Image Reconstruction in Positron Emission Tomography

Robert M. Lewitt

Samuel Matej

Ivan G. Kazantsev

Lucretiu Popescu

PET Reconstruction Team

Medical Image Processing Group

Department of Radiology

Examples of clinical PET images

1.70 m (5'7") 101 kg Lung carcinoma

1.90 m (6'3") 105 kg Lymphoma + Lung carcinoma 1.55 m (5'1") 45 kg Lymphoma

Advantages: high sensitivity to cancer

Problems: resolution, noise, attenuation, scatter, randoms (Illustrated images lack proper treatment of those effects) Department of Radiology UNIVERSITY OF PENNSYLVANIA

Whole-body PET study – Fully 3D reconstruction

Department of Radiology

PET data - classification of events

Department of Radiology

UNIVERSITY OF PENNSYLVANIA

PET data - 2D vs. 3D scanner geometry

 \Rightarrow The larger the acceptance angle, the more (good and bad) events are accepted.

Department of Radiology

UNIVERSITY OF PENNSYLVANIA

Fast Fully 3D Reconstruction – WHY?

Modern emission tomography systems:

♦ Fast increase of **data sizes** (exceeding Moore's law) → needed – reduction of computation demands of reconstruction

♦ Low counts per data bin – noisy data
 Data attenuation, scatter and contamination
 → needed – reconstruction techniques with better modeling

Conflicting demands → needed – very fast reconstruction approaches

Department of Radiology

UNIVERSITY OF PENNSYLVANIA

Studied 3D PET reconstruction approaches

- ♦ 3D non-iterative analytical techniques (3DRP, 3D-FRP)
- ♦ 3D iterative techniques (3D RAMLA, ...)
- Rebinning (into non-oblique data) followed by multislice
 2D or 2.5D iterative reconstruction
- List mode reconstruction
- Time-of-flight reconstruction
- Oynamic list mode reconstruction

Favorite tools

Fourier-based approaches

- Analytical reconstruction
- Forward and back-projectors for attenuation correction and iterative reconstruction

0.75

0.5

0.25

Kaiser-Bessel window functions

- Image basis function
- Interpolators
- Display

Efficient grids

- Reconstruction
- Display

Analytical 3D/2.5D reconstructions

ANT

3D-FRP

3DRP

FORE reconstruction

HEAD

Department of Radiology

HEAD

Department of Radiology

Fourier-based projection

Droi	oct	ion
Proj		

Difference

No zeropadding 1% scale 58 ms/view 100% zeropadding 0.5% scale 96 ms/view 12

Department of Radiology

Fourier-based iterative reconstruction

200 iter of T-PL-OSPS

FBP

Fourier NUFFT

212 sec

Space Based Rec

1632 sec

200 iter of T-PL

Blob image basis

NUFFT-SBR

rms=0.15% max=1.29%

200 iter of T-PL-OSPS

Initial Image

Department of Radiology

The End

Department of Radiology

UNIVERSITY OF PENNSYLVANI⁴

