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ABSTRACT  

There are several disease conditions that lead to upper airway restrictive disorders. In the study of these conditions, it is 

important to take into account the dynamic nature of the upper airway. Currently, dynamic MRI is the modality of choice 

for studying these diseases. Unfortunately, the contrast resolution obtainable in the images poses many challenges for an 

effective segmentation of the upper airway structures. No viable methods have been developed to date to solve this 

problem. In this paper, we demonstrate the adaptation of the iterative relative fuzzy connectedness (IRFC) algorithm for 

this application as a potential practical tool. After preprocessing to correct for background image non-uniformities and 

the non-standardness of MRI intensities, seeds are specified for the airway and its crucial background tissue components 

in only the 3D image corresponding to the first time instance of the 4D volume. Subsequently the process runs without 

human interaction and completes segmenting the whole 4D volume in 10 sec. Our evaluations indicate that the 

segmentations are of very good quality achieving true positive and false positive volume fractions and boundary distance 

with respect to reference manual segmentations of about 93%, 0.1%, and 0.5 mm, respectively.   
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1. INTRODUCTION 

 There are several disease conditions such as Polycystic Ovary Syndrome (PCOS) and Obstructive Sleep Apnea 

Syndrome (OSAS) that are associated with upper airway restrictive disorders. PCOS is one of the most common 

disorders associated with overweight and obesity and it affects 5-10% of adolescent girls and women of reproductive 

age. OSAS is common in obese children with risk being 4.5 fold compared to normal subjects. PCOS has recently been 

shown to be associated with OSAS that may further lead to significant cardiovascular and metabolic derangements in 

these subjects [1]. In the study of these conditions and their treatment methods, it is important to take into account the 

dynamic nature of the upper airway. As such dynamic imaging protocols have been investigated including MRI, CT, and 

Optical CT. While OCT offers high spatial and temporal resolution, it is somewhat intrusive, has poor depth of 

penetration, and has shadowing effects. CT affords good spatial and reasonable temporal resolution but has poor contrast 

resolution for soft tissue structures and has radiation concerns especially in the dynamic mode and in imaging children. 

Currently, therefore, dynamic MRI seems to be the modality of choice in studying these diseases [2]. 

Any effort (including modeling following computational fluid dynamics) to study quantitatively the upper airway and 

surrounding structures requires their segmentation as the fundamental step. Because of the sparse, tubular nature of the 

upper airway and surrounding hard and soft structures, the inadequate contrast resolution obtainable in the images leaves 

many challenges for an effective segmentation of the dynamic airway in 4D MR images. Due to the 4D nature of the 

images, manual or interactive segmentation becomes unacceptable in studying patient populations because of the 

requirement of immense human labor and time. Any practical method should be either fully automatic or call for 

minimal user interaction in segmenting each 4D MRI data set. No viable methods have been reported for the upper 

airway structures.  

4D image segmentation strategies for breast, lungs, heart, great vessels, and brain have been reported in the literature [3-

9]. Most of them employ a segmentation propagation approach wherein the image is segmented at one time point of the 
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4D volume first by using different techniques including manual segmentation, which is then propagated via image 

registration principles to images at other time points. 4D probabilistic atlases have also been attempted for the 

segmentation of cardiac structures. In this paper, we exploit the basic premise behind segmentation propagation of 

carrying over image and structure information from one time point to the next. We utilize the efficiency and competitive 

optimization capabilities of the fuzzy connectedness framework [ 10-12] to devise a practical solution to the upper 

airway 4D segmentation problem without requiring registration. We demonstrate the adaptation of the iterative relative 

fuzzy connectedness (IRFC) algorithm [12] for this application as a potential practical tool. IRFC is a top-of-the-line 

algorithm in the FC family [10, 11] which operates with the basic principles of FC but by iteratively reinforcing the 

segmentation evidence in a conservative manner. Like other FC members, it requires seeds to be specified in the object 

as well as in the background components. In our approach, the seeds are specified interactively on the images 

corresponding to only one time point and the rest of the 4D segmentation process proceeds without requiring human 

interaction.   

2.      MATERIALS & METHODS 

Image data 

The 4D dynamic MR images utilized in this paper were produced by the retrospective gating method described in [2].  In 

this process, image data acquisition was triggered only if the input respiratory signal was within pre-defined temporal 

and spatial tolerances. Abnormal volumes because of swallowing or coughing are recognized and discarded by the 

method. Images were collected on a 3T Philips Achieva scanner. A 3D, T1-weighted, inversion-prepared gradient echo 

sequence, acquired in the sagittal plane and reconstructed in the axial and coronal planes, was used for the study. Thirty 

six 1.1-mm thick sagittal slices were acquired with 30% oversampling in the slice encode direction. The slices were 240 

x 240 with a pixel size of 1 mm x 1mm. 4D image data from 10 female subjects (PCOS and OSA) with 10 time points 

over the respiratory cycle were used in our experiments. Subjects were between 14 and 18 years of age, and MRI 

acquisition was in the wake condition without patient sedation.  

Because of the non-standardness (lack of consistent tissue-specific numeric meaning for the intensity values) of the MR 

images, all 100 3D images were standardized [13]. Prior to standardization, intensity non-uniformities arising from 

magnetic field inhomogeneity were corrected [14]. 

Adaptation of the Iterative Relative Fuzzy Connectedness method 

IRFC is a top-of-the-line algorithm in the FC family [10, 11].  The FC framework is graph-based. Let I = (C, f) denote a 

3D image where C is a rectangular array of voxels and f is the MR image intensity function. A graph (C, α) is associated 

with image I = (C, f) where α is an adjacency relation on C such as 6-, 18-, or 26-adjacency. Each pair (c, d) of adjacent 

voxels in α is assigned an affinity value κ(c, d) which expresses the strength of the bond between c and d in belonging to 

the same object. To each path π in the graph (or equivalently in I) in the set of all possible paths Πa,b between any two 

voxels a and b of C, a strength of connectedness Κ(π) is determined, which is the minimum of the affinities between 

successive voxels along the path. The connectivity measure Κ
*
(a, b) between a and b is then defined to be Κ

*
(a, b) = 

max {Κ(π): π  Πa,b}. The notion of connectivity measure can be generalized to the case of “between a set A and voxel 

b” by a slight modification: Κ
*
(A, b) = max {Κ(π): π  Πa,b & a  A}. By using a fast algorithm to compute Κ

*
(A, b), the 

machinery of FC allows a variety of approaches to define and compute “objects” in images by specifying appropriate 

affinity functions and seed sets by means of how voxels hang together. All FC methods guarantee robustness to seed sets 

[11]. That is, if the seed set is changed to any set of voxels within a given segmentation produced by a given seed set, the 

same segmentation is guaranteed. This theoretical property plays an important role in the effectiveness of FC algorithms, 

particularly in the 4D adaptation described in this paper where seeds are propagated along the time axis. 

A fuzzy connected object is defined with a threshold on the strength of connectedness for the basic FC method called 

Absolute FC. Relative fuzzy connectedness overcomes the need for a threshold and leads to more effective 

segmentations. The central idea is that an object gets defined in an image because of the presence of other co-objects 

[10]. Each object is initialized by a set of seed voxels. An image voxel c is considered to belong to that object with 

respect to whose reference seed voxels c has the highest strength of connectedness. IRFC [12] uses an iterative strategy 

for fuzzy connectedness calculation wherein the strongest relative connected core parts are first defined and iteratively 

relaxed to conservatively capture the more fuzzy parts subsequently. In IRFC, two seed sets AO and AB are indicated for 

an object O and its background B, respectively. Then the object indicated by AO is separated from the background 

indicated by AB by an iterative competition in connectivity measure between AO and every voxel c  C and AB and c. In 
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the adapted IRFC method, AO and AB are specified with human interaction in the 3D image corresponding to the first 

time instance of the 10-time point 4D image. Affinities κO(c, d) and κB(c, d) for O and B are designed separately. 

Subsequently they are combined into a single affinity κ by taking a fuzzy union of κO and κB. The same affinity is then 

propagated along the time axis. Each of κO and κB has two components. The description below is for κO. The same 

applies to κB. 

                                     κO(c, d) = wψO(c, d) + (1-w)φO(c, d).               (1) 

Here, ψO(c, d) represents a homogeneity component of affinity, meaning, the more similar image intensities f(c) and f(d) 

are at c and d, the greater is this component of affinity between c and d. φO(c, d), the object feature component, on the 

other hand, describes the “degree of nearness” of the intensities at c and d to an intensity expected for the object O under 

consideration. For both ψO and φO, we use a Gaussian function with parameters (mψO, ψO) and (mφO, φO) as follows. 

                                                                     
2 22

( , ) = .
-( ( ) - ( )) /  O

f c f d
O c d e                                   (2) 

                                                                

2 2, 2
( , ) = .

-(max{ ( ) ( )} - ) / 


 O O
f c f d m

O c d e                         (3) 

The mean and standard deviation parameters are estimated from a few sample object- and background-tissue regions and 

then fixed. (This is why MRI non-uniformity correction and, more importantly, standardization become crucial.) For the 

airway object, a half-Gaussian form for (3) ( that is, right portion of the bell curve only) is chosen centered at mφO, the 

idea being that if f(c) and f(d) are both lower than mφO then this component of affinity should be maximum. The 

background tissue regions considered constitute essentially the tissue regions surrounding the airway: air outside the 

body region, hard palate, soft palate, tongue, and other soft structures around the airway. We set w = 0.5 and ψO = ψB. 

Once the affinity functions are specified, the IRFC process proceeds as follows.  

To start off, in the 3D image corresponding to the first time point, we specify seed sets AO and AB in the different tissue 

components mentioned above. The IRFC algorithm is then run which results in a segmented binary volume. The 

algorithm then proceeds to the next time point by propagating seed sets from pervious to the next time point, and in this 

manner the entire respiratory cycle is covered. Since the background tissue regions move very little with respiration, we 

reuse the seed set AB from the previous time point for the next time point. AO in the next time point is determined by 

applying a morphological erosion operation to the binary segmented volume in the previous time point. All affinity 

functions remain the same throughout all time points. Once seeds (objects and background) are put in the right place as 

well as affinity parameters are set with the right values, IRFC performs precise segmentation.   

3.     EXPERIMENTS & EVALUATION 

Among 10 subjects with PCOS whose dynamic data sets are utilized in our experiments, 4 subjects also had OSA. Only 

the sagittal data were used.   

The IRFC algorithm has been integrated into the CAVASS software system [15] with a friendly and flexible user 

interface for interactive selection of seeds and training and setting up of affinity functions. Seeds (foreground and 

background) can be placed on any 2D slices. Once seeds and affinity functions are set, the computation of the 3D fuzzy 

connectedness map as a segmentation result is completed within seconds. In our experiments, foreground and 

background seeds were placed on 3 slices - one slice roughly centrally situated in the upper airway and the other two 

slices through the center of the left and right halves. Owing to the robustness of FC results with respect to seeds, just one 

or two foreground seeds are usually adequate. Background seeds are set in every organ around the target organ (whole 

pharynx). Since the background seeds are propagated to other time points unchanged, they must be set carefully so that 

they do not enter the airway structure in subsequent time points. This is easily checked quickly by examining the slices 

for subsequent time points.   

In Figure 1, we display a slice at a fixed position and its 10 time points in the respiratory cycle from one of the test 

subjects along with the corresponding segmentations overlaid on the slices. Figure 2 demonstrates surface renditions of 

the airway structure segmented from this data set at ten time points. The segmentation results seemed visually acceptable 

in all 10 cases in our inspection of the slices as well as 3D renditions and animations of motion.            
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Direct evaluation of the segmentations as compared to manual delineations is shown in Figure 3 and Table 1. 

Segmentation accuracy [16] is expressed in terms of True Positive Volume Fraction (TPVF), False Positive Volume 

Fraction (FPVF), and Hausdorff Distance (HD) between the true and IRFC-found 3D boundary surfaces in Table 1.  

Once seed sets are specified in the 3D image corresponding to the first time point, the proposed IRFC method takes 

about 10 seconds to segment an entire 4D image on a 4-core Intel Xeon 3.6 GHz machine with 8 GB RAM and running 

the linux-jb18.3.7.20-1.16 operating system.   

 

 

          Figure 1. Segmentation results overlaid on slices over a full respiratory cycle for one fixed slice position for data from one 

subject. 

 

 

Figure 2. Surface renditions of the airway structure for all 10 time points for the subject data set shown in Figure 2. 
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    Table 1. Quantitative evaluation of segmentations by comparing with manual segmentation. Mean values for each of the 10 

    time points T1-T10 over the 10 data sets are shown as well as the overall mean.  

 

 

 

 

 

 

 

Figure 3. Comparison of IRFC result (bottom row) with manual segmentation (top row). Images from one subject corresponding to 

time points 2, 4, 6, 8, and 10 (left to right) are shown.    

4.       CONCLUSIONS 

In the study of upper airway restrictive disorders, it is important to take into account the dynamic nature of the structures 

involved. Currently dynamic MRI is the only practical modality available for imaging these structures. Unfortunately, 

due to the poor contrast resolution obtainable in these dynamic images, no practical techniques for segmenting these 

structures have been demonstrated. With a combination of MR image processing and IRFC principles, combined with a 

careful identification of background tissue components that pose segmentation challenges with an understanding of the 

core strengths of IRFC, we have presented some evidence of the viability of a practical solution to this problem. After 

preprocessing to correct for background image non-uniformities and the non-standardness of intensities, seeds are 

specified for the airway and its crucial background tissue components. Seed specification is needed on several slices in 

only the 3D image corresponding to the first time instance of the 4D volume. Subsequently the process runs without 

human interaction and completes in 10 seconds for segmenting the whole 4D volume with a TPVF about 93%, a FPVF 

of about 0.1%, HD of about 0.5 mm as compared to manual segmentation. 

This method seems to be the first demonstration of a practical approach for segmenting the upper airway structures in 

dynamic MR images. The method requires minimal user interaction and is very fast. In our preliminary comparison with 

a registration-based segmentation propagation approach, IRFC yielded better accuracy metrics (TPVF: 89% vs 93%, 

FPVF: 0.1% vs 0.3%, HD: both similar) and took far less computational time (3 min vs 10 sec).  

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Mean 

TPVF (%) 93.38 93.18 93.61 94.18 93.25 92.19 93.40 93.30 92.46 91.90 93.08 

FPVF (%) 0.10 0.11 0.12 0.12 0.11 0.12 0.13 0.15 0.14 0.14 0.12 

HD (mm) 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 

Proc. of SPIE Vol. 9038  90380Z-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/15/2014 Terms of Use: http://spiedl.org/terms



 

 

A drawback of the current IRFC method is that background seed voxels must be specified carefully with knowledge of 

how the surrounding organs change with motion. Similarly care should be exercised in selecting seeds for the airway 

structures, especially in narrow regions. However, once the seeds are specified correctly, acceptable segmentations with 

high accuracy are produced rapidly. 
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