two related processes – object recognition and object de-

lineation. Recognition is the high-level process of determining the

whereabouts of the object or locating the object in an image. Delin-

eation is the low-level process of precisely demarcating the bound-

ary of or the region occupied by the object in the image. Note that,

in a segmentation method, each process can be implemented to

operate manually or fully automatically or at different levels of au-

tomation by using different strategies. 1 For example, in fully man-

ual segmentation, both processes are manually executed. In the
1 The word segmentation is often used to refer to delineation where recognition is 

implicitly assumed but often manually performed. However, methods with different 

levels of automation, varying from purely manual to fully automatic in the two- 

dimensional space of the degree of automation for recognition and delineation, are 

also available. 
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d were superior for smaller lesions, with less demand on training data

Q-AO and even DQ-MO seem to have the potential for quantifying disease

 the AAR-DQ approach. 

© 2018 Published by Elsevier B.V.

ive Wire method ( Falcao et al., 1998 ) (where this two-tier divi-

ion of segmentation was first introduced), automatic delineation

ccurs in real time in response to manual recognition where the

wo processes are coupled tightly and synergistically so that seg-

entation becomes accurate, agreeable to the human operator in

eal time “on the fly”, and efficient with no requirement for post-

oc correction. 

Generally, the recognition process can be automated to perform

uch more robustly than delineation. On many occasions, delin-

ation becomes ill-defined due to artifacts such as noise, beam

ardening effects, blur, image non-uniformity, and intensity non-

tandardness, and the presence of pathology and its variations,

ven though recognition can be performed quite effectively. The

bove dichotomization of segmentation is useful for determining

hen recognition alone may be sufficient and when delineation

ay also be needed for the image analysis task at hand. This

llows making the process of quantification more robust and to

 large extent independent of the vagaries of the segmentation

delineation) process if image analysis can be performed by just

ecognition alone, irrespective of whether it is accomplished man-

ally or automatically or with a variable degree of automation.

hile some image analysis applications such as radiation treat-

ent planning may require generation of object contours, and

ence explicit delineation, there is no need to tie up many other

asks to the success of delineation. In this manuscript, following

his tenet, we will demonstrate that automatic and accurate quan-

ification of disease in different or gans in patients with cancer is

easible immediately following object recognition via whole-body

ositron emission tomography/computed tomography (PET/CT) im-

ge acquisitions. 

.2. Related work and scientific gaps 

Currently, body-wide 18 F-2-fluoro-2-deoxy-D-glucose (FDG)-

ET/CT is the most commonly used modality for molecular imag-

ng of patients with cancer. FDG-PET/CT improves the sensitivity

or detection of pathology at the molecular, subcellular, or cel-

ular level well before gross anatomic changes manifest, and si-

ultaneously improves the specificity of diagnosis to distinguish

hether macroscopic abnormalities are benign or malignant in na-

ure ( Kwee et al., 2013 a, b ). As such, it changes management in up

o 40% of patients with cancer prior to implementation of treat-

ent, often due to improved detection of regional lymph node

etastases and distant metastases in the body, and improves the

iagnostic performance of post-treatment assessment compared to

tructural imaging with CT or MRI alone ( Kwee et al., 2013 a, b; Hill-

er et al, 2008 ). Importantly, FDG-PET/CT provides image data that

re quantifiable prior to and following treatment, allowing for indi-

idualized regional and global disease assessment of patients with

ancer ( Kwee et al., 2013 a, b ). 

To appreciate the importance of disease quantification body-

egion-wide or body-wide in patients with cancer and other dis-

ase conditions, let us examine the primary clinical tasks for which

edical imaging is used. 

1. Screening : The goal is to detect disease that would eventually

become clinically significant if untreated prior to the onset of

clinical symptoms or signs in order to improve patient out-

come. 
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2 In this paper, we focus on disease quantification in organs. Disease quantifica- 

tion in lymph node zones will be dealt with in a separate paper. 
2. Detection/diagnosis : The goal is to determine if pathology is

present or not, and to determine what the pathology is caused

by (e.g., neoplastic disease, inflammatory/infectious disease,

traumatic injury, congenital disorder, etc.) in patients who have

symptoms or signs of disease. If the pathology is neoplastic in

nature, other related tasks are to determine whether it is be-

nign or malignant in nature as well as indolent or aggressive in

biologic behavior, and to determine its specific histopathologic

subtype when possible. 

3. Staging : The goal is to determine the spatial extent and burden

(i.e., stage) of disease, so that optimal approaches to manage

the patient may be devised. 

4. Prognosis assessment : The goal is to predict clinical outcome

(i.e., prognosis) of the patient (e.g., overall survival, quality of

life, etc.) prior to the implementation of therapy. 

5. Treatment planning : The goal is to arrive at an optimal plan

for patient treatment by utilizing available information in order

to maximize patient clinical outcomes by treating the disease

while simultaneously minimizing adverse events related to the

treatment itself. 

6. Treatment prediction assessment : The goal is to predict if and

how well a particular disease will respond to a particular ther-

apy prior to or during early implementation of treatment. 

7. Treatment response assessment : The goal is to assess if and how

well a particular disease has already responded to treatment

(e.g., complete response, partial response, stable disease, pro-

gressive disease) during or following implementation of treat-

ment. 

8. Restaging/ surveillance : The goal is to monitor for disease re-

lapse after a disease condition has been fully treated, and to

again determine (i.e., restage) the spatial extent and burden of

recurrent disease when present. 

Medical images are currently acquired for most of the above

asks and subsequently interpreted mainly qualitatively or at best

emi-quantitatively because of the bottleneck of image segmenta-

ion. The ability to routinely quantify disease body-wide in a pro-

uction mode can potentially improve many of these tasks signifi-

antly, particularly Tasks 3–7, since manual methods of quantifica-

ion are error-prone, are subject to intra- and inter-observer varia-

ions, are labor-intensive, result in suboptimal throughput in clini-

al practice, and are just impractical when the disease is extensive.

Several commercial vendors currently offer software for dis-

ase measurement ( Withofs et al., 2014; Geworski et al., 2010;

ofheinz et al., 2007,2010 ). They all operate under the paradigm

f first manually performing recognition of diseased tissue regions

y manually specifying a region of interest (ROI), subsequently au-

omatically delineating lesions by making use of information from

ET alone or from both PET and CT, and finally measuring disease

urden in the form of tumor volumes and PET standardized uptake

alue (SUV) statistics within tumor lesions. Numerous papers have

lso been published ( Bagci, et al., 2013; Fagundes et al., 2018; Piert

t al., 2018; Xu et al., 2017; Mena et al., 2017; Ju et al., 2015; Cui

t al., 2016; Tan et al., 2017 ) whose focus has been accurate seg-

entation (delineation) of tumors from combined PET and CT in-

ormation once adequate recognition help is given manually (such

s via placement of an ROI). For body-wide applications, these cur-

ent methods leave two key gaps which prevent their routine clini-

al use. (1) Manual perusal of image slices and specification of ROIs

or each tumor site in such a manner that lesion delineation will

ork (and hence disease quantification will be accurate) are labor-

ntensive and impractical when the disease is extensive, even if

onfined to a single organ, and especially when involving organs

nd tissues body-wide. There are also associated issues of intra-

nd inter-operator variations in disease measurements. For accu-

ate measurement, ROIs need to be selected carefully to properly
nclose tumor sites but not too much of other tissue regions. Ex-

ept when disease is discrete and focal, selecting an appropriate

OI itself becomes challenging, making the quantification of mul-

ifocal or diffuse disease quite difficult. (2) Currently available au-

omated methods are organ-specific and not generalizable, leaving

isease measurement by organ and by body region an open prob-

em. The novel methodology presented in this paper, which we will

efer to as AAR-DQ (short for automatic anatomy recognition-disease

uantification ) is an attempt to overcome these hurdles. 2 

.3. Outline of proposed approach 

The AAR-DQ methodology, schematically illustrated in Fig. 1 ,

tarts off with the AAR approach ( Udupa et al., 2014; Wang et al.,

016 ) for modeling anatomy and automatically recognizing objects

n low-dose CT images of PET/CT acquisitions. It incorporates novel

spects of model building that relate to finding an optimal dis-

ase map for each organ. In Section 2 , we describe these aspects

nd summarize the other previously published model building and

ecognition steps of AAR for completeness. The result of recogni-

ion for an object on a patient image I is the location of a fuzzy

odel for the object which is optimally adjusted for I . The model

s used as a fuzzy mask on the PET image for estimating a fuzzy

isease map for the specific patient and subsequently for quantify-

ng disease based on this map. This process, described in Section 3 ,

andles blur arising in PET images from partial volume effect en-

irely through accurate fuzzy mapping to account for heterogene-

ty and gradation of disease content at the voxel level without ex-

licitly performing correction for the partial volume effect. Dis-

ase quantification is performed from the fuzzy disease map in

erms of volumes and SUV statistics. We also demonstrate that the

ethod of disease quantification is applicable even when the “ob-

ect” of interest is recognized manually with a simple and quick

ction such as interactively specifying a 3D box ROI. Experimen-

al evaluation studies are carried out, as described in Section 4 , on

hantoms with known radiotracer concentrations as well as on pa-

ient PET/CT images where manual disease measurement is taken

s the reference standard ground truth for comparison with results

rom the AAR-DQ approach. Our results and concluding remarks

re summarized in Sections 4 and 5 , respectively. 

The AAR-DQ approach has the following unique features: (1)

t decouples dependence on explicit segmentation (delineation) of

he organ and diseased tissue regions and performs DQ directly

rom object location information found automatically. This makes

he disease quantification process robust, efficient, and practical.

2) It takes a fuzzy approach for handling uncertainties for object

odeling, object recognition, disease mapping, and disease quan-

ification, which obviates the need for explicitly correcting for phe-

omena such as the partial volume effect. (3) By the characteristics

f the AAR approach, AAR-DQ is not tied to any specific object, and

ence is applicable body-wide. 

A preliminary version of this paper appeared in the proceedings

f the 2017 SPIE Medical Imaging Conference ( Tong et al., 2017 ).

he present paper includes the following significant enhancements

ver the conference paper: (i) The concept of conspicuous and

on-conspicuous lesion level disease quantification as well as cor-

esponding results. (ii) A more comprehensive Introduction with a

eneral and deeper literature review of disease quantification on

ET/CT. (iii) A detailed description of the complete framework of

AR for DQ, a description of the complete family of AAR-DQ ap-

roaches including DQ-AO, DQ-MO, and DQ-ML strategies. (iv) Ex-

ensive experimental results at object level and lesion level, includ-



172 Y. Tong, J.K. Udupa and D. Odhner et al. / Medical Image Analysis 51 (2019) 169–183 

Fig. 1. A schematic representation of the AAR-DQ approach. 
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3 Notation Q X is fashioned after notations D X and R X commonly used for diagnos- 

tics and therapeutics, and is intended to denote quantitative disease analytics. 
ing conspicuous and non-conspicuous lesions. (v) A comprehensive

comparison with other current methods. 

2. Anatomy recognition 

We will follow the notation used in the previous AAR publica-

tions ( Udupa et al., 2014; Wang et al., 2016 ) closely, but will need

some new terminology as well. 

G : The patient population group under consideration. 

B : The body region of focus, in our case the upper body torso

(i.e., thorax and abdomen combined). 

O 1 , …, O L : L objects or organs of B . 

I m = { I m 

1 
, ..., I m 

N 
} : A set of training images in modality m of body

region B from N subjects in group G which are used for con-

structing models. In our case, m ∈ {CT, PET}, where CT refers

to the low-dose CT image of PET/CT acquisitions. We assume

that the images in Im are near normal and that the CT and

PET images of the same PET/CT acquisition are in registra-

tion. 

I b = { I n,� : 1 ≤ n ≤ N&1 ≤ � ≤ L } : The set of all binary images

used for model building, I n , � being the binary image repre-

senting object O l in image I m 

n . Since CT and PET images are

in registration, binary image I n , � is applicable as a mask for

object O l in both I CT 
n and I PET 

n . 

FM ( O l ): Fuzzy model of object O l derived from the set of all bi-

nary images of O l . 

d O ( x ): Disease map associated with object O. It maps SUV x at a

voxel v within O to disease severity at v on a [0, 1] scale. 
D 

m = { D 

m 

1 
, ..., D 

m 

K 
} : A set of training images in modality m ∈ {CT,

PET} of patients in group G with disease. These data will be

used for estimating (training) the parameters of the disease

map d O ( x ) for each object O . 

C m = { C m 

1 
, ..., C m 

M 

} : A set of test images in modality m ∈ {CT, PET}

of patients in group G with disease. These data will be used

for testing the AAR-DQ approach. 

FAM (B, G ): Fuzzy anatomy model of the whole object assembly

in B which includes all prior information gathered about ob-

jects such as the hierarchical arrangement of objects, their

SUV properties, disease maps, object relationships, fuzzy

models, etc. 

FM 

T ( O ): Transformed FM ( O ) corresponding to a state when O is

recognized in a patient image. Q X ( O ): A set of quantitative

measures 3 describing the disease of O . 

We will follow the schematic in Fig. 1 for describing the AAR-

Q approach. Since Steps 1.4, 3.1, and 3.2 are novel additions to

he previous AAR approach, they will be described in detail while

he other steps will be briefly summarized for completeness. 

.1. Constructing anatomy model of the body region 

For completeness, we will briefly summarize Steps 1.1 to 1.3

 Fig. 1 ) of the model building process first, which are introduced in



Y. Tong, J.K. Udupa and D. Odhner et al. / Medical Image Analysis 51 (2019) 169–183 173 

t  

l  

2  

w  

e

2

 

d  

a  

U  

b  

w  

e  

s  

s  

t  

o  

3  

d  

A

2

 

i  

2  

l  

s  

W  

I  

T

2

 

p  

c  

b  

B  

i  

s  

T  

a  

r  

l  

j  

n

F  

 

U  

r  

o  

t  

M  

B  

r  

f  

o  

p  

q

 

c  

(  

f  

a  

Fig. 2. Hierarchy chosen for the objects. Object abbreviations are described in the 

text. 
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he following sections, respectively, including gathering images, de-

ineating objects, and constructing fuzzy models, see ( Udupa et al.,

014 , Section 2) and ( Wang et al., 2016 , Section 2.1) for details. This

ill be followed by a detailed description of Step 1.4, which is for

stimating the optimal parameters of disease maps. 

.1.1. Gathering images 

All images were selected from our health system patient image

atabase by a board-certified radiologist (co-author DAT) following

pproval from the Institutional Review Board at the Hospital of the

niversity of Pennsylvania along with a Health Insurance Porta-

ility and Accountability Act waiver. For the normal set Im , the

hole-body FDG-PET/CT images selected were near normal with

xception of minimal incidental focal abnormalities such as cysts,

mall pulmonary nodules, etc. For abnormal sets Dm and Cm , the

ame radiologist selected whole-body FDG-PET/CT images of pa-

ients with various types of metastatic cancer involving multiple

rgan systems. The combined patient data set Dm ∪ Cm included

1 patients in total with age 60.8 ± 9.8 yrs and normal subject

ata sets ( Im ) included 16 subjects in total with age 44.7 ± 10.2.

ll data sets included both CT and PET images. 

.1.2. Delineating objects 

As per AAR methodology, anatomic body regions and the organs

n them are precisely defined first (see Table 1 in Udupa et al.,

014 and Table 2 in Wang et al., 2016 ). All objects are then de-

ineated following these definitions, strict tracing protocols, and

crutiny of delineations as described in Udupa et al. (2014) and

ang et al. (2016) . This step generates the set of binary images

 b = { I n,� : 1 ≤ n ≤ N&1 ≤ � ≤ L } from the input set of images Im .

he tracings are done on the CT images of this set. 

.1.3. Constructing fuzzy models 

We will focus on the following objects in the body torso in this

aper for demonstrating the new ideas underlying disease quantifi-

ation. The AAR-DQ approach is applicable to other and any num-

er of objects if they can be recognized with adequate accuracy.

T: Upper body torso, which is made up of thoracic and abdom-

nal body regions. BTSkn: The outer boundary of the body torso

kin, the interior of which constitutes the upper body torso region.

Skn and ASkn: Similar to BTSkn but defined for the thoracic and

bdominal body regions, respectively. LPS, RPS: Left and right pleu-

al spaces including lungs, respectively. PS: Pleural spaces including

ungs = LPS + RPS. Lvr: Liver. As in previous AAR methods, all ob-

ects considered in this work include their interior 3D region and

ot just the boundary. 

The Fuzzy Anatomy Model FAM (B, G ) is defined by 5 entities: 

 AM(B, G ) = (H, M, ρ, λ, η) . (1)

For a detailed description of these parameters, see

dupa et al. (2014) . Briefly, H is a hierarchy of objects in B,

epresented as a tree. This tree structure permits imposing an

rder among objects and allows encoding non-linear and very de-

ailed anatomic information about the population into the model.

 is a set of fuzzy models, one model for each of the L objects in

, M = { FM ( O k ): k = 1, …, L }. ρ describes the parent-to-offspring

elationship in H over the population. λ is a family of scale

actor ranges. η denotes a set of measurements pertaining to the

bject assembly in B including intensity properties and all learned

arameters that are needed for object recognition and disease

uantification. 

We will choose the object hierarchy H depicted in Fig. 2 for

onstructing FAM (B, G ), where 3D renderings for different parts

object models) are illustrated. Fuzzy object model building will

ollow the hierarchy H by starting from root object of BTSkn,

nd then to other offspring objects. Recognition in the following
ection 2.2 will also follow the same hierarchy. The fuzzy model

et M is built from training binary images in the set Ib as de-

cribed in ( Udupa et al., 2014 ). This process consists of estimating

he mean shape length and mean geometric center over all sam-

les in Ib of each object O l , repositioning all samples of O l to this

ean position, and rescaling them to mean shape length. Subse-

uently, a distance transform is applied to each resulting sample,

nd the average distance of the samples is computed and trans-

ormed to a fuzzy object membership value. From the repositioned

nd resized samples, the parent-to-offspring relationship ρ l of O l 

ith respect to its unique parent in the hierarchy is estimated.

imilarly, the size variation bounds λ = { λl : 1 ≤ l ≤ L } over all

amples are estimated from the same samples using the shape

ength of each O l . 

The fifth element η of FAM (B, G ) stores values of parame-

ers needed for object recognition and disease quantification . The

arameters for object recognition are estimated as described in

dupa et al. (2014) and Wang et al. (2016) . Briefly, apart from

ierarchy H , fuzzy model set M , object relationship ρ , and scale

ariation λ, the only additional parameter needed is the optimal

hreshold Th l for each object O l . These parameters are estimated

rom image sets I m and I b by using Algorithm OTE described in

ang et al. (2016) . Th l is estimated by searching for a threshold

nterval that maximally separates the histogram of O l from the his-

ogram of the complement of O l over all images in Im . In our case,

 = CT, that is, we use the CT image for object recognition. 

.1.4. Estimating optimal disease maps 

For any PET image I , let I S denote the corresponding SUV image

s defined by ( Torigian et al., 2011 ) 

 S (v ) = 

I c (v ) 
ID/BW 

, (2) 

here ID is the injected dose of the radiotracer (expressed in

Bq), BW is the body weight of the patient (expressed in g) whose

cquired PET image is I , and I c ( v ) denotes the radioactivity con-

entration (expressed in MBq/cc where we assume 1 cc of tissue

eighs 1 g) measured at voxel v of I which is corrected for decay

rom the time of injection to the time of image acquisition. 

For disease quantification , we will employ a parametric function

alled disease map , denoted d O ( x ) which maps SUV value x at any

oxel within object O to disease severity value on a [0, 1] scale.
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This map is intended to be specific to object 4 O . The parameters

of d O ( x ) will be estimated as explained below. Let μO 
n and σ O 

n be

the mean and standard deviation of SUV within normal object O as

determined from normal image set IPET , binary image set Ib , and

the corresponding SUV images I S . 
Disease map d O ( x ) is modeled as d O ( x ) = max [0, g d ( x ) – g n ( x )],

where g d ( x ) and g n ( x ) are half and full Gaussians with parame-
ters ( μO 

d 
, σ O 

d 
) and ( μO 

n , σ
O 
n ), respectively. Our intent is that g n ( x ) de-

scribes the SUV distribution within the normal tissues of object O ,
and g d ( x ) expresses SUV-to-degree-of-disease relationship for O . 

g d (x ) = 

{
exp [ −(x − μd ) 

2 
/ 2 σ 2 

d 
] , i f x < μd , g n (x ) = exp [ −(x − μn ) 

2 
/ 2 σ 2 

n ] . 

1 , i f x ≥ μd 

(3)

The disease map d O (x) removes any contributions from normal

tissue to the “degree of disease”. When g d ( x ) < g n ( x ), d O ( x ) is

forced to be equal to zero to guarantee that the value of d O ( x )

is within [0, 1]. Assume for now that parameters ( μO 

d 
, σ O 

d 
) and

( μO 
n , σ

O 
n ) have been determined (see below for estimation method).

The total disease burden within O is described in terms of total

lesion glycolysis ( TLG ) defined as follows. 

For any object O in any PET image I in Dm , let TLG O ( I ) denote

the (true) total lesion glycolysis of all lesions of O in I as deter-

mined by a reference method; that is, TLG O ( I ) is the sum over all

lesions of the product of the lesion volume and its mean SUV.

Our goal is to arrive through d O ( x ) at an estimate of the total dis-

ease burden of O that is as close as possible to TLG O ( I ). The dis-

ease quantity estimated by the AAR-DQ approach will be called

fuzzy total lesion glycolysis of O in I , denoted fTLG O ( I ). The defi-

nition of fTLG O ( I ) requires the specification of a region within I .

This region may be the whole image domain, an entire body re-

gion, or any specified ROI (binary or fuzzy), including in particular

the fuzzy model FM 

T ( O ) of O localized in I by the AAR recognition

step. Keeping these possibilities in mind, we denote such a general

“ROI” specified in I by A and use the notation A ( v ) to denote the

membership of voxel v of I in the ROI to allow for A to be also a

fuzzy ROI such as FM 

T ( O ). Thus, when A is a binary mask, A ( v ) ∈
{0, 1}, and when A is fuzzy, A ( v ) ∈ [0, 1]. The traditional approach

for calculating TLG is first to obtain a binary lesion mask by apply-

ing a thresholding or hard segmentation operation on every voxel

where partial volume effect occurs, and then utilizing the binary

mask, which usually covers a smaller region than the original re-

gion used, for TLG estimation. In this paper, we consider a fuzzy

volume instead. Some voxels would be discarded in the traditional

approach after segmentation such that there can be no contribu-

tion from them to TLG. Yet, those voxels may still contribute to

TLG and hence should not be discarded, and so their contribution

can instead be described by using fuzzy membership followed by

disease map as we describe in this paper. 

With this generality, for the disease under consideration, we

define the fuzzy total lesion glycolysis within an ROI A , denoted

fTLG A ( I ), in a PET image I by 

f T L G A (I) = υ
∑ 

all v in A 

d O ( I S (v )) I S (v ) A (v ) . (4)

In words, fTLG A ( I ) (expressed in cc) is a weighted sum of the

SUV values of voxels within mask A multiplied by the voxel vol-

ume υ (expressed in cc), assuming all voxels are of the same size.

There are two weights for each voxel – A ( v ), which is the mask

weight, and d O ( x ), which is the disease weight based on the SUV

I ( v ) at v . Of course, d ( I ( v )) is unknown at this point at v . Along
S O S 

4 Implicit in our assumption is the fact that the map is specific to a particular 

disease of O , which in the current study is cancer. Multiple other disease conditions 

will be considered in our future work. 

o  

i  

r  

s  

r

imilar lines, to accommodate a general (hard) mask A , we mod-

fy the previously defined true total lesion glycolysis TLG O ( I ) within

bject O to TLG A ( I ) such that the latter denotes the sum of the true

otal lesion glycolysis of all lesions within binary mask A . 

The map d O ( x ) is completely determined by μO 

d 
and σ O 

d 
. Our

dea is to estimate the parameters of d O ( x ) optimally so that the

isease weight expressed by d O ( x ) brings our estimate fTLG A ( I ) of

he disease burden as close as possible to the true estimate TLG A ( I ).

e perform this estimation by optimizing the following function.

(m 

O 
d , s 

O 
d ) ∈ 

argmin 

μO 
d 
,σ O 

d 

[ 
∑ 

I ∈ D m 
(T L G A (I) − f T L G A (I)) 

2 
] . (5)

The optimal parameters of d O ( x ) are denoted by (m 

O 
d 
, s O 

d 
) . We

nd the optimal parameters using Powell’s NEWUOA software

 Powell, 2006 ). 

The fuzzy treatment in disease quantification allows for han-

ling both the segmentation issue of deciding whether or not a

oxel belongs to a lesion as well as the determination of the SUV

easurement at each voxel without explicit partial volume correc-

ion and binary segmentation commitment. 

Estimation of the disease map d O ( x ) requires parameters μO 
n 

nd σ O 
n , which in turn need data sets ICT and IPET . We estimate μO 

n 

nd σ O 
n directly from sets I PET and I b . Estimating TLG A ( I ) requires

ata sets Dm , m ∈ {CT, PET}, and is challenging at the lesion level,

nd hence at organ level, mainly because of the extreme variabil-

ty of the fuzziness of the lesions. We take the approach described

elow to establish TLG A ( I ). 

.1.5. Establishing true disease measurements 

Commercial clinical software systems generally require a hu-

an operator to specify an ROI manually corresponding to each

esion to be quantified on the PET image. As illustrated in Fig. 3 ,

he ROI should be specified fairly close to the lesion boundary

n a slice, and the extent of the ROI in the third dimension or-

hogonal to the slice plane should also be indicated. The software

hen generally performs an iterative thresholding operation, some-

imes with partial volume correction depending on the particu-

ar software system, and outputs the volume of the lesion, com-

only known as metabolic lesion volume (MLV) (expressed in cc),

ean and maximum SUV of the lesion, and then a product of MLV

nd mean SUV of the lesion called total lesion glycolysis (TLG) (ex-

ressed in cc). 

We used one such software system called ROVER ( Hofheinz

t al., 2007,2010 ) for generating reference true measurements. We

ound this software to be adequate for use in the above manner

or large, well-defined, and focal lesions. We refer to such lesions

hich can be delineated automatically by the clinical software via

n ROI without requiring parameter adjustment and whose seg-

entations seem visually accurate as conspicuous lesions. How-

ver, the behavior of this software was generally not stable for le-

ions that are not well-defined, large, or focal. Accordingly, those

esions whose delineation by the clinical software requires man-

al adjustment of parameters or delineations on a per-lesion ba-

is will be referred to as non-conspicuous lesions. For conspicu-

us lesions, we generated true measurements by using the clin-

cal software. For non-conspicuous lesions, we created reference

easurements by individually thresholding each lesion on the PET

mage to produce visually optimal results under the guidance of

n expert radiologist (DAT) who has over 10 years of experience

n making such measurements clinically. Examples of conspicu-

us and non-conspicuous lesions are shown in Fig. 3 . As shown

n the two bottom rows, non-conspicuous lesions labeled via ar-

ows in the ROIs (circles/ ovals) may be over-segmented or under-

egmented or missed when using clinical software, subsequently

equiring manual adjustment. 
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Fig. 3. Illustration of conspicuous and non-conspicuous lesions of the lung and liver on PET images. The rows correspond to 4 different patients with metastatic cancer, and 

the columns represent (left to right) axial, coronal, and sagittal slices and Maximum Intensity Projection in the coronal plane. ROIs (circles/ ovals) required by a commercial 

clinical software system and its output segmented tumors are shown as overlay. The top two rows show examples of adequate segmentation of conspicuous lesions by the 

software, whereas the bottom two rows show examples of inadequate segmentation of non-conspicuous lesions (arrows). Note that, even for conspicuous lesions, their fuzzy 

regions and boundaries are left uncovered. 
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In summary, at the end of the model building step (see Fig. 1 ),

e have a fuzzy anatomy model FAM (B, G ) of the body region B

omplete with anatomic information encapsulated in H, M, ρ , and

, and disease map information included in η for the particular

isease being studied for each object of B. 

.2. Recognizing objects 

We will use both manual and automatic recognition strategies.

n the manual mode, we will present two methods, one at the ob-

ect level and another at the lesion level, and in both, one ROI A

ill be specified by using rectangular boxes 5 to keep the manual

ecognition and specification of A simple and efficient. For further

eference, we will denote these manual methods by MO and ML,

espectively; in MO, the object is specified by a given mask, such

s rectangular box just enclosing the object, and in ML, the box
5 The ROI mask does not need to be rectangular; in fact, it can be any given 

hape to localize the target object. CAVASS software ( Grevera et al., 2007 ) supports 

n efficient way for generating such a mask, which involves manually drawing an 

OI on a single slice and then propagating it to other slices automatically. 

t  

U  

n  

F  
pecified just encloses each lesion. The goal of the MO method is

o demonstrate that, albeit manual, it can be used to efficiently and

ccurately quantify the total disease burden within an object via

he proposed approach. This is currently not feasible by employ-

ng clinically available software systems. The current manual way

f quantifying each lesion on its own is not practical when lesions

nd/or involved organs are numerous. The goal of the ML method

s to demonstrate that even when each lesion is identified manu-

lly, the proposed approach performs quantification accurately. In

oth manual methods, the ROI A for disease quantification is a bi-

ary mask. 

The real thrust of this manuscript is on the automatic mode

t the object level, which we will denote by AO, wherein ob-

ects are recognized automatically by the AAR approach. We are

ot introducing any new concepts in this paper over those in

dupa et al. (2014) and Wang et al. (2016) for organ recogni-

ion per se. The process follows the recognition algorithms of

dupa et al. (2014) , Wang et al. (2016) and starts off by first recog-

izing the root object and then follows the hierarchy displayed in

ig. 2 to locate other objects. The output of the automatic recog-
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Table 1 

NEMA phantom and PET/CT image acquisition details. 

Phantom weight 10.9kg 

Isotope 68 Ge 

Pre-injection amount of radioactivity 4.54 mCi 

Activity target-to-background (T/B) ratio 4:1 

Scanner GE Discovery STE-16 PET/CT scanner 

PET scan duration 5 min 

PET voxel size / scene size 2.73 ∗2.73 ∗3.27 mm /128 ∗128 ∗47 

CT voxel size / scene size 0.6 8 ∗0.6 8 ∗2.50 mm /512 ∗512 ∗63 

CT tube voltage 120 kV 

Field-of-view (PET and CT) 350 mm 
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nition step is the modified fuzzy model FM 

T ( O ) for each object O

optimally adjusted to the manifestation of O in the CT image of the

given PET/CT pair. In other words, in this case, the ROI for object O

for disease quantification is a fuzzy mask A = FM 

T ( O ). 

In summary, we will utilize three methods of recognition –

manual at object level (MO), manual at lesion level (ML), and auto-

matic at object level (AO) to define the mask A needed for disease

quantification. 

3. Disease quantification 

We will denote the disease quantification procedures for the

three recognition methods AO, MO, and ML by DQ-AO, DQ-MO, and

DQ-ML, respectively. The disease quantification procedure DQ-AO

summarized in the box for recognition method AO follows directly

Eq. (4 ). For recognition method MO, the procedure DQ-MO is the

same as DQ-AO except that in Step 1, objects are identified man-

ually, dilation in Step 3 is not performed, and the specified ROI is

to be considered as a binary mask A . For DQ-ML, “object” is to be

interpreted as a lesion and then the procedure DQ-MO is to be fol-

lowed. In this case, L indicates the number of lesions quantified. 

In words, in procedure DQ-AO, each anatomic object O is first

recognized or localized in the CT image automatically. The fuzzy

model FM 

T ( O ) found in this process is then dilated. 6 The result-

ing fuzzy mask, called A , is then applied to the SUV image de-

rived from the input PET image. The disease map d O ( x ) of O is

retrieved from the element η of FAM (B, G ) and the total disease

burden fMTV O of O is computed via Eq. (4 ). The contribution from

each voxel within the localized object is weighted by the level of

disease at the voxel and the level of certainty for the voxel to be-

long to O . For manual methods MO and ML, the weight of belong-

ingness to the object is binary but the weight of disease severity

coming from d O ( x ) is fuzzy. Note that, for methods MO and ML,

there may be voxels in the binary mask A that are outside the ob-

ject proper which will be weighted by 1. However, if the disease

map is accurate for O , such voxels will receive negligible disease

weight from d O ( x ). Finally, the output of the procedure for each ob-

ject consists of the object’s SUV Mean and SUV Max and its estimated

fTLG A value with the appropriate interpretation of the meaning of

these entities as explained above for the cases of DQ-AO, DQ-MO

and DQ-ML. 

Procedure DQ-AO 

Input : An image pair ( I CT , I PET ) of B from the set Cm and FAM ( B, G ). 

Output : Q X ( O i ), i = 1, …, L . 

Begin 

1. Recognize objects O i , i = 1, …, L , in I CT ; 

2. For each object O i , do 

3. Perform gray-level dilation of FM 

T ( O i ) and let the result be A ; 

4. Compute SUV mean , SUV max , and f T L G A ( I 
PET ) = υ

∑ 

all v in A 
d O (I PET 

S (v )) I PET 
S (v ) A (v ) , 

where υ denotes the volume of a voxel in A ; 

5. Q X ( O i ) = [ SUV mean ( A ), SUV max ( A ), fTLG A ( I 
PET )]; 

6. EndFor ; 

7. Output Q X ( O i ), i = 1, …, L ; 

End 

In summary, we have described three methods for disease

quantification in a single general framework: DQ-AO, DQ-MO, and

DQ-ML. DQ-AO and DQ-MO perform disease quantification at the

whole object (organ) level, with DQ-AO recognizing objects auto-

matically and DQ-MO localizing objects manually. DQ-ML performs

quantification at the lesion level, after an ROI is specified manually

for each lesion for its recognition. DQ-ML is not a practical method,
6 The purpose of the dilation operation is to make sure that the object is fully 

covered by the model fuzzy mask. We perform dilation by 10 mm which roughly 

corresponds to AAR’s object localization error. 

T  

t

v  

t  
ut it is included since it is similar to current clinically used soft-

are in terms of the manual labor required. DQ-AO is an automatic

roduction-mode strategy, whereas DQ-MO is a less automated but

et practical method. 

. Experiments, results, discussion 

We conducted experiments on phantom data, where the true

uantity of “disease” is known, as well as on patient data, where

true” disease is established by employing a clinically used com-

ercial software system as described in Section 2.1 . 

.1. Phantom data 

We have utilized the publicly available National Electrical Man-

facturers Association (NEMA) PET phantom data sets for studying

he behavior of our proposed DQ strategies whose specifications

re as follows. 

The phantom data sets contain 20 scans previously acquired on

 PET/CT scanner (Discovery STE, General Electric, Waukesha, WI)

sing a NEMA NU-2 IQ phantom ( Mansoor et al., 2014; Kohlmann

t al., 2015 ) (Data Spectrum, Durham NC). The central 5 cm diame-

er “lung” cylinder had been removed, the initial background activ-

ty level had been set to be equivalent to 15 mCi in a 70 kg patient,

nd the background activity level was approximately 9.5 mCi after

 months (given the 271-day half-life of 68 Ge). Six hollow spherical

nserts (with diameters of 37, 28, 22, 17, 13, and 10 mm to simu-

ate lesions of different sizes) were used, all of which had an activ-

ty target-to-background ratio of 4:1. Additional details pertaining

o the phantom and PET/CT image acquisition are summarized in

able 1 . 

Within the phantom, we consider each separate spherical insert

with its radioactive contents) as a “lesion”, and different groups

f spherical inserts (with their radioactive contents) including por-

ions of the background as “objects” (i.e., “organs”) for the purpose

f testing lesion-level and object-level methods. Representative PET

nd CT images of the phantom are shown in different imaging

lanes in Fig. 4 . Since automatic recognition by the AAR process

s not relevant for phantoms, we tested methods DQ-MO and DQ-

L only. For DQ-MO, we specified one circular ROI to enclose all

ndividual “lesions” (i.e., spherical inserts) going through all slices

hat encompassed the spherical inserts, the idea being that the ROI

ould encompass an “organ” (including background and spherical

nserts) to emulate the process of quantifying all “lesions” within

n organ collectively. For DQ-ML, a rectangular ROI was specified

round each of the “lesions” (i.e., spherical inserts). The processes

f specifying ROIs at the “organ” and “lesion” level for the phantom

ata set are illustrated in Fig. 5 for methods DQ-MO and DQ-ML.

his figure also demonstrates the fuzzy disease maps obtained at

he organ level and lesion level by these methods. 

Some discussion is in order regarding how to establish true Q X 

alues for phantom data. For these data, the actual radiotracer ac-

ivity is known and so also the volume of every sphere. Thus, it
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Fig. 4. PET images (top row) and CT images (bottom row) of a NEMA phantom showing 6 spherical inserts displayed in axial (left column), sagittal (right column top), and 

coronal (right column bottom) planes. 

Fig. 5. Examples of the manual recognition process and the resulting fuzzy disease maps for methods DQ-MO and DQ-ML for phantom data sets. (a) Method DQ-MO (top 

row): A CT ( I CT ) image (left) and a PET ( I PET ) image (middle) with ROI placed at the “organ” level on I PET , and the resulting disease map (right). (b) Method DQ-ML (bottom 

row) similar to (a) but with ROI placed at the “lesion” level. 
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s possible to calculate the theoretical absolute true TLG value for

ach “lesion”. However, since we thought it is prudent to estimate

isease maps in exactly the same way for phantoms as for patient

ata sets, the disease maps for phantoms were “trained” on PET

mages as in the case of patient studies. One consequence of train-

ng on PET images is that TLG estimated by our method will always

e (much) lower than the theoretical true value since the activity

evel in the “lesions” will be always lower than the actual value,

specially much lower for small “lesions”. An alternative approach
ould be to “train” our method on true theoretical activity rather

han on the activity observed in the PET images. This can be ac-

omplished by making appropriate changes to Eqs. (3 ) and (5) . We

hose not to pursue this direction for two reasons. Firstly, it would

e impossible to train on the theoretical true activity values in pa-

ient studies since these values are impossible to establish at lesion

evel and even at object level. Secondly, this would have made the

ctual process of DQ itself and its evaluation different for phan-

oms and patient cases. Therefore, we decided to establish “true”
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Table 2 

Mean and standard deviation of % errors in TLG estimation on phantom PET/CT scans for “lesions” and “organs” using the DQ-ML and DQ-MO methods. 

Method DQ-ML DQ-MO 

Spherical insert diameter (mm) 37 28 22 17 13 10 All spherical 

inserts included 

TLG error Absolute (cc) 

mean (SD) 

4.66 (2.98) 8.70 (3.09) 7.99 (1.75) 4.53 (0.81) 1.69 (0.29) 0.45 (0.36) 21.99 (7.70) 

% mean (SD) 1.93 (1.24) 9.10 (2.99) 19.18 (3.52) 32.15 (4.68) 34.43 (6.59) 36.96 (7.38) 5.82 (1.86) 

SUV Mean error Absolute mean 

(SD) 

0.39 (0.09) 0.64 (0.08) 0.75 (0.09) 0.56 (0.08) 0.23 (0.05) 0.09 (0.09) 0.21 (0.11) 

% mean (SD) 3.86 (0.89) 7.11 (0.97) 9.37 (1.28) 8.24 (1.19) 3.89 (0.98) 2.04 (2.00) 2.22 (1.20) 

SUV Max error Absolute mean 

(SD) 

0.0 0 (0.0 0) 0.0 0 (0.0 0) 0.0 0 (0.0 0) 0.0 0 (0.0 0) 0.0 0 (0.0 0) 0.0 0 (0.0 0) 0.00 (0.00) 

% mean (SD) 0.0 0 (0.0 0) 0.0 0 (0.0 0) 0.0 0 (0.0 0) 0.0 0 (0.0 0) 0.0 0 (0.0 0) 0.0 0 (0.0 0) 0.00 (0.00) 
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Q X values for phantom cases by using the activity values actually

observed in the PET images but estimated by using the known true

“masks” of the spheres in PET images in the spirit of avoiding the

big hurdle of lesion segmentation. 

We used a leave-one-out (LOO) strategy to evaluate the perfor-

mance of our DQ approaches. In particular, there were 20 exper-

iments in total where for each experiment, spherical inserts from

19 phantom PET/CT data sets were used to estimate the parame-

ters of d O ( x ) and the remaining 1 data set was used to test the

accuracy of quantitative parameters Q X by the proposed methods.

Table 2 lists the mean and standard deviation of errors in esti-

mating TLG, SUV Mean , and SUV Max for “lesions” and “organs” within

phantom data sets using DQ-ML and DQ-MO methods, where av-

erage error % is calculated as [(estimated value − ground truth

value) / (ground truth value)] × 100 over all tested samples for

each method. For the DQ-MO method, where all “lesions” together

are considered within an “organ”, the average TLG error was ∼6%.

For the DQ-ML method, we observed that the estimates of TLG for

small “lesions” had larger errors than those of larger “lesions”, with

average error ranging from 2% to 37%. At the lesion level, SUV Mean 

achieves error within 2%–9% and SUV Max achieves error close to

zero for all lesions. 

Lesions with small diameter have strong partial volume effect

(compared to their size) and TLG error increases with decreasing

sphere size. This has been previously observed by other methods

tested on these phantoms ( Kinahan and Fletcher, 2010; Doot et al.,

2010 ), where the ratio defined by measured value/true value was

found to be ∼0.3 for small lesions. Expressed as % TLG error as

we defined above, this error is ∼70%. %TLG error is ∼50% for le-

sions with diameter 13 mm, ∼40% and 25% for larger lesions with

diameter 17 mm and 22 mm, and ∼3% for lesions with the max-

imum diameter 37 mm ( Kinahan and Fletcher, 2010; Doot et al.,

2010 ). Thus, although our method’s performance is much poorer

for small lesions than for large lesions, it still outperforms current

approaches, especially on small lesions. We note that there is an

issue in properly expressing error in measuring small lesions. Even

small absolute errors (in cc) become exaggerated when expressed

as a percent of the total lesion activity when lesions are small. A

somewhat similar phenomenon occurs also for other metrics. This

is the reason that we also listed absolute errors as well for all three

measures in Table 2 . 

4.2. Patient data 

Body-wide FDG-PET/CT scans from human subjects were uti-

lized in this study. Details about data sets Im , Cm , and Dm are sum-

marized in Table 3 . We used 16 normal data sets in Im for building

the AAR model. For estimating the parameters of the disease map,

we again employed the LOO strategy – of the 31 patient data sets,
0 were used for training, one was set aside for testing, and the

rocess was repeated 31 times. 

All scans had previously been acquired on PET/CT scanners

ith time-of-flight capabilities (Gemini TF, Philips Medical Sys-

ems, Bothell, WA). 3D PET data had been acquired either from

he skull vertex to the toes or from the skull base to the proxi-

al thighs ∼60 min after intravenous administration of ∼555 MBq

f FDG for ∼3 min per bed position. Image reconstruction had

een performed at 4 mm nominal slice thickness in the axial plane

sing a list-mode maximum-likelihood expectation-maximization

ML-EM) algorithm with 33 ordered subsets and 3 iterations, and

he system model included time-of-flight as well as normalization,

ttenuation, randoms, and scatter corrections, where rescaled low-

ose CT images were utilized for attenuation correction of PET im-

ges. All patient PET/CT images were selected from our health sys-

em patient image database by a board-certified radiologist (DAT)

ollowing approval for this study from the Institutional Review

oard at the Hospital of the University of Pennsylvania along with

 Health Insurance Portability and Accountability Act waiver. 20

onspicuous lung lesions and 20 conspicuous liver lesions were as-

essed to illustrate the disease quantification approach. We also as-

essed 10 non-conspicuous lesions (3 lung lesions and 7 liver le-

ions) for comparison of the disease quantification approach per-

ormance with that for conspicuous lesions. An LOO strategy was

sed for evaluation. 

The objects (i.e., organs) considered were PS (LPS + RPS) (i.e., the

ungs) and Lvr (i.e., the liver) in this initial study. Other objects

hown in the hierarchy of Fig. 2 are needed for accurate recogni-

ion of the objects for which DQ is performed. Organ-level refer-

nce standard measurements were obtained by aggregating lesion-

evel reference standard measurements from all lesions within the

rgan of interest, with SUV Mean calculated as the mean of all lesion

UV Mean values, SUV Max as the maximum of all lesion SUV Max val-

es, and TLG O as the sum of TLG values of all lesions within the

rgan. 

Representative estimated disease maps of metastatic cancer le-

ions for liver and right lung are displayed in Fig. 6 for meth-

ds DQ-AO and DQ-MO. The recognized object fuzzy mask for

Q-AO and the specified binary object mask for DQ-MO are

hown overlaid on the underlying CT and PET images in the top

wo rows. Similarly, Fig. 7 shows representative estimated fuzzy

isease maps for method DQ-ML. As one can see from these

xamples, given appropriate ROI placement by AAR or by the

anual approach for objects or lesions, the disease map within

he ROIs can correctly capture conspicuous lesions within the

OIs. 

Table 4 lists the mean and standard deviation of errors (abso-

ute and %) in estimated disease quantities Q X (TLG, SUV Mean , and

UV Max ) for patient lesions (including conspicuous and non- con-

picuous types) within the liver and lungs using the DQ-AO and
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Fig. 6. Examples of disease maps of metastatic cancer lesions estimated at the organ level by methods DQ-AO (top two rows) and DQ-MO (bottom two rows) for Lvr (liver) 

and RPS (right pleural space including right lung). Only single representative axial slices of the CT, PET, and associated disease map images (left to right) are shown from 

these two different patient data sets in different organs. 

Fig. 7. Examples of disease maps of metastatic cancer lesions estimated at the lesion level by method DQ-ML for liver lesions (top row) and lung lesions (bottom row). In 

the top row, the other prominent hot spot is not a liver lesion but comes from the uptake in heart. Only single representative axial slices of the CT, PET, and associated 

disease map images (left to right) are shown. 
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Table 3 

Summary of normal and patient PET/CT data sets used in this study. Conspicuous lesions (40 in total) and non-conspicuous lesions (10 in total) are both 

included. 

Data set Number of subjects, 

number & type of 

lesions 

Scan details Image size/ voxel size 

Im Normal 16 (no lesions) Whole-body, unenhanced, axial PET: 144 × 144 × 338–443, 4 × 4 × 4 mm 

3 

CT: 512 × 512 × 338–443, 1.2 × 1.2 × 4 mm 

3 

7 (10 non-conspicuous 

lesions: 7 liver + 3 

lung) 

Whole-body or from skull base 

to proximal thighs, 

unenhanced, axial 

PET: 200 × 200 × 326–440, 4.07 × 4.07 × 3.00 mm 

3 

CT: 512 × 512 × 326–440, 0.98 × 0.98 × 3.00 mm 

3 

D m , C m 

Pathological 

14 (20 conspicuous 

lung lesions) 10 (20 

conspicuous liver 

lesions) 

Whole-body or from skull base 

to proximal thighs, 

unenhanced, axial 

PET: 200 × 200 × 326–440, 4.07 × 4.07 × 3.00 mm 

3 

CT: 512 × 512 × 326–440, 0.98 × 0.98 × 3.00 mm 

3 

Table 4 

Mean and standard deviation of % errors and absolute errors in estimating TLG, SUV Mean , and SUV Max on patient PET/CT scans for all lesions within the liver 

and lungs via DQ-MO and DQ-AO. 

Method Liver lesions Lung lesions All lesions 

DQ-MO DQ-AO DQ-MO DQ-AO DQ-MO DQ-AO 

TLG error Absolute (cc) 

mean (SD) 

78.74 (93.92) 105.70 (127.74) 12.23 (22.60) 21.65 (41.6) 46.06 (66.67) 67.49 (94.55) 

% mean (SD) 11.30 (7.22) 12.27 (8.85) 9.55 (4.05) 14.67 (9.24) 9.81 (9.77) 13.65 (11.75) 

SUV Mean error Absolute mean 

(SD) 

0.52 (0.41) 0.42 (0.26) 0.83 (1.01) 0.69 (0.97) 0.66 (0.57) 0.62 (0.65) 

% mean (SD) 12.62 (6.60) 11.18 (6.59) 18.59 (14.19) 17.48 (9.57) 16.23 (13.47) 14.97 (13.79) 

SUV Max error Absolute mean 

(SD) 

0.50 (1.47) 0.46 (1.37) 0.56 (1.00) 0.56 (1.00) 0.47 (1.28) 0.45 (1.22) 

% mean (SD) 0.39 (0.49) 0.39 (0.49) 0.07 (0.14) 0.07 (0.14) 0.26 (0.81) 0.27 (0.80) 

Table 5 

Mean and standard deviation of % errors and absolute errors in TLG, SUV Mean , and SUV Max estimation 

on patient PET/CT scans for individual conspicuous lesions within liver and lung via DQ-ML. 

Liver lesions Lung lesions All lesions 

TLG error Absolute (cc) 

mean (SD) 

5.06 (6.01) 11.26 (23.07) 8.23 (17.14) 

% mean (SD) 6.63 (3.78) 11.83 (3.92) 9.07 (3.86) 

SUV Mean error Absolute mean 

(SD) 

0.14 (0.11) 0.58 (0.33) 0.34 (0.33) 

% mean (SD) 3.80 (3.21) 9.68 (7.13) 6.71 (5.17) 

SUV Max error Absolute mean 

(SD) 

0.0 01 (0.0 03) 0.0 0 (0.0 0) 0.0 0 01 (0.0 0 02) 

% mean (SD) 0.04 (0.02) 0.0 0 (0.0 0) 0.02 (0.01) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Mean and standard deviation of % errors and absolute errors in TLG, SUV Mean , and 

SUV Max estimation for patient conspicuous vs. non-conspicuous (liver and lung) le- 

sions using DQ-ML method. 

Lesion type No. of lesions Conspicuous Non-conspicuous 

40 10 

TLG error Absolute (cc) 

mean (SD) 

8.23 (17.14) 15.22 (15.92) 

% mean (SD) 9.07 (3.86) 18.60 (14.28) 

SUV Mean error Absolute mean 

(SD) 

0.34 (0.33) 1.71 (0.65) 

% mean (SD) 6.71 (5.17) 13.84 (10.34) 

SUV Max error Absolute mean 

(SD) 

0.0 0 01 (0.0 0 02) 0.0 01 (0.0 01) 

% mean (SD) 0.02 (0.01) 0.04 (0.01) 

D  
DQ-MO methods with respect to the quantities from the reference

method over test data sets Cm . 7 Table 5 lists comparable results us-

ing the DQ-ML method on conspicuous lesions, and Table 6 shows

results for the DQ-ML method separately for conspicuous and non-

conspicuous lesions. As in Table 2 , we list the absolute errors and

% errors in Tables 4–6 . 

From Tables 4–6 , we observe the following. Disease quantifica-

tion at the lesion level via the DQ-ML method generally had lower

%errors than at the organ level via the DQ-MO or DQ-AO methods,

and the errors were generally lower for liver lesions compared to

lung lesions at the lesion level via the DQ-ML method. TLG esti-

mation from the proposed approach achieved lower %error than

for SUV Mean estimation. For all methods, the estimation of SUV Max 

was most accurate with less than 0.5% error. 

For disease quantification at the organ level, TLG estimation via

the DQ-MO method had lower %error than that via the DQ-AO

method for liver lesions and higher error for lung lesions. SUV Mean 

estimation via the DQ-MO method had lower %error than via the
7 The absolute errors for TLG may appear large in Table 4 , but note that true TLG 

itself is very large at the organ level (in the 10 0 0 s) because of contribution from all 

lesions in the object region, and more importantly, due to multiplication of volume 

by SUV. 

t  

e  

M

 

c  

w  
Q-AO method for both liver and lung lesions, whereas SUV Max es-

imation via the DQ-MO and DQ-AO methods had similar levels of

rror. However, none of the differences between DQ-AO and DQ-

O methods is statistically significant. 

Table 6 shows that the proposed DQ-ML method has higher ac-

uracy for conspicuous lesions than for non-conspicuous lesions,

hich is not surprising given the challenges in establishing ground
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Table 7 

Comparison of the AAR-DQ approach with recent literature for disease burden estimation on PET/CT images considering TLG error, SUV Mean and SUV Max . 

Methods Number of Training, 

testing samples, cross 

validation 

Phantom and 

number 

Error in disease burden estimation 

Med. Phys., ( Ford et al., 

2006 ) 

Threshold based 

segmentation for 

tumors on PET 

– NEMA, 20 18 F SUV Max errors within 0.0%-60% for spheres from 

the largest to the smallest, no TLG error 

reported 

Semin CT MR, 

( Kinahan, and Fletcher, 

2010 ); Doot et al. Med. 

Phys. ( Doot et al., 2010 ) 

Manually draw circles 

with diameter 10 mm 

at sphere centers for all 

spheres 

– NEMA, 20, 18 F/ 

Ge 68 

SUV Max , SUV Mean errors within 0.0%-60% for 

spheres from largest diameter (37 mm) to the 

smallest (10 mm) 

EJNMMI Phys, 

( Ziegler et al., 2015 ) 

Manually draw circles 

(only for 4 spheres) 

around lesions on PET 

– NEMA, 20 18 F SUV Mean error within 19.8%–63.2%, no TLG error 

reported 

CMIG, ( Taghanaki et al., 

2018 ) 

Multiple random forest 

machine learning 

approach to predict 

disease burden 

55 patients, each 

patient with one 

(conspicuous) tumor, 

LOO cross validation 

NEMA, 20 18 F For phantom, 13.03% for TLG error (no SD for 

TLG reported); activity (SUV Mean ) error 

5.7 ± 5.25%, no SUV Max error reported 

For patient, 13.83% ± 21.47% for SUV Mean error 

and 12.17% ± 5.34% for TLG error 

Proposed approach Disease-map-based 

approach for 

object/lesion level DQ 

40 conspicuous lesions, 

10 non-conspicuous 

lesions, LOO cross 

validation 

NEMA, 20 Ge 68 For phantom, at object level DQ, TLG error 

5.82% ± 1.86% with SUV Mean error < 3%, SUV Max 

error close to zero; 

For patient, lesion level DQ, TLG error 

9.1% ± 3.9% with SUV Mean error < 7%, SUV Max 

error < 1% 
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ruth measurements for non-conspicuous lesions. Yet, even for

on-conspicuous lesions, the proposed approach for TLG, SUV Mean ,

nd SUV Max estimation was accurate in approximately 81%, 86%,

nd 100% of lesions in terms of %error. 

To our knowledge, disease quantification at the object (organ)

evel without explicit object delineation on PET/CT images has not

een previously reported in the literature, whereas almost all lit-

rature exists regarding PET/CT-based disease quantification at the

esion level. In our study, object level TLG estimation had a %er-

or of 5.82% ± 1.86% via the DQ-MO method on PET/CT phantom

ata sets, and 9.81% ± 9.77% and 13.65% ± 11.75% via the DQ-MO

nd DQ-AO methods, respectively, on PET/CT patient data sets. At

he lesion level, TLG estimation had an error ranging from 2 to 37%

ia the DQ-ML method on PET/CT phantom data sets depending on

he “lesion” size, and an error of 9.07% ± 3.86% on PET/CT patient

ata sets. These lesion level results are comparable to those from a

ost recent study by Taghanaki et al. on PET/CT phantom data sets

hich utilized a multiple layer random forest tree method based

n features extracted from 3D patches (very similar to deep learn-

ng approaches Taghanaki et al., 2018 ). This method reported an

verage relative absolute error of 12.17% ± 5.34% for lesion level

LG estimation, a relative absolute error of 13.83% ± 21.47% for

stimating SUV Mean of lesions smaller than 2 mL in volume for

atient data, as well as an error of 5.70 ± 5.25% for estimat-

ng SUV Mean on NEMA phantom data. From our approach, SUV Mean 

rror (2.22% ± 1.20%) and SUV Max error (close to zero) on the

ame phantom data are better than results in Kinahan and Fletcher

2010), Doot et al. (2010) , and Taghanaki et al. (2018) . More general

omparison between our approach and related research in the lit-

rature is summarized in Table 7 . 

We must note that a quantitative understanding/grading of the

eported methods is almost impossible since the data sets used,

cquisition protocols and resolutions, considered objects, training

nd test data set subdivisions, and cross validation strategies are

ll different in these methods. Table 7 summarizes recent litera-

ure ( Kinahan and Fletcher, 2010; Doot et al., 2010; Taghanaki et al.,

018; Ford et al., 2006; Ziegler et al., 2015 ) dealing with disease

urden estimation on PET/CT. Some methods have been tested on

he NEMA phantoms. Methods based on deep learning techniques

enerally require a large number of training data sets. 
r  
Among all methods listed in Table 7 , the one in

aghanaki et al. (2018) comes close in spirit to our approach.

here are several advantages of our approach over that in

aghanaki et al. (2018) . (i) We demonstrate the generality of AAR-

Q at object level and lesion level, with both manual and auto-

atic recognition steps, while the referred work seems to operate

nly at lesion level. It is not clear in Taghanaki et al. (2018) how

he lesion-level ROIs are generated with the only information

rovided stating that ROIs were drawn around lesions by an

xpert on PET. We must also note that AAR-DQ is set up in a

eneral manner so it can make use of existing object models

nd anatomy models constructed for other applications involving

bject segmentation, etc. The only additional component required,

amely disease map, is easily encoded into the anatomy model.

ii) AAR-DQ requires much smaller number of training samples

han Taghanaki et al. (2018) . (iii) The performance of our approach

as comparable to Taghanaki et al. (2018) on patient (lesion-level)

ata sets but better than that reported in ( Taghanaki et al., 2018 )

n phantom data sets. (iv) Our disease map estimation (training)

tep takes ∼2 min on a desktop computer with 4 Intel i7-core

PUs, 64GRAM, and under Ubuntu 16.04 OS. Computational timing

s not reported in ( Taghanaki et al., 2018 ) and we suspect that its

raining step is lot more time-consuming. 

. Concluding remarks 

In this initial study, we present a new methodology called AAR-

Q for disease quantification on PET/CT images, keeping in mind

he primary tasks for which diagnostic imaging is employed in

he clinical management of cancer patients. AAR-DQ extended the

reviously-developed AAR technology ( Udupa et al., 2014 ) to dis-

ase quantification by stopping at the object recognition step and

erforming disease quantification directly from object location in-

ormation, permitting the methodology to skip the rather challeng-

ng and somewhat ill-defined step of explicit object delineation.

ur long-term goal is to adapt AAR-DQ for body-wide automatic

isease quantification on PET/CT images building on the general-

ty of AAR in body-wide object recognition/delineation. AAR-DQ

dopts a fuzzy strategy throughout – for object modeling, object

ecognition, disease mapping, and disease quantification. This al-
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lows handling of disease gradation without the need to perform

explicit partial volume correction and committed binary classifi-

cation. Three methods were presented for disease quantification,

two at the object (e.g., organ) level – DQ-AO and DQ-MO, and one

at the lesion level – DQ-ML. Commercially available clinical soft-

ware was used to generate reference disease measurements at the

lesion level with the assistance of a manually guided method of

quantification as needed. By using these reference quantities, eval-

uations were carried out using both NEMA phantoms and clinical

FDG-PET/CT image data sets in patients with metastatic cancer. 

A challenge that we encountered in the development of AAR-

DQ is the establishment of a reliable method of deriving reference

disease quantities at the lesion, organ, and even body region lev-

els. This is a serious hurdle to automatic disease quantification. As

mentioned above, in case of ill-defined, small, or multifocal lesions,

commercially available software often fails to properly delineate

the lesions. Although the use of phantoms offers the possibility for

ground truth assessments, they do not tender the same challenges

as those encountered in real patient PET/CT images. Another ob-

stacle is the lack of normative PET data sets. Whatever is the ap-

proach for quantification, knowledge of normative distribution of

SUV in organs becomes crucial to establish disease quantity to ex-

press deviation from normality. 

One shortcoming of this investigation is the small number of

data sets used for evaluation. However, as notable from Table 7 ,

our study is not an outlier in this regard. One of the barriers we

experienced in employing larger data sets was the effort needed

in establishing ground truth disease quantity irrespective of con-

spicuous or non-conspicuous lesions. AAR-DQ has no inherent lim-

itations in being applied to other organs throughout the body on

a substantially larger number of data sets. We are in the pro-

cess of gathering more normative data sets and generating ground

truth disease quantities for demonstrating body-wide application

of AAR-DQ on a much larger cohort. 

Another potential limitation of AAR-DQ ensues from possible

inaccuracies in object recognition. When pathology is extensive,

the AAR recognition algorithm may position the model in such a

manner that the disease quantity Q X ( O ) may show substantial er-

rors. At the lesion level, this may lead to an increase in false pos-

itives and false negatives. We are actively pursuing extensions of

AAR recognition algorithms for handling such situations. Note that

in DQ-MO with organ-level manual recognition, the accuracy of

recognition, even in the case of extensive pathology, is not an is-

sue. Even confounding organs such as the kidneys which exhibit

high radiotracer content due to FDG excretion can be handled via

the specification of an ROI to exclude such objects. We can have

a composite ROI consisting of additive and subtractive ROIs, the

main goal being accurate and efficient interactive means of offer-

ing recognition help. Once we accurately localize objects, the dis-

ease quantification procedure can be smoothly followed. 

In this paper, we did not explore fully automatic lesion level DQ

where recognition not just at organ level but also at lesion level is

automatic (we may refer to such a strategy by DQ-AL). Once an

organ O is recognized in I CT and the disease map d O ( x ) is com-

puted, we have a fuzzy membership image given by d O ( I S ( v )) cor-

responding to SUV image I S (cf Eq. (4) ). The fuzzy connectedness

machinery (Udupa et al., 1996 ) can then be applied to this dis-

ease membership image to label all fuzzy components in the image

automatically by using the homogeneity of disease membership

as the affinity function. Subsequently, the disease quantity Q X can

be computed for each separate fuzzy component. The background

non-lesion region will also be labeled as a separate fuzzy compo-

nent by this approach. We will investigate such a DQ-AL approach

in the future for outputting Q X ( O ) at the lesion level automatically.

We will also consider more sophisticated functional forms for d O ( x )

which may allow for more accurate disease mapping. Since radio-
racers other than FDG are also being actively studied as molecular

robes for imaging of disease conditions, generalization of AAR-DQ

o PET images acquired following administration of non-FDG radio-

racers is also a future goal of ours. 
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ain contributions 

1. A general single framework for disease quantification via

PET/CT images that is independent of objects and body regions

and that can operate seamlessly at the body region level, organ

level, and lesion level. 

2. Disease quantification performed without explicit delineation of

body regions, organs, or lesions following immediately after or-

gans are roughly localized (recognized) via the previously re-

ported AAR approach. 

3. Disease quantification on PET images without explicitly ac-

counting for or correcting for partial volume effects and disease

heterogeneity but by using fuzzy principles for object mod-

els, object localization, and disease mapping that considers SUV

distributions within both normal organs and lesions. 

4. A comprehensive evaluation based on phantom as well as pa-

tient data sets and analysis of results at object and lesion level

and on conspicuous and more challenging non-conspicuous le-

sions. 
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