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Purpose: There are several disease conditions that lead to upper airway restrictive disorders. In the
study of these conditions, it is important to take into account the dynamic nature of the upper airway.
Currently, dynamic magnetic resonance imaging is the modality of choice for studying these diseases.
Unfortunately, the contrast resolution obtainable in the images poses many challenges for an effective
segmentation of the upper airway structures. No viable methods have been developed to date to solve
this problem. In this paper, the authors demonstrate a practical solution by employing an iterative
relative fuzzy connectedness delineation algorithm as a tool.
Methods: 3D dynamic images were collected at ten equally spaced instances over the respiratory
cycle (i.e., 4D) in 20 female subjects with obstructive sleep apnea syndrome. The proposed segmen-
tation approach consists of the following steps. First, image background nonuniformities are corrected
which is then followed by a process to correct for the nonstandardness of MR image intensities. Next,
standardized image intensity statistics are gathered for the nasopharynx and oropharynx portions of
the upper airway as well as the surrounding soft tissue structures including air outside the body region,
hard palate, soft palate, tongue, and other soft structures around the airway including tonsils (left and
right) and adenoid. The affinity functions needed for fuzzy connectedness computation are derived
based on these tissue intensity statistics. In the next step, seeds for fuzzy connectedness computation
are specified for the airway and the background tissue components. Seed specification is needed in
only the 3D image corresponding to the first time instance of the 4D volume; from this information,
the 3D volume corresponding to the first time point is segmented. Seeds are automatically generated
for the next time point from the segmentation of the 3D volume corresponding to the previous
time point, and the process continues and runs without human interaction and completes in 10 s
for segmenting the airway structure in the whole 4D volume.
Results: Qualitative evaluations performed to examine smoothness and continuity of motions of the
entire upper airway as well as its transverse sections at critical anatomic locations indicate that
the segmentations are consistent. Quantitative evaluations of the separate 200 3D volumes and the
20 4D volumes yielded true positive and false positive volume fractions around 95% and 0.1%,
respectively, and mean boundary placement errors under 0.5 mm. The method is robust to variations
in the subjective action of seed specification. Compared with a segmentation approach based on a
registration technique to propagate segmentations, the proposed method is more efficient, accurate,
and less prone to error propagation from one respiratory time point to the next.
Conclusions: The proposed method is the first demonstration of a viable and practical approach
for segmenting the upper airway structures in dynamic MR images. Compared to registration-based
methods, it effectively reduces error propagation and consequently achieves not only more accurate
segmentations but also more consistent motion representation in the segmentations. The method is
practical, requiring minimal user interaction and computational time. C 2016 American Association
of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4945698]
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1. INTRODUCTION
1.A. Background

Several important medical conditions in childhood, such as
obesity, polycystic ovary syndrome, adenotonsillar hyper-
trophy, and craniofacial and genetic disorders that are asso-
ciated with upper airway restriction during sleep, often lead
to obstructive sleep apnea syndrome (OSAS).1 When left un-
treated, pediatric OSAS carries significant sequelae including
neurocognitive and behavioral deficits along with other cardio-
vascular and metabolic derangements including hypertension,
glucose intolerance, and diabetes mellitus.2 When trying to
understand the mechanisms of airway obstruction during
sleep in these conditions and the impact of various effects
of treatment, it is imperative to take into account the dynamic
changes that occur in the upper airway during the respiratory
cycle under natural breathing conditions as much as possible.
As such, various dynamic imaging protocols have been
investigated in the study of the upper airway in these subjects
including magnetic resonance imaging (MRI), computerized
tomography (CT), and optical coherence tomography (OCT).
While OCT offers high spatial resolution, it is intrusive, has
poor depth of penetration, and has shadowing effects. CT
affords good spatial and reasonable temporal resolution but has
poor contrast resolution for soft tissue structures and has radi-
ation concerns especially in the dynamic mode and in imaging
children. Therefore, at present, dynamic MRI is the modality
of choice in studying the upper airway in these disorders.3,4

Two types of approaches have been used to study OSAS
with imaging. The first is one of the syntheses wherein a
patient-specific biomechanical model of the upper airway is
established5,6 to simulate airway dynamics by making use of
the anatomic information derived from the patient images.
The model parameters and behavior are used to characterize
OSAS. Its effectiveness depends on the data used for building
the model and the fidelity of the model. The second approach
is one of the analyses wherein image data are processed
to harness optimally OSAS-specific information that may
reside in the images.5 Its effectiveness also depends on the
information content of the image data and the processing
methods. Whatever is the approach taken to study OSAS from
images, a fundamental step that becomes necessary is the
segmentation of the upper airway in the acquired images.

Because of the sparse, tubular nature of the upper airway
and the surrounding low-contrast hard and soft structures,
inadequate contrast resolution obtainable in the MR images
leaves many challenges for an effective segmentation of the
dynamic airway in 4D MR images. Due to the 4D nature
of the images, manual or interactive segmentation becomes
impractical in studying patient populations because of the
extensive human labor involved. Any practical method should
be either fully automatic or call for minimal user interaction,
with minimal user-related bias, in segmenting each 4D MRI
data set. The only 3D methods for upper airway segmentation
that we are aware of are those described in previous Refs. 7
and 8. A method based on absolute fuzzy connectedness
(FC) whose goal was to perform segmentation on static
3D MRI images was previously proposed.8 Another general

methodology called automatic anatomy recognition (AAR),
based on body-wide fuzzy models, demonstrated its ability
to locate and delineate objects in 3D static images from
different parts of the body including the neck and upper airway
region where 14 objects in the vicinity of the upper airway
were considered.7 No viable methods have been currently
demonstrated in the literature for the segmentation of the upper
airway in 4D dynamic MR image data sets.

1.B. 4D image segmentation in other areas

4D image segmentation approaches for brain,9 breast,10

lungs,11 heart,12–16 aorta,17 and kidneys,18 and time-varying
vocal tract outline19 have been studied. In general, ap-
proaches to 4D image segmentation can be grouped into
two categories. The first category is true 4D segmentation
where all volumes are considered at the same time. Several
segmentation frameworks including graph-based 4D optimal
surface detection,17,20 hidden Markov model,9 level sets,10

and 4D probabilistic atlases15 have been proposed in this
category. As an example, a 4D probabilistic atlas approach for
heart segmentation was proposed15 which includes spatial and
time-varying probability maps for the left and right ventricles,
using which 3D volumes at all phases are segmented at the
same time. The 4D atlas (multiple 3D atlases over time)
was constructed by manually segmenting all 3D sequences
from 14 volunteers. The disadvantage of this approach is that
much labor is required for building the 4D atlas. The second
category is to adopt registration related techniques11–14,16–19

which are the common approaches for 4D image segmentation
by performing segmentation individually in each 3D volume.
A 4D image is segmented by first manually carrying out
segmentation of a 3D spatial volume corresponding to one
time point (TP) and then propagating the manual segmentation
to other time points to achieve segmentations at those time
points. This is done by morphing the manual segmentation by
the deformation needed to register the 3D reference volume
to the volume at other time points. The rationale behind this
approach is that the motion between successive time points
is small, smooth, and consistent. Since this is the paradigm
considered in this paper, some examples of this approach from
the literature are reviewed below briefly.

Deformable image registration was used to propagate
manual segmentations of the heart, left and right lung,
and spinal cord in CT images at end inspiration to other
respiratory phases.12 An algorithm for 4D cardiac micro-CT
segmentation using histogram and region sampling technique
was previously proposed.13 The method yielded consistent
functional measurements for the left ventricle but it was not
readily applicable to the myocardium and the other chambers
of the heart. Another example of segmentation of 4D cardiac
gated micro-CT images of the mouse is to make manual
segmentation first in one phase and then propagate to other
phases via registration.14 Yang et al.11 also follow a similar
approach for segmenting the lungs via 4D thoracic MRI. The
only difference is that they use spatiotemporal information
about diaphragm movement to optimally select one 3D volume
as reference instead of using the volume at end inspiration.
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Song et al.18 performed 4D MR image analysis of dynamic
kidney images by combining registration and 4D time-series
segmentation techniques. Given a 4D MR renography image,
kidneys are first manually cropped from the whole body image
and then rough rigid alignment is done by registering every 3D
volume to a reference volume. The aligned image series is then
segmented using the 4D time series algorithm. Registration,
time series estimation, and segmentation are then per-
formed iteratively. Bresch and Narayanan19 proposed a region
segmentation algorithm in the frequency domain and applied
to upper airway real-time MRI slice images. The goal is to
extract the time-varying vocal tract outline and the position of
the articulators to facilitate the study of the time-varying shape
of the vocal tract during speech production. The segmentation
algorithm builds an anatomically informed object geometrical
model, and then the model with its intensity information is
fitted to the image by registration between the model and every
3D image in the MRI sequence. Different strategies are used,
such as, for tongue, translation, rotation, and scaling, but for
epiglottis, only translation and rotation. A registration-based
framework for whole heart segmentation by propagating the
segmentation from a template 3D ultrasound volume to other
volumes in a 4D image through registration was proposed16

which utilizes a new similarity measure combining local phase
and intensity information, and local geometry.

Several limitations of the approaches based on registration
in the second category motivated us to develop the proposed
method for upper airway segmentation. These approaches
require a reference volume, a similarity metric, and an optimal
searching method to be carefully chosen that are appropriate
for the problem at hand. The registration-based approach to
4D images is somewhat inefficient. It is also known that
the larger the difference between the two 3D volumes, the
more iterations required for registration to converge. Further,
when this difference is large, registration may not produce
accurate results. Usually adjacent volumes are therefore used
for registration, but then the propagated and accumulated
registration error may become significant for volumes at later
time points. Most importantly, for sparse objects like the upper
airway structure, image registration may fail to bring the
focus of registration to these thin, subtle, tubular structures,
resulting in registration errors that are substantially compared
to the thickness/width of these structures, which can lead to
unacceptable segmentation results and motion estimation.

In this paper, a nonregistration based segmentation
approach is proposed for 4D dynamic upper airway MR
images based on an iterative relative fuzzy connectedness
(IRFC) algorithm21 which calls for minimal user interaction.
IRFC is a top-of-the-line algorithm in the FC family which
operates with the basic principles of FC but by iteratively
reinforcing the segmentation evidence in a conservative
manner.22 IRFC leads to more effective segmentations using
relative connectedness to minimize moderately strong paths
seeping through the object of interest. The basic idea is to
identify the “core” of the object through relative connectedness
in the first iteration. Then this region is excluded from being
considered by other co-objects for tracking their connectivity
path through.23,24 Like other FC members, IRFC requires seeds

to be specified in the object as well as in the background
components. While we are developing automatic means of
generating these seeds guided by anatomic models,7 in this
paper, we study an approach wherein the seeds are specified
interactively on the images corresponding to only one time
point, and the rest of the 4D segmentation process proceeds
without requiring human interaction, as described in Sec. 2.
Due to the theoretically provable robustness property of FC
methods to varying seeds,21–26 only a few seed points are
needed for the object and the co-objects surrounding the object
of interest. Once seeds of the object and background co-objects
are correctly identified on the remaining time point images and
affinity functions are correctly set up as described in Sec. 2,
IRFC can automatically and efficiently segment the target
object at all time points. We demonstrate the performance of
the method on T1-weighted MRI sagittal images of the upper
airway region of patients with OSAS in Sec. 3 where we
compare its performance quantitatively to a registration-based
segmentation propagation method. We discuss the results and
our conclusions in Sec. 4. Some preliminary results along the
lines of the study in this paper appeared previously in the
proceedings of the SPIE Medical Imaging 2014 conference.27

This paper is a significant extension over the conference paper
in the following aspects: more details on preprocessing and
the 4DIRFC engine and a formal pseudocode presentation of
the algorithm which makes it easy for others to implement the
algorithm; extensive background and literature review which
was missing in the SPIE paper; greatly enriched experimental
results by describing data sets and patients in detail, testing the
repeatability of the 4DIRFC method, and animating 4DIRFC
results; and expanded concluding remarks.

2. MATERIALS AND METHODS
2.A. Image data and preprocessing

4D dynamic MR images utilized in this paper were acquired
by a retrospective gating method.3 In this approach, image
data acquisition was triggered only if the input respiratory
signal was within predefined temporal tolerances. Abnormal
volumes arising due to events such as swallowing and deep
inhalation are discarded. Images were collected on a 3 T
Philips Achieva scanner. A 3D, T1-weighted, inversion-
prepared gradient echo sequence, acquired in the sagittal plane
and reconstructed in the axial and coronal planes, was used
for the 4D dynamic study. Thirty-six 1.1-mm thick sagittal
slices were acquired. The slices were 240×240 pixels with a
pixel size of 1×1 mm. 4D image data from 20 female subjects
with OSAS and each 4D image with ten equally spaced time
points over the respiratory cycle (a total of 200 3D volumes)
were used in our experiments. Subjects were between 14 and
18 yr of age. Table I describes the patient condition (OSAS or
PCOS) for each of the 20 subjects studied.

MR image analysis methods are challenging because of
two phenomena—image intensity nonuniformity and nonstan-
dardness. Nonuniformity refers to the presence of a slow-
varying background component of intensity which may make
the same tissue appear with widely different intensities in
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T I. Disease condition of the patients included in the study.

Disease Total

OSAS Yes No Yes No —
PCOS Yes Yes No No —
Subjects 9 6 3 2 20

Note: PCOS, polycystic ovary syndrome; OSAS, obstructive sleep apnea
syndrome.

different locations of the same acquired image set. Non-
standardness refers to the significant variation of intensities
of the same tissue region in images of different subjects
acquired on the same scanner with the same imaging sequence.
Correction to properly address these two phenomena is
essential in order to set the values of the parameters of any
segmentation algorithm in a consistent manner for meaningful
performance. As recommended in previous research,28 we
perform nonuniformity correction first29 followed by inten-
sity standardization30 of all images before performing any
segmentation operation.

2.B. 4DIRFC engine

IRFC is a top-of-the-line segmentation engine in the FC
family.21 The FC framework is graph-based. We first provide
a broad description of the basics of FC and then delineate its
adaptation to the problem at hand. All FC methods aim at
defining and delineating “objects” in an image via the concept
of the strength of connectedness of voxels or how voxels
“hang together” in the image when compared to surrounding
co-objects. The FC family has some unique characteristics
compared to other image based delineation methods.23 These
include theoretically provable robustness of segmentation to
the number and position of seeds, computational efficiency,
and the ability to capture a variety of image characteristics
including blur, noise, background nonuniformity, and prior
information about the geographic layout of objects.

Let I = (C, f ) denote a 3D image, where C is a rectangular
array of voxels and f is the MR image intensity function
which assigns a value to each voxel in C. A graph (C,α)

is associated with image I = (C, f ), where α is an adjacency
relation on C such as 6-, 18-, or 26- adjacency. Each pair
(c,d) of adjacent voxels in α is assigned an affinity value κ
(c,d). To each path π in the graph (or equivalently in I) in
the set of all possible paths Πa,b between two voxels a and b
of C, a strength of connectedness K(π) is determined, which
is defined to be the minimum of the affinities along the path.
The connectivity measure K∗(a,b) between a and b is then
defined to be K∗(a,b)=max{K(π): π ∈ Πa,b}. The notion of
connectivity measure between two voxels can be generalized
to the case of “between a set A and voxel b” by a slight
modification: K∗(A,b)=max{K(π) : π ∈Πa,b and a ∈ A}. By
using a fast algorithm to compute K∗(A,b),25 the machinery
of FC allows a variety of approaches to define and compute
objects in images by specifying appropriate affinity functions
and seed sets for objects and co-objects, and setting up a
competition among all objects. The central idea is that an
object gets defined in an image because of the presence of
other co-objects. Each object is initialized by a seed voxel (or
a set of seed voxels). Any voxel v in the image is considered to
belong to that object with respect to whose seed (seed set) v has
the highest strength of connectedness. IRFC uses an iterative
strategy for fuzzy connectedness computation wherein the
strongest connected core parts are first defined and iteratively
relaxed to conservatively capture the more fuzzy peripheral
parts subsequently.

In the IRFC algorithm, two seed sets AO and AB are
indicated for an object O (in our case, upper airway) and
the set of background objects B, respectively. Then the object
indicated by AO is separated from the background indicated
by AB by an iterative competition in connectivity measure
between AO and every voxel c ∈ C and AB and c. In the
proposed interactive IRFC method, AO and AB are specified
with human interaction in the 3D image corresponding to the
first time instance of the 10 time point 4D image. Affinities
κO(c,d) and κB(c,d) for O and B are designed separately.
Subsequently they are combined with affinity κ by taking a
fuzzy union of κO and κB: κ(c,d) =max{κO(c,d),κB(c,d)}.
Each of κO and κB has two components. The description below
is for κO. The same applies to κB,

κO(c,d)= w×ψO(c,d)+ (1−w)×ϕO(c,d). (1)

F. 1. Left: seed selection for 4DIRFC at first time point. Yellow dots denote seeds for the object and red dots indicate seeds for the co-objects. Middle:
Connectedness map from 4DIRFC at the time point indicated. Right: surface rendering of the 3D segmentation (color in online version only).
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F. 2. Segmentation results are overlaid on MRI slices over a full respiratory cycle at one fixed slice position for data from one subject.

Here, ψO(c,d) represents a homogeneity component of
affinity, meaning, the more similar image intensities f (c) and
f (d) are at voxels c and d, the greater is this component
of affinity between c and d. ϕO(c,d), the object feature

component, on the other hand, describes the “degree of
nearness” of the intensities at c and d to an intensity expected
for the object O under consideration. For both ψO and ϕO, we
use a Gaussian function as follows:

ψO(c,d)= exp(−[ f (c)− f (d)]2/2σ2
ψO

), (2)

ϕO(c,d)= exp(−max{( f (c)−mϕO)2/2σ2
ϕO
, ( f (d)−mϕO)2/2σ2

ϕO
}), (3)

where σψO
is a homogeneity parameter that indicates the

standard deviation (Sd) of intensities within object O. Param-
eters mϕO and σϕO are the mean andstandard deviation of
object intensities which are estimated from a few sample
object- and background-tissue regions and then fixed once
for all. This is why MRI nonuniformity correction and
standardization become crucial. For the upper airway object,
a half-Gaussian form for Eq. (3) (that is, right half of the
curve only) is chosen centered at mϕO, the idea being that if

f (c) and f (d) are both lower than mϕO then this component
of affinity should be maximum. This is because the airway
regions appear dark in MR images. The background tissue
regions considered constitute essentially the tissue regions
surrounding the airway: air outside the body region, hard
palate, soft palate, tongue, and other soft structures around the
airway including tonsils (left and right) and adenoid. Based
on our past experience with FC methods in other applications,
we set w = 0.5 and σψO

=σψB
. Once the affinity functions are

F. 3. Surface renditions of the airway structure for all ten time points for the subject data set shown in Fig. 2.

Medical Physics, Vol. 43, No. 5, May 2016
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specified, the interactive IRFC process proceeds as follows:

Procedure 4DIRFC
In: A 4D MRI/CT Image, affinity parameters for the object and
co-objects.
Out: 4D binary image representing upper airway.
Begin
Step 1. Perform non-uniformity correction and standardization (for
MRI only and not for CT);
Step 2. Specify seed sets AO and AB in 3D image of Time Point 1;
Step 3. Generate segmentation S of current 3D image by calling IRFC

with seeds AO and AB and affinity κ;
Step 4. Generate new seed set AO for next time point from S;
Step 5. If all time points are not covered, go to Step 3;

Else, output 4D binary image;
End

To start off, in the 3D image corresponding to the first time
point, we specify seed sets AO and AB in the different tissue
components mentioned above. The IRFC algorithm is then
launched which results in a segmented binary volume. The
algorithm then proceeds to the next time point by propagating
seed sets from the previous to the next time point, and in
this manner, the entire respiratory cycle is covered. Since the
background tissue regions move very little with respiration,
we reuse seed set AB from the previous time point for the
next time point. AO for the next time point is modified by
applying a morphological erosion operation to the binary
segmented volume in the previous time point, the idea being
that voxels in the core part of the airway structure remain in
the same spatial position in all phases of the airway object
over the breathing cycle. All affinity functions remain the
same throughout all time points. Given the seed sets and
affinity functions, delineation is completed automatically for
the remaining time points. The procedure for the 4DIRFC
method is summarized above. It calls the IRFC engine of
Ref. 26.

3. EXPERIMENTS, EVALUATION, AND DISCUSSION

Experiments are carried out on image data from 20 subjects
and each subject with 10 3D images. Evaluation utilized all

F. 4. Axial cross section of upper airway at different anatomic locations.

200 3D images and was based on comparison with both
manually drawn ground truth segmentations as well as results
produced by a segmentation propagation method that used
registration.

3.A. Comparison with manually guided
segmentations

The 4DIRFC algorithm has been integrated into the 
(Ref. 31) software system32 with a friendly and flexible
interface for interactively specifying seeds, setting affinity
functions, and viewing results immediately. Object and co-
object seeds can be placed on one or more 2D slices.
Once seeds and affinity functions are set, the 3D fuzzy
connectedness map is computed and displayed in seconds,
see Fig. 1.

The fuzzy connectedness map indicates the strength of
connectedness K∗(AO,b) of the voxels b to the object seed
set AO that are greater than the strength of connectedness
to the background seed set. Voxels where the strength of
connectedness to the background seed set is greater are
indicated with 0 value in the connectedness map. The fuzzy
connectedness map can be directly volume rendered or de-
fuzzified at a threshold just above 0 and subsequently surface

F. 5. An example of the image with poor contrast resolution. Left to right: original image, image after nonuniform correction and standardization, segmentation
from the proposed approach, and ground truth segmentation.

Medical Physics, Vol. 43, No. 5, May 2016



2329 Tong et al.: Minimally interactive segmentation of 4D dynamic upper airway MR images 2329

T II. Quantitative evaluation of segmentation from 4DIRFC with TPVF, FPVF, and HD.

Time points TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 Mean

TPVF (%) mean 94.21 94.95 95.31 95.10 95.66 95.26 95.24 95.26 94.69 94.72 95.04
Sd 7.04 5.60 5.19 7.44 5.31 6.40 6.88 6.95 7.70 8.23 6.68

FPVF (%) mean 0.06 0.05 0.06 0.05 0.06 0.06 0.06 0.08 0.08 0.08 0.06
Sd 0.12 0.12 0.15 0.11 0.14 0.10 0.10 0.13 0.14 0.14 0.13

HD (mm) mean 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
Sd 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

rendered as shown in the figure on right. Due to the robustness
of seed selection of FC methods, just a few foreground
seeds and background seeds (around the target organ—whole
pharynx) are sufficient and the segmentation is provably
insensitive to the actual location of the seeds.21,22,25 Note
that since background seeds are propagated without change
to subsequent time points, their setting should be chosen
carefully to make sure that they are properly inside the co-
objects in all time points. If the propagated background seeds
are wrongly placed in some time points, the segmentation
may fail due to inappropriate background tissues considered
for FC competition between object and background. In our
implementation, correct propagation can be easily and quickly
checked by roaming through the ten slices along the time
dimension of the 4D image.

In Fig. 2, we display the ten time-varying slices for one
anatomic position along with the corresponding segmentations
of an OSAS patient image set. White circles at different time
points highlight the periodic motion of the airway over one
breathing period. Figure 3 demonstrates surface renditions
of the airway structure segmented from this entire 4D data
set at ten time points. The segmentation results are visually
acceptable in all ten time points in our inspection of the slices
as well as 3D renditions for this as well as other data sets. We
also visually observe the dynamic change of the axial cross-
sectional area of the upper airway at several crucial anatomic
locations as shown in Fig. 4. When displayed in cine mode,
the area visually changed smoothly in a periodic manner over
the respiratory cycle as expected.

Nonuniformity correction and intensity standardization
approaches can improve MR image segmentation results
as illustrated in previous research.33 However some images
with poor contrast resolution may offer significant challenges
for upper airway segmentation. No practical techniques for
handling such challenges have emerged. Figure 5 shows
an example of the results from the proposed approach

on one image with poor contrast resolution, and ground
truth segmentation as well as the image after nonuniformity
correction and intensity standardization.

Quantitative evaluation of the segmentation with measure-
ments of true positive volume fraction (TPVF), false positive
volume fraction (FPVF), and Hausdorff boundary distance
(HD) is shown in Table II. Results from manually guided
segmentation of all 200 3D data sets are used as ground
truth which are achieved by using the livewire tools in
.34 (The reasons for choosing this tool for creating
reference segmentations are the following. Livewire is a user-
guided delineation tool where the user provides recognition
help for boundary localization, the implemented algorithm
performs delineation, and the two processes are tightly
and synergistically integrated. The delineation performed is
guaranteed to be always agreeable to the user. Its efficiency
and precision have been shown to be better than manual
contouring.) The mean and Sd values shown for each TP are
over the 20 patients. Overall mean and Sd values are also listed
in the last column. We observe that 4D MRI volumes of the
upper airway can be segmented with the proposed approach
with mean TPVF of 94%–95%, mean FPVF of 0.05%–0.08%,
and mean HD of 0.5 mm. Note also that accuracy does not
seem to change from one time point to the next.

To illustrate the precision (repeatability) of 4DIRFC with
respect to seed specification, we list in Table III the difference
in segmentations resulting from two separate experiments
conducted by an operator wherein the seeds were specified
independently in two separate sessions. The difference in
the two segmentations is expressed for each time point over
20 subjects by computing the exclusive or (EOR) between
the segmentations. The quantity %EOR listed in Table II is
the EOR volume between two segmentations expressed as a
fraction of the volume of true segmentation. The mean %EOR
value from 400 segmentations at ten time points is 4.3%. The
mean HD measure between the two segmentations is also

T III. Repeatability of 4DIRFC with respect to seed specification.

Time points TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 Mean

EOR (%) mean 4.26 3.65 4.55 4.34 4.45 4.11 4.21 4.57 4.51 4.34 4.30
Sd 2.55 2.51 2.32 2.66 2.61 2.86 2.81 2.74 2.78 3.34 2.72

HD (mm) mean 1.01 0.94 0.95 1.00 1.00 0.95 0.94 0.95 0.89 0.94 0.96
Sd 0.52 0.52 0.51 0.52 0.52 0.52 0.52 0.52 0.50 0.52 0.52
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F. 6. Segmentation results from five time points (from left to right, time points 1, 3, 6, 8, and 10 in one breathing cycle) from manual segmentation in top
row, from registration in middle row, and from 4DIRFC in bottom row. Arrows indicate the site where IRFC and manual segmentations exhibit correct dynamic
change but the registration propagation method does not.

within 1 mm. As seen from the table, the segmentations are
highly repeatable with respect to the only subjective action
needed, namely, manual seed specification.

3.B. Comparison with a method of registration-based
segmentation propagation

In the registration approach, the segmentation at the current
time point is propagated to the next time point by using the
transformation derived from an affine registration (involving
three translation parameters, three rotation parameters, and

three scale parameters) between the volumes at the current
and next time points. Figure 6 shows the segmentation results
from the three approaches—top row for manual segmentation,
middle row for registration approach, and bottom row for
4DIRFC. The results are shown for time points 1, 3, 6, 8, and
10.

The results from 4DIRFC appear to be closer to manual
segmentation than the registration method, considering the
periodic breathing motion. Table IV lists TPVF, FPVF, and
HD measures for the registration method. Clearly 4DIRFC
achieves higher TPVF and lower FPVF and HD than the

T IV. Quantitative evaluation of the segmentation results from registration strategy.

Time points TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 Mean

TPVF (%) mean — 88.07 87.11 86.24 84.66 84.66 85.07 84.65 85.17 86.22 85.76
Sd — 6.37 7.36 8.43 8.51 9.33 9.32 9.56 8.58 8.36 8.42

FPVF (%) mean — 0.22 0.24 0.23 0.25 0.25 0.27 0.27 0.26 0.21 0.25
Sd — 0.12 0.12 0.13 0.13 0.14 0.15 0.15 0.15 0.11 0.13

HD (mm) mean — 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Sd — 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01
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F. 7. Average TPVF over the breathing period for 4DIRFC and registration method on 20 subjects.

registration method. Note that for the registration method,
the volume at the first time point is used as reference and
hence will be its result as well, and so for evaluation, results
from only the remaining nine time points are considered.
Since segmentation based on registration is implemented
in a propagating manner, the segmentation error may also
propagate. TPVF becomes lower and FPVF becomes higher
starting from TP2. A paired t-test conducted for each of the
three measures for all-time points (except the first time point
where the segmentation from manual segmentation is same
as ground truth) over all 20 data sets showed that all three
measures were better for 4DIRFC than the registration method
with statistical significance (P < 0.01). An unpaired t-test for
the three measures conducted over all time points and data sets
also showed a similar behavior, with the mean TPVF from
4DIRFC about 10% higher than that from the registration
method with statistical significance, while improvements
in FPVF and HD may not be considered substantial. The
same HD value observed at every time point is due to the
fact that HD is an average measure over the entire 3D
surface.

Both manual segmentation and 4DIRFC seem to capture
the change of the size of upper airway at different time
points and the associated motion correctly. However, the
results from registration seem to be not able to capture the
proper motion in its magnitude or periodicity, as evidenced by
cine displays of the 3D rendered surfaces over a breathing
period. Three movies named “Manual.avi,” “4DIRFC.avi,”
and “Registration.avi” animating the motion for the three
segmentation approaches are included in “4D-DynamicMRI-

Segmentations.pptx” and available at the link shown in
Ref. 35, where the differences among the animations are
highlighted by white arrows. Due to the robustness of seed
selection for 4DIRFC and since segmentation is actually
carried out on each time point, even small motions are
captured by the method which is crucial for the OSAS
application. However, the registration method fails to capture
true motion due to registration errors and not performing actual
delineation. TPVF and FPVF of all subjects over the entire
breathing cycle are shown in Figs. 7 and 8, respectively, for
the two methods. FPVF values from both methods are less
than 0.6%, and 4DIRFC achieves lower average FPVF. TPVF
of 4DIRFC is significantly higher (even up to 20%–30%, such
as for subjects 8, 12, 15, and 18) than that of the registration
method.

As seen from Figs. 7 and 8, low image quality becomes a
challenge to both registration and 4DIRFC methods on some
subjects (5, 6, and 10), although 4DIRFC still outperforms
the registration method on those images. With image quality
enhancement approaches and more effective nonuniformity
correction and standardization approaches,36 intensity values
should have more consistent tissue-specific meaning and the
performance of IRFC may further improve.

Once seed sets are specified in the 3D image corresponding
to the first time point, 4DIRFC takes on average 10 s to segment
an entire 4D image on a 4-core Intel Xeon 3.6 GHz CPU with
8 GB RAM and running the linux-jb18.3.7.20-1.16 operating
system. After segmenting the first time point 3D image, the
registration method requires on average about 3 min on the
same platform.

F. 8. Average FPVF over the breathing period for 4DIRFC and registration method on 20 subjects.
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4. CONCLUSIONS

This paper demonstrates a practical solution by employing
an iterative relative fuzzy connectedness delineation algorithm
as a tool for upper airway segmentation on 4D dynamic
MRI images. This problem has remained a challenge in the
study of OSAS where it is considered important to study the
architecture and dynamics of the upper airway in a state
very close to the tidal breathing condition. No practical
techniques for its segmentation have emerged as yet due
to the poor contrast resolution obtainable in these images.
In the proposed approach, after preprocessing to correct for
background image nonuniformities and nonstandardness of
intensities, seeds are specified for the airway and its crucial
background tissue components. Seed specification is needed
in only the 3D image corresponding to the first time instance
of the 4D volume. Subsequently the process runs without
human interaction and completes in 10 s for segmenting one
whole 4D volume. The approach achieves a mean TPVF
of about 95%, mean FPVF of about 0.1%, and mean HD
around 0.5 mm. The method is also highly reproducible
and can thus be used in a production mode. It seems to be
the first demonstration of a viable approach for segmenting
the upper airway structures in dynamic MR images. The
method is practical requiring minimal user interaction and
computational time. Compared with segmentation results
from the registration approach, the proposed method is more
accurate and efficient. Although more sophisticated (such as
deformable) registration methods37,38 are available, it does
not automatically imply that they are better for the task
at hand. We believe our choice was reasonable since the
changes are small from one time point to another. While
deformable registration may improve in some sections of the
boundary over affine, they are also known for overcorrecting
and introducing extreme deformations. While we admit that
we did not carry out comparison with deformable registration,
another reason for not considering them was that they require
much more computational time than affine methods.

As to possible future work, if the acquisition field of
view of our current dynamic MRI sequence3 is expanded
to include the entire neck region to cover other objects
surrounding the upper airway as opposed to the upper airway
region only in the current protocol, then 4DIRFC can be
extended to handle important static objects such as tonsils,
fat pad, adenoid, mandible, and soft palate in the neck region
which are currently segmented using a 3D method.39 In
this manner a single 4D algorithm can potentially handle
both static and dynamic objects. The proposed method has
potential applications in other areas such as 4D segmentation
of dynamic MRI images of the thorax for delineating pleural
space, ribs, and the diaphragm.40 It has applications also in
segmenting 4D CT images of different dynamic objects in the
body including the upper airway region.
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