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Abstract  Wavelet, a powerful tool for signal processing, can be used to approximate the target func-
tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by 
using wavelet kernel Support Vector Machines (SVM), which can converge to minimum error with bet-
ter sparsity. Here, wavelet functions would be firstly used to construct the admitted kernel for SVM 
according to Mercy theory; then new SVM with this kernel can be used to approximate the target fun-
citon with better sparsity than wavelet approxiamtion itself. The results obtained by our simulation ex-
periment show the feasibility and validity of wavelet kernel support vector machines. 
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I.  Introduction  
Sparse approximation is commonly a princi-

ple for signal decomposition. Let ( , )f x α be an 
approximation function of ( )f x with the form: 
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≡ x is a fixed set of basis func-

tions. If ϕ is not an orthogonal basis, it is possi-
ble that many different sets of coefficients will 
achieve the same error on a given data set. Sparse 
approximation looks, among all the approxima-
tion functions that achieve the same error, for the 
one with the smallest number of non-zero coeffi-
cients[1]. Eq.(1) can be rewritten with the follow-
ing form: 

    =s Φα                (2) 
where Φ is the basis matrix, s is the original sig-
nal. In other word, sparse approximation is also 
equivalent to finding the smallest number of 
non-zero coefficients within vector .α  

Sparse approximation can also be equivalent 
to the search for the optimal space structure, 
which can be used to describe the original signal 
or original space structure with very low cost. By 
this, it is more efficient for signal compression or 
signal Principle Component Analysis (PCA). 

Ideally, it will lead to an NP problem to 
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minimize [2]
0

|| || .Lα Dictionary and atom are 
commonly used in sparse approximation[3]. Re-
cently, there are several popular approaches to 
obtain solution to Eq.(2), such as Method Of 
Frame (MOF), Match Pursuit (MP), Best Or-
thogonal Basis (BOB), Basis Pursuit (BP), Sup-
port Vector Machines (SVM) and wavelet et al. 
MOF is not sparsity preserving[2]. MP is only 
good for orthogonal dictionaries and is 
sub-optimal in terms of sparse property[4]. When 
the signal is composed of a moderate number of 
highly non-orthogonal components, BOB may 
not deliver sparse representation[5]. BP requires 
the solution of a convex non-quadratic optimiza-
tion problem, which involves considerably more 
effort and sophistication than MP[1]. SVM uses a 
device called kernel mapping to map the data in 
input space to high-dimensional features space in 
which the problem becomes linearly separable. 
SVM can be used to approximate function with 
good sparsity after -ε insensitive loss function is 
introduced[6]. In some cases, only the 
near-optimal representations of the original sig-
nal can be gained in terms of sparse property by 
using wavelet or wavelet package. So SVM is in-
troduced here to enhance the sparse property of 
wavelet approximation or wavelet package ap-
proximation. Zhang Li has also researched wave-
let SVM, on which the convergent speed and 
precision instead of the sparse property of signal 
approximation is concentrated[7]. This paper, the 
sparse property of signal approximation is mainly 
concerned and simulation experiment is made 
with Wavelet Kernel Support Vector Machines 
(WKSVM). Experiment results show WKSVM 
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feasible and valid to solve the sparse approxima-
tion problem of wavelet. 

In Section II, sparse property of wavelet ap-
proximation is analyzed. In Section III, a new 
method is provided based on WKSVM for solv-
ing sparse approximation problem. Simulation 
experiment and results analysis are performed in 
Section IV. Conclusions are presented in Section 
V. 

II.  Wavelet Approximation Analysis 
Binary discrete wavelet transform is defined 

with the form 

,( , ) ( ( ), ( ))f j kW j k f t tϕ=         (3) 

where “,” denotes dot product. And mother wave-
let with the form 

         / 2
, ( ) 2 (2 )j j

j k t t kϕ ϕ= −          (4) 
Discrete wavelet can approximate the object 

function with high precision, but it is still not fine 
enough as far as sparse property is concerned. 
Wavelet approximation or wavelet package ap-
proximation can not get the optimal represen-
tation in some cases in terms of sparse property. 

At the j-th level, there are 2 j wavelets of 
width 2 .jn The wavelets at this scale are all 
circulant shifts of each other, with the shift of 

2 jn samples. But some atoms that can be used 
to describe the nature of the original function can 
not be generated by dilation and translation, so 
the solution of wavelet decomposition may not be 
sparse enough. Chen, et al. analyzed this condi-
tion by using stationary wavelet dictionary[3]. 

Commonly, wavelet package algorithm can 
be attributed to find best wavelet package base, 
which is not translation-invariant. Especially, if a 
signal comprises different kinds of high-energy 
structure and locates in the same frequency space 
but different time position, the best wavelet pack-
age base does not exist which satisfies the request 
of all these structure. Then the sparse property of 
signal decomposition becomes worse. Orthogonal 
basis is only a part of dictionaries, the demand 
that best package find an orthogonal basis pre-
vents it from finding a highly sparse representa-
tion. 

III. Wavelet Kernel Support Vector 
Machines 
1.  SVM spare approximation 

Given -insensitiveε loss function with the 

form:  
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i iif wϕ==∑x w x an approximation func- 

tion of the original function f(x) is defined to be 
sparse if the coefficients have been chosen to 
minimize the following lost function  
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where 1{ ( )}n
i iϕ ϕ =≡ x is a fixed set of basis func-

tions. Using SVM to minimize the E[w] can be 
finished by solving the following Quadratic Pro-
gramming (QP) problem with optimal results: 
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    (7) 
then the approximation function ( ; )f x w can be 
rewritten into the following form: 
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where * , 1, , ;i i ia a i Nβ = − = ⋅⋅⋅ *,a a are 
non-negative coefficients, which are the optimal 
results of the above QP problem in Eq.(7), b is a 
constant and can be omitted for the admitted 
kernel function with constant component; 

( , )K ⋅ ⋅ is a given function called as kernel func-
tion of SVM. Due to the nature of this QP prob-
lem, only a number of coefficients iβ will be 
different from zero and the input data point xi 
associated to them are called support vectors. The 
number of support vectors reflects the sparse de-
gree of signal approximation. 
2.  WKSVM 

(1) Kernel function of SVM 
The kernel function of SVM can be dot- 

product or translation-invariant[7]. Mercy theory 
has given the conditions that admitted dot-prod-
uct kernel must satisfy. 

( , )K u v can be an admitted kernel function 
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and be written into the following form: 

1
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If for all g(u)≠ 0 and 2 ( ) ,g u du<∞∫ then 

( , ) ( ) ( ) 0K u v g u g v dudv>∫∫      (10) 

(2) Wavelet kernel function and WKSVM 
Let ( )h x be a mother wavelet, let d and t de-

note the dilation and translation factor, respec-
tively. , ,d t R∈ if , ,NR∈'x x then translation-  
invariant wavelet kernels that satisfy the transla-
tion-invariant kernel conditions are 

1

( , )
N

i i

i

x xK h
d=

⎛ ⎞− ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠∏
'

'x x       (11) 

And the dot-product kernels are 
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The approximation function is 
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where *,i ia a can be obtained by solving the QP 
problem of Eq.(7). Clearly, ( , )K 'x x in Eq.(12) or 
Eq.(13) is the new admitted wavelet kernel func-
tion for SVM. 

IV.  Simulation Experiment and Re-
sults Analysis 

For wavelet approximation, several wavelet 
functions could be used to approximate original 
functions, such as Meyer wavelet, Haar wavelet, 
Daubechies wavelet, etc. For enhancing the spar-
sity of approximation, wavelet can be used to 
make tensor product and construct the admitted 
kernel funciton for SVM according to Mercy 
theory. Here, Daubechies wavelet is used in the 
simulation experiment to illustrate that WKSVM 
can effectively enhance the sparse property of 
wavelet approximation. Daubechies 4 (db4) and 
Daubechies Kernel SVM (dbKSVM) are used to 
approximate the same original function. Original 
function is f(x)=cos(exp(x)), x∈ (0, 3.5). 

db4 wavelet is used to approximate the 
original function respectively with 107 non-zero 
wavelet coefficients in Fig.1 and 53 non-zero 
wavelet coefficients in Fig.2. And 107 and 53 
support vectors are also respectively used to ap-
proximate the original function by dbKSVM in 
Fig.3 and Fig.4. The number of non-zero wavelet 
coefficients or support vectors reflects the sparse 
property of approximation methods. In each of 

the figures, the middle sub-figure (b) descibes the 
curve of the approximation funciton and 
sub-figure (c) clearly reflects the error between 
the approximate value and the target value. 

 
Fig.1  Approximation by db4 (107) 

 

Fig.2  Approximation by db4 (53) 

The more non-zero wavelet coefficients or 
support vectors are used, the smoother the ap-
proximation function curve and the error curve. 
But the difference between Fig.1 and Fig.2 is 
more obvious than that between Fig.3 and Fig.4; 
especially the difference of the approximation 
function curve in Fig.1 and Fig.2 is far more ob-
vious than that in Fig.3 and Fig.4. That means, 
with the decrease of the number of non-zero 
wavelet coefficients used in wavelet approxima-
tion, the approximation function became worse 
quickly. But that is not the case for dbKSVM. It 
still keeps good approximation curve even 
though the number of support vectors is reduced. 
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In other word, under the admitted error bound, 
WKSVM can get results with far better sparse 
property than wavelet approximation. Comparing 
Fig.1 and Fig.3 or Fig.2 and Fig.4, at the bottom 
of the input space, there is visible error that is 
prone to increase by wavelet approximation. 
WKSVM approximation with -ε insensitive loss 
function could be equivalent to an QP problem 
with the optimal result, which made the wave-
form of the approximation function curve undu-
late but never deviate much from the original 
function. The standard deviation of the points on 
the error curve in every figure methods also 
demonstrates that. 

 
Fig.3  Approximation by dbKSVM (107) 

 
Fig.4  Approximation by dbKSVM (53) 

V.  Conclusions 
Wavelet and SVM can be used together in 

pattern recognition, in which wavelet is used to 

extract pattern characteristics and SVM is used to 
classify them[8]. By contrast, wavelet and SVM 
are combined more closely in this paper. New 
SVM kernel function can be constructed by using 
wavelet, then wavelet kernel SVM is generated. 
In general, convergent speed, approximating pre-
cision and sparsity are all important and mean-
ingful for signal approxiamtion. More papers and 
experiments focused on the former. However this 
paper mainly discussed the later. The good sparse 
property of wavelet kernel SVM approximation is 
emphasized and tested here. The smooth property 
of wavelet approximation was gained at the suf-
ficient cost of sparse property. But WKSVM was 
not. Combining SVM and wavelet, WKSVM can 
enhance the sparse property of wavelet. And the 
results of simulation experiment show the feasi-
bility and validity of wavelet kernel SVM in 
sparse approximation. 

Tab.1  Standard deviation 

Figure 
Standard   
deviation 

Numbers of non-zero wavelet 
coefficients or support vectors

Fig.1 0.4846 107 
Fig.2 6.1732 53 
Fig.3 0.2858 107 
Fig.4 0.7114 53 
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